
(19) J
Europaisches Patentamt

European Patent Office

Office europeen des brevets (11) E P 0 9 3 8 0 4 4 A 2

(12) EUROPEAN PATENT A P P L I C A T I O N

(43) Date of publication: (51) int. CI.6: G06F 9 / 3 8
25.08.1999 Bulletin 1999/34

(21) Application number: 98115101.2

(22) Date of filing: 11.08.1998

(84) Designated Contracting States: (72) Inventor: Hunt, Douglas B.
AT BE CH CY DE DK ES Fl FR GB GR IE IT LI LU Fort Collins, Colorado 80526 (US)
MCNLPTSE
Designated Extension States: (74) Representative:
AL LT LV MK RO SI Schoppe, Fritz, Dipl.-lng.

Schoppe & Zimmermann
(30) Priority: 23.02.1998 US 28258 Patentanwalte

Postfach 71 08 67
(71) Applicant: 81458 Munchen (DE)

Hewlett-Packard Company
Palo Alto, California 94304 (US)

(54) Methods and apparatus for reducing interference in a branch history table of a
microprocessor

(57) Interference in a branch history table (214) of a
microprocessor is reduced by methods (300, 400) and
apparatus (200) which predict the outcome of branch
instructions (taken or not taken) through a combination
of static and dynamic prediction techniques. Static pre-
diction information (e.g., a compiler hint) may be stored
in instruction memory (204), and dynamic prediction
information is stored in a branch history table (214). A
branch prediction (302, 406) results from an exclusive
OR (216) of static (220) and dynamic (226) prediction
information. After execution of a branch instruction, an
indication (222) as to whether a branch was taken or not
taken is exclusively ORed (212) with the static predic-
tion information (220) for the branch instruction, and the
result (218) of this exclusive OR (212) is used to update
(304, 408) an appropriate entry in the branch history
table (214). Using the methods (300, 400) and appara-
tus (200) disclosed herein, two well-behaved branches
may share an entry in a branch history table (214), yet
not interfere with one another (even when the two well-
behaved branches include one which is mostly taken,
and one which is mostly not taken).

INSTRUCTION FETCH UNIT
-202

INSTRUCTION
MEMORY

XT 208

DECODE UNIT
I Z .

BRANCH HISTORY TABLE

224
INSTRUCTION EXECUTION

UNIT

-̂2i

228

-206
v., 222

CM
<

O
CO
CO
<7>
o
Q_
LU

200

FIG. 2

Printed by Xerox (UK) Business Services
2.16.7/3.6

1 EP 0 938 044 A2 2

Description

Field of the Invention

[0001] The invention pertains to the maintenance and s
use of a branch history table in a microprocessor.

Background of the Invention

[0002] Most modern computers, including those that 10
execute instructions out-of-order and/or via a pipelined
execution unit, execute instructions "speculatively".
That is, instructions are executed before the instructions
on which they depend have been fully executed, and
quite possibly, before the outcomes of branches in the is
instruction stream are known. To achieve a high degree
of performance, the microprocessors in these comput-
ers employ a variety of techniques to minimize the cost
of erroneously predicted branches in the instruction
stream. These techniques usually involve some form of 20
"branch prediction". Branch prediction is a means of
optimizing for the outcome of a branch instruction which
is mostly likely to occur (either "taken" or "not taken").
[0003] Typically, a branch prediction will be based on
one of two types of information: 1) static prediction infor- 25
mation, or 2) dynamic prediction information. Static pre-
diction information is generated prior to the execution of
a computer program, and may be based on factors such
as instruction type, position in the instruction stream,
instruction repetition, and so on. Dynamic prediction 30
information is generated during the execution of a com-
puter program, and usually depends on a history of pre-
vious outcomes of a given branch and/or other branch
instructions.
[0004] Dynamic prediction information is stored in a 35
branch history table comprising a number of entries. If a
branch history table was large enough, it is conceivable
that a distinct history could be maintained for each
branch instruction of a computer program. However,
given that microprocessor chip area is a costly 40
resource, and that branch history tables are often
scaled back to make room for other important micro-
processor elements, entries in a branch history table
are often shared. Interference between conflicting
branch histories is therefore a significant problem. 45
[0005] When conflicting histories share a single entry
in a branch history table, the history for any given
branch instruction is often corrupted by other branch
instructions, thereby resulting in a mispredicted branch
outcome. When a branch outcome is mispredicted, seri- so
ous and costly consequences result. For example,
instruction pipelines may stall, instruction execution
units may be halted, caches and registers may need to
be flushed, and so on. All of these consequences result
in unacceptable delays. 55
[0006] It is therefore a primary object of this invention
to provide methods and apparatus which reduce inter-
ference in a branch history table of a microprocessor,

thereby yielding 1) more accurate branch predictions,
and consequently 2) fewer delays caused by errone-
ously predicted branches.

Summary of the Invention

[0007] To understand the invention, it must first be rec-
ognized that the vast majority of branches are either
"almost always taken" or "almost always not taken".
These branches may be referred to as "well-behaved"
branches. One must also recognize that when the out-
come of a branch switches, it often switches from
"almost always taken" to "almost always not taken", or
vice versa. It is also important to note that branch pre-
diction schemes typically rely on the assumption that
most branches are well-behaved. As a result, the goal of
both static and many dynamic branch prediction
schemes is to predict what the dominant outcome of a
branch will be.
[0008] Recognizing the above facts, one can appreci-
ate that the prediction accuracy of a well-behaved
branch of one type (e.g., an "almost always taken"
branch) is degraded when the branch shares a branch
history table entry with a well-behaved branch of the
other type (e.g., an "almost always not taken" branch).
[0009] The branch prediction schemes of the Hewlett-
Packard Company PA-8x00 family of microprocessors
(e.g., the PA-8000, PA-8200, and PA-8500) presume the
above facts on well-behaved branches to be true.
Hewlett-Packard Company is based in Palo Alto, Cali-
fornia, USA, and the PA-8x00 family of microprocessors
is described in more detail in Advanced Performance
Features of the 64-bit PA-8000 by D. Hunt (March 5,
1995), HP Pumps Up PASxOO Family: PA-8200 in
2Q97, PA-8500 in 2Q98 Aim to Grab Performance Lead
by L Gwennap (October 28, 1996), and PA-8500: The
Continuing Evolution of the PA-8000 Family by G.
Lesartre and D. Hunt (Feb. 23, 1997). These papers are
hereby incorporated by reference for all that they dis-
close.
[0010] Compilers which generate code for the PA-
SxOO family of microprocessors are capable of encoding
a "hint" in most branch instructions. These hints are a
form of static prediction information, and are indication
as to whether the compiler believes a given branch will
be mostly taken or mostly not-taken. The compiler for
the PA-8000 microprocessor is described in more detail
in Compiler Optimizations for the PA-8000 by A. Holler.
This paper is hereby incorporated by reference for all
that it discloses.
[001 1] In the achievement of the foregoing objects, the
inventor has devised methods and apparatus which uti-
lize these compiler generated hints (or any other static
prediction information) to insure that two or more well-
behaved branches sharing a single entry in a branch
history table do not corrupt the history information
stored therein. After execution of a branch instruction,
an indication as to whether a branch instruction resulted

2

3 EP 0 938 044 A2 4

in a branch being taken or not taken is exclusively ORed
with the compiler generated hint for the branch instruc-
tion, and the result of this exclusive OR is used to
update an appropriate entry in the branch history table.
Furthermore, the outcome of a branch instruction is pre- 5
dieted in response to the exclusive OR of 1) the com-
piler generated hint, and 2) dynamic prediction
information read from an appropriate entry of the
branch history table.
[0012] Using the methods and apparatus disclosed 10
herein, two well-behaved branches may share an entry
in the branch history table, yet not corrupt the history
information stored therein (even when the two well-
behaved branches comprise one which is mostly taken,
and one which is mostly not taken). is
[0013] These and other important advantages and
objectives of the present invention will be further
explained in, or will become apparent from, the accom-
panying description, drawings and claims.

20
Brief Description of the Drawings

[0014] An illustrative and presently preferred embodi-
ment of the invention is illustrated in the drawings in
which: 25

FIG. 1 illustrates a first embodiment of branch pre-
diction hardware;
FIG. 2 illustrates a second embodiment of branch
prediction hardware; 30
FIG. 3 illustrates a method of predicting outcomes
of a plurality of branch instructions executed in a
microprocessor; and
FIG. 4 illustrates a method of reducing interference
in a branch history table of a microprocessor. 35

Description of the Preferred Embodiment

[001 5] Apparatus 200 in a microprocessor for predict-
ing whether branches identified in a plurality of branch 40
instructions will be taken or not taken is illustrated in
FIG. 2, and may generally comprise a branch history
table 214, one or more data storage locations 204 for
storing static prediction information corresponding to a
plurality of branch instructions, and first 216 and second 45
212 logic gates. The branch history table 214 comprises
a plurality of entries. The first logic gate 216 comprises
an input for receiving static prediction information 220
derived from an addressed one of the one or more data
storage locations 204, an input for receiving information so
226 derived from at least one entry in the branch history
table 214, and a branch prediction output 224 which is
indicative of whether one of the plurality of branch
instructions will be taken or not taken. The second logic
gate 212 comprises an input for receiving static predic- 55
tion information 220 derived from an addressed one of
the one or more data storage locations 204, an input for
receiving information 222 which is indicative of whether

a branch identified in a branch instruction was taken or
not taken, and a branch history update output 218 which
is indicative of whether the static prediction information
corresponding to a branch instruction was correct. The
branch history update output 218 is received by the
branch history table 214.
[0016] A method 300 of reducing interference in a
branch history table 214 of a microprocessor (which
might utilize the above described apparatus 200) is illus-
trated in FIG. 3, and may generally comprise predicting
302 outcomes of a plurality of branch instructions in a
computer program, and updating 304 an entry in a
branch history table 214 after execution of a given
branch instruction. The outcomes of branch instructions
are predicted 302 at least partly in response to hints
encoded in the branch instructions, and entries in the
branch history table 214. The branch history table 214 is
updated 304 at least partly in response to whether the
hint encoded in the given branch instruction was cor-
rect.
[001 7] A method 400 of predicting outcomes of a plu-
rality of branch instructions executed in a microproces-
sor which might (which also might utilize the above
described apparatus 200) is illustrated in FIG. 4, and
may generally comprise 1) maintaining 402 a branch
history table 214 comprising a plurality of entries, 2)
maintaining 404 static prediction information for a plural-
ity of branch instructions, 3) predicting 406 outcomes of
the plurality of branch instructions, and 4) updating 408
an entry in the branch history table 214 after execution
of each of the plurality of branch instructions. Outcomes
of branch instructions are predicted 406 at least partly in
response to 1) the static prediction information 220, and
2) an entry in the branch history table 214. The branch
history table 214 is updated at least partly in response
to whether the static prediction information 220 was cor-
rect.
[0018] Having described the above methods 300, 400
and apparatus 200 in general, the methods 300, 400
and apparatus 200 will now be described with more par-
ticularity.
[0019] A high-level schematic of branch prediction
hardware 100 existing in Hewlett-Packard Company's
PA-8000 and PA-8200 microprocessors, which serves
as a basis for implementing the preferred embodiments
of the methods 300, 400 and apparatus 200 disclosed
herein, is illustrated in FIG. 1. In general, the branch
prediction hardware 1 00 of these computers comprises
an instruction fetch unit 102, an instruction memory
1 04, an instruction execution unit 1 06, and a branch his-
tory table 110.
[0020] The instruction fetch unit 102 generates
addresses of instructions to be executed in response to
inputs from the instruction memory 104, the branch his-
tory table 110, and the instruction execution unit 106.
The first of these inputs (i.e., the one received from
instruction memory 104) allows the instruction fetch unit
1 02 to determine if a previously addressed instruction

30

35

3

5 EP 0 938

was a branch instruction. If so, the second of the inputs
(i.e., the one received from the branch history table 110)
provides dynamic prediction information which allows
the instruction fetch unit 102 to determine whether a
branch identified by the branch instruction is mostly 5
taken or mostly not taken. The third of the inputs (i.e.,
the one received from the instruction execution unit 106)
provides an indication as to whether a branch was taken
or not taken. If the instruction fetch unit 102 determines
that it erroneously predicted the outcome of a branch w
instruction, then steps must be taken to clear the
instruction pipeline, and otherwise recover from the
erroneous prediction.
[0021] Addresses generated by the instruction fetch
unit 102 are provided to both the instruction memory is
104 and the branch history table 110. To provide for
pipelined instruction execution, hold 108 is several
entries deep, and allows an appropriate entry in the
branch history table 1 1 0 to be addressed subsequent to
a branch instruction's processing through a pipeline in 20
instruction execution unit 106.
[0022] The same indication as to whether a branch
was taken or not taken is also provided to the branch
history table 110, and serves to increment, decrement,
or add to the data stored in an entry of the branch his- 25
tory table 1 1 0 addressed by hold 1 08.
[0023] In the PA-8000 microprocessor, each entry in
the branch history table 110 is maintained by a 3-bit
shift register which stores a taken/not taken history of
one or more branches. If a branch is taken, a logic "1 " is 30
moved into an appropriate shift register. If a branch is
not taken, a logic "0" is moved into an appropriate shift
register. A branch prediction generated by the branch
history table 1 1 0 is a logic "1 " (meaning mostly taken) if
any two of an addressed shift register's history bits hold 35
a logic "1". Otherwise, the branch prediction is a logic
"0" (meaning mostly not taken).
[0024] In the PA-8200 microprocessor, each entry in
the branch history table 1 1 0 is maintained by a 2-bit sat-
urating up/down counter. If a branch is taken, an appro- 40
priate counter is incremented. If a branch is not taken,
an appropriate counter is decremented. Of course,
when a counter has reached its maximum count (i.e,
saturation), additional increment attempts will have no
effect on the counter. Likewise, when a counter has 45
reached its minimum count (i.e, saturation), additional
decrement attempts will have no effect on the counter. A
branch prediction generated by the branch history table
1 1 0 is equal to the most significant bit (MSB) of a coun-
ter. 50
[0025] A problem with the branch history tables 1 1 0 of
both the PA-8000 and PA-8200 microprocessors is that
when a single entry is shared by more than one branch,
and one of the branches is mostly taken, while another
is mostly not taken, conflicts result and the outcome of a 55
branch instruction can be predicted incorrectly.
[0026] Referring now to FIG. 2, which illustrates a pre-
ferred embodiment of the invention, one will note the

44 A2 6

appearance of instruction fetch unit 202, instruction
memory 204, instruction execution unit 206, hold 208,
and branch history table 214. These components oper-
ate similarly to those illustrated in FIG. 1 , and may, in
fact, be identical to those illustrated in FIG. 1 .
[0027] As in FIG. 1 , one output of instruction fetch unit
202 is an instruction address. This address is provided
to the instruction memory 204 for retrieval of an instruc-
tion stored therein, and is further provided to the branch
history table 214 for retrieval of historical prediction
information relating to an addressed branch instruction.
[0028] Hold device 208 may comprise one or more
registers which latch the instruction addresses gener-
ated by instruction fetch unit 202. Since branch predic-
tion is typically only necessary in out-of-order and/or
pipelined computer systems, hold device 208 will most
likely comprise a plurality of registers which maintain
the addresses of recently fetched instructions (most
likely just branch instructions). In this manner, an appro-
priate entry in the branch history table 214 may be
addressed and updated several cycles after a branch
instruction is addressed (e.g., after the branch instruc-
tion has advanced through a pipeline of instruction exe-
cution unit 206). Means may be provided for clearing or
advancing entries in hold device 208 upon execution or
retirement of an instruction.
[0029] The instruction memory 204 may be a cache
which is internal or external to a microprocessor, or in
the alternative, may be part of a main memory. It is also
possible that instruction memory 204 may comprise a
combination of caches and main memory.
[0030] The instruction execution unit 206 may be any
one or more of an integer arithmetic logic unit (integer
ALU), a floating-point multiply accumulate unit (FMAC),
a shift/merge unit, a divide/square-root unit
(divide/SQRT), an instruction reorder buffer (IRB), or
other execution unit. The instruction execution unit 206
produces a signal 222 which is indicative of whether a
branch identified in a branch instruction was taken or
not taken.
[0031] In the preferred implementation, static predic-
tion information is saved 404 (FIG. 4) in one or more
data storage locations of instruction memory 204, and is
saved as a predecode bit stored in conjunction with var-
ious of the instructions saved in the instruction memory
204. The decode unit 210 therefore reads the appropri-
ate predecode bit 220, and routes same to logic gates
212 and 216. A hold device 228, possibly similar to hold
device 208, allows static information to be provided to
logic gate 212 subsequent to a branch instruction's
processing through a pipeline in instruction execution
unit 106.
[0032] Logic gate 212 provides a branch history
update signal 218 to branch history table 214. Inputs to
the logic gate 212 comprise static prediction information
220 from decode unit 210, and the signal 222 from
instruction execution unit 206 which is indicative of
whether a branch identified in a branch instruction was

EP 0 938 044 A2

4

7 EP 0 938 044 A2 8

taken or not taken. In a preferred embodiment, logic
gate 212 is a single exclusive OR gate (XOR gate). If,
for example, static prediction information 220 comprises
a plurality of bits, or prediction history information main-
tained in the branch history table 214 depends on fac- 5
tors other than static prediction information 220 and the
success thereof, logic gate 212 might comprise a more
complex XOR gate, or even an alternate form of logic
gate.
[0033] Branch history table 214 comprises a plurality 10
of entries. Each entry may be maintained 402 (FIG. 4) in
a number of ways. For example, an entry may be main-
tained by a saturating up/down counter, a shift register,
or other means of latching data. In a preferred embodi-
ment, each entry of the branch history table is main- is
tained by either a 2-bit up/down saturating counter (as
in the HP-8200), or a 3-bit shift register (as in the HP-
8000).
[0034] Assuming a branch history table 214 of 2-bit
counters, the branch history update signal 218 (or just 20
"Update Signal" in the following table) advances a coun-
ter from its current state to a next state as illustrated in
the following table:

Current State Update Signal Next State

00 0 00

00 1 01

01 0 00

01 1 10

10 0 01

10 1 11

11 0 10

11 1 11

[0035] When a counter has reached its maximum
count, additional increment signals (logic "1"s in the
above example) have no effect on the counter (i.e., the
counter is saturated, and will no longer increment). Like- 45
wise, when a counter has reached its minimum count,
additional decrement signals (logic "0"s in the above
example) have no effect on the counter.
[0036] If the branch history table 214 comprises a
number of 2-bit counters, the information 226 output to so
logic gate 216 might comprise only the most significant
bit (MSB) of an addressed counter. If, on the other hand,
entries in the branch history table 214 are maintained by
3-bit shift registers, the information 226 output to logic
gate 216 might comprise the MSB of a sum of a shift ss
register's bits.
[0037] Control logic for reading and/or writing a
branch history table 214 is known in the art, and is

beyond the scope of this disclosure. The branch history
table 214 illustrated in FIG. 2 is presumed to include
such control logic.
[0038] Logic gate 216 provides a branch prediction
output 226, which is indicative of whether a branch
instruction will be taken or not taken, to instruction fetch
unit 202. The branch prediction output 226 comprises
dynamic prediction information. The outcome of a
branch instruction addressed by instruction fetch unit
202 is therefore predicted in response to both static 220
and dynamic 226 prediction information (unless a com-
puter program which is being executed was not com-
piled with static prediction information - in this case, the
outcome of a branch instruction addressed by instruc-
tion fetch unit 202 will only be predicted in response to
dynamic prediction information 226). Inputs to the logic
gate 216 comprise static prediction information 220
from decode unit 210, and information 226 derived from
at least one entry in the branch history table 214. In a
preferred embodiment, logic gate 216 is a single XOR
gate. But again, for example, if static prediction informa-
tion 220 comprises a plurality of bits, or if prediction of a
branch instruction's outcome depends on factors other
than static prediction information 220 and information
226 maintained in the branch history table 214, logic
gate 216 might comprise a more complex XOR gate, or
even an alternate form of logic gate.
[0039] If it is desirable that a computer system be able
to execute computer programs which do not comprise
static prediction information, then instruction fetch unit
202 might comprise, or be responsive to, a branch pre-
diction mode indicator (not shown) which signals
whether a computer program does or does not com-
prise static prediction information. If a computer pro-
gram does not comprise static prediction information,
then signal 220 can be driven to a logic "0" so that 1) the
outputs 218, 224 of logic gates 212 and 216 are solely
dependent on the taken/not taken information 222 pro-
vided by instruction execution unit 206. Note that in this
mode, entries in the branch history table 214 which are
shared by more than one branch are subject to update
by branches having conflicting outcomes, and the prob-
ability of erroneous branch prediction is increased.
[0040] Assuming that the branch history table 214
comprises a number of 2-bit saturating up/down
counters, a logic "0" hint indicates that a branch is
mostly taken, a logic "1" hint indicates that a branch is
mostly not taken, a logic "1" signal indicates that a
branch identified in a branch instruction was actually
taken, and a logic "0" signal indicates that a branch was
actually not taken, the apparatus 200 shown in FIG. 2
operates as follows. When a first well-behaved branch is
hinted as taken (hint 0), and is actually taken (outcome
1), an appropriate counter in the branch history table
214 is incremented (0 XOR 1 = 1). Likewise, when a
second branch is hinted as not taken (hint 1), and is
actually not taken (outcome 0), an appropriate counter
in the branch history table 214 is incremented (1 XOR 0

5

9 EP 0 938 044 A2 10

= 1). If the first and second branches share the same
entry (e.g., counter) in the branch history table, the his-
tories for these branches will not interfere with one
another. For example, assume that a counter holds an
initial value of "00", and is then incremented once after 5
the first branch is taken as hinted, and once after the
second branch is not taken as hinted. After two incre-
ments, the counter holds a value of "10". If the first
branch is again hinted as taken (hint 0), and the MSB of
the counter is read as "1", logic gate 216 produces a w
branch prediction of "1" (0 XOR 1 = 1), which is inter-
preted by the instruction fetch unit 202 to mean taken.
Alternatively, if the second branch is again hinted as not
taken (hint 1), and the MSB of the counter is read as "1 ",
logic gate 216 produces a branch prediction of "0" (1 75
XOR 1 = 0), which is interpreted by the instruction fetch
unit 202 to mean not taken.
[0041] Of course, if the hints were always correct, then
branch prediction could be based solely on the hints,
and branch prediction hardware 200 would be unneces- 20
sary. However, assume now that the first and second
branches were hinted correctly during their first execu-
tion, and that their shared counter in the branch history
table stands at "10". If the first branch now switches its
behavior, and becomes mostly not taken, its incorrect 25
hint (hint 0) is exclusively ORed with its outcome of not
taken (outcome 0), and the counter is decremented (0
XOR 0 = 0). With the counter now standing at "01", a
subsequent prediction of the first branch, which has
now become mostly not taken, would be correct (the 30
MSB of the counter is now "0", and when exclusively
ORed with a hint of "0" produces a logic "0" which
results in a prediction of not taken - in spite of the hint).
[0042] To summarize, the primary advantage of the
methods 300, 400 and apparatus 200 disclosed herein 35
is that when two well-behaved branches which share an
entry in a branch history table 214 are hinted correctly,
dynamic prediction histories for the two branches will
not interfere with one another - even when one of the
branches is mostly taken, and the other is mostly not 40
taken. Also, when a branch is not hinted correctly, but 1)
does not share an entry in the branch history table 214
with any other branch, or 2) is executed 302, 406 (FIGS.
3, 4) repeatedly (or significantly more often than the
branch which shares its entry in the branch history table 45
214), then the dynamic information stored in the branch
history table 214 allows the instruction fetch unit 202 to
make a correct prediction of a branch outcome in lieu of
the incorrect hint. The only time well-behaved branches
will interfere with each other is when two branches so
share an entry in the branch history table 214, and one
is hinted correctly while the other is hinted incorrectly.
This is in contrast to previous branch prediction
schemes, wherein two well-behaved branches, one of
which is mostly taken and one of which is mostly not ss
taken, will always interfere with one another if they
share an entry in the branch history table 214.
[0043] While illustrative and presently preferred

embodiments of the invention have been described in
detail herein, it is to be understood that the inventive
concepts may be otherwise variously embodied and
employed, and that the appended claims are intended
to be construed to include such variations, except as
limited by the prior art.

Claims

1 . A method (400) of predicting outcomes of a plurality
of branch instructions executed in a microproces-
sor, comprising:

a) maintaining (402) a branch history table
(214) comprising a plurality of entries;
b) maintaining (404) static prediction informa-
tion for a plurality of branch instructions;
c) predicting (406) outcomes of the plurality of
branch instructions, each outcome being pre-
dicted at least partly in response to:

i) the static prediction information (220);
and
ii) an entry in the branch history table;

d) after executing each of the plurality of branch
instructions, updating (408) an entry in the
branch history table at least partly in response
to whether the static prediction information was
correct.

2. A method (400) as in claim 1 , further comprising:

a) maintaining each entry in the branch history
table by means of a saturating up/down coun-
ter; and
b) after executing a given one of the plurality of
branch instructions,

i) incrementing a predetermined saturating
up/down counter in the branch history
table (214) if the static prediction informa-
tion (220) for the given one of the plurality
of branch instructions was correct; and
ii) decrementing a predetermined saturat-
ing up/down counter in the branch history
table if the static prediction information for
the given one of the plurality of branch
instructions was incorrect.

3. A method (400) as in claim 1 , further comprising:

a) maintaining each entry in the branch history
table (214) by means of a shift register; and
b) after executing a given one of the plurality of
branch instructions, shifting into a predeter-
mined shift register of the branch history table
an indication (222) as to whether the static pre-

6

11 EP 0 938 044 A2 12

diction information for the given one of the plu-
rality of branch instructions was correct.

4. A method (400) as in claim 1, wherein predicting
(406) the outcome of a given one of the plurality of s
branch instructions comprises predicting the out-
come of the given one of the plurality of branch
instructions at least partly in response to the exclu-
sive OR (216) of:

10
a) static prediction information (220) corre-
sponding to the given one of the plurality of
branch instructions; and
b) an entry in the branch history table (214).

15
5. A method (400) as in claim 4, wherein updating

(408) an entry in the branch history table (214)
comprises updating an entry in the branch history
table at least partly in response to the exclusive OR
(212) of: 20

a) static prediction information (220) corre-
sponding to a given one of the plurality of
branch instructions; and
b) an indication (222) as to whether execution 25
of the given one of the plurality of branch
instructions resulted in a branch being taken or
not taken.

6. A method (400) as in claim 1, wherein updating 30
(408) an entry in the branch history table (214)
comprises updating an entry in the branch history
table at least partly in response to the exclusive OR
(212) of:

35
a) static prediction information (220) corre-
sponding to a given one of the plurality of
branch instructions; and
b) an indication (222) as to whether execution
of the given one of the plurality of branch 40
instructions resulted in a branch being taken or
not taken.

7. A method (300) of reducing interference in a branch
history table (214) of a microprocessor, comprising: 45

a) predicting (302) outcomes of a plurality of
branch instructions in a computer program, at
least partly in response to:

50
i) hints encoded in the branch instructions;
and
ii) entries in a branch history table; and

b) after execution of a given branch instruction, 55
updating (304) an entry in the branch history
table at least partly in response to whether the
hint encoded in the given branch instruction

was correct.

8. A method (300) as in claim 7, wherein predicting
(302) the outcome of a given branch instruction
comprises predicting the outcome of the given
branch instruction at least partly in response to the
exclusive OR (216) of:

a) a hint (220) encoded in the given branch
instruction; and
b) an entry in the branch history table (214).

9. A method (300) as in claim 7, wherein updating
(304) an entry in the branch history table (214)
comprises updating an entry in the branch history
table at least partly in response to the exclusive OR
(212) of:

a) a hint (220) encoded in a given branch
instruction; and
b) an indication (222) as to whether execution
of the given branch instruction resulted in a
branch being taken or not taken.

1 0. Apparatus (200) in a microprocessor for predicting
whether branches identified in a plurality of branch
instructions will be taken or not taken, comprising:

a) a branch history table (214) comprising a
plurality of entries;
b) one or more data storage locations (204) for
storing static prediction information corre-
sponding to a plurality of branch instructions;
c) a first logic gate (216), comprising:

i) an input for receiving static prediction
information (220) derived from an
addressed one of the one or more data
storage locations;
ii) an input for receiving information (226)
derived from at least one entry in the
branch history table; and
iii) a branch prediction output (224) which
is indicative of whether one of the plurality
of branch instructions will be taken or not
taken;

d) a second logic gate (212), comprising:

i) an input for receiving static prediction
information derived from an addressed
one of the one or more data storage loca-
tions;
ii) an input for receiving information (222)
which is indicative of whether a branch
identified in a branch instruction was taken
or not taken; and
iii) a branch history update output (218)

7

13 EP 0 938 044 A2

which is indicative of whether the static
prediction information corresponding to a
branch instruction was correct;

wherein the branch history update output is s
received by the branch history table.

. Apparatus (200) as in claim 10, wherein the first
(216) and second (212) logic gates are exclusive
OR gates. to

15

20

25

30

35

40

45

50

8

EP 0 938 044 A2

INSTRUCTION
FETCH UNIT

102

INSTRUCTION
MEMORY

HOLD

^ 1 0 8

104

I

BRANCH
HISTORY

TABLE

110

INSTRUCTION
EXECUTION

UNIT

■106

100

F I G . 1

9

EP 0 938 044 A2

INSTRUCTION
FETCH UNIT

202

INSTRUCTION
MEMORY

■204

212

I

HOLD

^ 2 0 8

228

HOLD

DECODE
UNIT

220

-270

224

INSTRUCTION
EXECUTION

UNIT

206

222

278

1

y -

276

BRANCH
HISTORY

TABLE

226

274

200

F I G . 2

10

EP 0 938 044 A2

START

AT LEAST PARTLY IN RESPONSE TO HINTS
ENCODED IN A BRANCH INSTRUCTION, AND

ENTRIES IN A BRANCH HISTORY TABLE,
PREDICT THE OUTCOME OF EACH OF A
PLURALITY OF BRANCH INSTRUCTIONS 302

AFTER EXECUTING A GIVEN BRANCH
INSTRUCTION, UPDATE AN ENTRY IN THE

BRANCH HISTORY TABLE IN RESPONSE TO
WHETHER THE HINT ENCODED IN THE GIVEN

BRANCH INSTRUCTION WAS CORRECT 304

END

F I G . 3

11

EP 0 938 044 A2

START

£

MAINTAIN BRANCH
HISTORY TABLE

COMPRISING A PLURALITY
OF ENTRIES

~ Y
402

r

404

L

MAINTAIN STATIC
PREDICTION INFORMATION

FOR A PLURALITY OF
BRANCH INSTRUCTIONS

1

AT LEAST PARTLY IN RESPONSE TO THE
STATIC PREDICTION INFORMATION, AND

ENTRIES IN THE BRANCH HISTORY TABLE, -
PREDICT THE OUTCOME OF EACH OF THE

PLURALITY OF BRANCH INSTRUCTIONS

V

AFTER EXECUTING EACH OF THE PLURALITY
OF BRANCH INSTRUCTIONS, UPDATE AN

ENTRY IN THE BRANCH HISTORY TABLE IN
RESPONSE TO WHETHER THE STATIC

PREDICTION INFORMATION WAS CORRECT

406

400

408

END

F I G . 4

12

	bibliography
	description
	claims
	drawings

