(19)
(11) EP 0 938 320 B9

(12) CORRECTED EUROPEAN PATENT SPECIFICATION
Note: Bibliography reflects the latest situation

(15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see
Claims EN

(48) Corrigendum issued on:
03.11.2010 Bulletin 2010/44

(45) Mention of the grant of the patent:
16.06.2010 Bulletin 2010/24

(21) Application number: 97915870.6

(22) Date of filing: 14.03.1997
(51) International Patent Classification (IPC): 
A61K 31/70(2006.01)
C12P 19/34(2006.01)
C12Q 1/70(2006.01)
A61K 39/395(2006.01)
C12Q 1/68(2006.01)
(86) International application number:
PCT/US1997/003479
(87) International publication number:
WO 1997/035589 (02.10.1997 Gazette 1997/42)

(54)

METHOD ENABLING USE OF EXTRACELLULAR RNA EXTRACTED FROM PLASMA OR SERUM TO DETECT, MONITOR OR EVALUATE CANCER

METHODEN AUS PLASMA ODER SERUM EXTRAHIERTE EXTRAZELLURAERE RNA ZUR DIAGNOSEÜBERWACHUNG ODER EVALUATION VON KREBS VERWENDEN

PROCEDE PERMETTANT D'EMPLOYER DE L'ARN EXTRACELLULAIRE EXTRAIT DE PLASMA OU DE SERUM A LA DETECTION, A LA SURVEILLANCE OU A L'EVALUATION D'UN CANCER


(84) Designated Contracting States:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

(30) Priority: 26.03.1996 US 14730 P

(43) Date of publication of application:
01.09.1999 Bulletin 1999/35

(73) Proprietor: Kopreski, Michael, S.
Long Valley NJ 07853-6115 (US)

(72) Inventor:
  • Kopreski, Michael, S.
    Long Valley NJ 07853-6115 (US)

(74) Representative: Watts, Peter Graham et al
Anthony Cundy & Co. 39/41 South Drive
Sutton Coldfield West Midlands B75 7TE
Sutton Coldfield West Midlands B75 7TE (GB)


(56) References cited: : 
EP-A- 0 246 709
EP-A- 0 732 409
CA-A1- 2 157 416
US-A- 4 683 195
US-A- 4 874 853
US-A- 5 087 617
US-A- 5 124 246
US-A- 5 217 889
US-A- 5 300 635
US-A- 5 470 724
EP-A- 0 272 098
WO-A-96/14437
DE-A1- 2 717 212
US-A- 4 699 877
US-A- 4 999 290
US-A- 5 098 890
US-A- 5 155 018
US-A- 5 274 087
US-A- 5 409 818
   
  • SCANLON K ET AL: "Elevated expression of thymidylate synthetase cycle genes in cislpatin-resistant human ovarian carcinoma A2780 cells" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE, WASHINGTON, DC, US, vol. 85, February 1988 (1988-02), pages 650-653, XP002143389 ISSN: 0027-8424
  • KASHANI-SABET M ET AL: "DETECTION OF DRUG RESISTANCE IN HUMAN TUMORS BY IN VITRO ENZYME AMPLIFICAITON1" CANCER RESEARCH, AMERICAN ASSOCIATION FOR CANCER RESEARCH, BALTIMORE, MD, US, vol. 48, no. 18, 15 October 1988 (1988-10-15), pages 5775-5778, XP000929456 ISSN: 0008-5472
  • EKSP. ONKOL. (USSR), 1988, Vol. 10, No. 4, AGLIULLINA et al., "Changes in the RNA Content of Blood Plasma in Rats With Erlich Ascitic Cancer".
  • RES. VIROL., (Paris), 1995, Vol. 146, No. 5, SCHWARZ et al., "Nested RT-PCR for Detection of Sandy-fever Virus, Serotype Toscana, in Clinical Specimens, With Confirmation by Nucleotide Sequence Analysis".
  • HEPATOLOGY, 1993, Vol. 18, No. 1, KATO et al., "Quantification of Hepatitis C Virus by Competitive Reverse Transcription-polymerase Chain Reaction Increase of the Virus in Advanced Liver Disease".
  • TABLE OF CONTENTS FOR MOLECULAR DIAGNOSTICS (8) AND VACCINES AND THERAPEUTIC AGENTS (9), 1994, ASM PRESS, WASHINGTON DC, GLICK et al., "Molecular Biotechnology: Principles and Applications of Recombinant DNA".
  • TABLE OF CONTENTS FOR PRINCIPLES OF DIAGNOSTIC MOLECULAR MICROBIOLOGY AND VIRAL PATHOGENS, 1993, AMER. SOC. MICROBIOL., Washington DC, PERSING et al., "Diagnostic Molecular Microbiology: Principles and Applications".
  • TABLE OF CONTENTS FOR RECOMBINANT DNA TECHNIQUES, 1982, COLD SPRING HARBOR PRESS, MANIATIS et al., "Molecular Cloning, a Laboratory Manual".
 
Remarks:
The file contains technical information submitted after the application was filed and not included in this specification
 
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

BACKGROUND OF THE INVENTION



[0001] Ribonucleic acid (RNA) is essential to the processes which allow translation of the genetic code to form proteins necessary for all cellular functions, both in normal and neoplastic cells. While the genetic code structurally exists as deoxyribonucleic acid (DNA), it is the function of RNA, existing as the subtypes transfer-RNA, messenger-RNA or messenger-like RNA, and ribosomal-RNA, to carry and translate this code to the cellular sites of protein production. In the nucleus, this RNA may further exist as or in association with ribonucleoproteins (RNP). The pathogenesis and regulation of cancer is dependent upon RNA-mediated translation of specific genetic codes, which often reflects mutational events within oncogenes, to produce proteins involved with cell proliferation, regulation, and death. Furthermore, other RNA and their translated proteins, although not necessarily those involved in neoplastic pathogenesis or regulation, may serve to delineate recognizable characteristics of particular neoplasms by either being elevated or inappropriately expressed. Thus, recognition of specific RNA can enable the identification, detection, inference, monitoring, or evaluation of any neoplasm, benign, malignant, or premalignant, in humans and animals. Furthermore, since RNA can be repetitively created from its DNA template, for a given gene within a cell there may be formed a substantially greater number of associated RNA molecules than DNA molecules. Thus, an RNA-based assay should have greater sensitivity, and greater clinical utility, than its respective DNA-based assay. Note that the term RNA denotes ribonucleic acid including fragments of ribonucleic acid consisting of ribonucleic acid sequences.

[0002] RNA based nucleic acid amplification assays, including the reverse transcriptase polymerase chain reaction (RT-PCR, also known as reverse transcription polymerase chain reaction or RNA-PCR), branched DNA signal amplification, and self-sustained sequence replication assays, such as isothermal nucleic acid sequence based amplification (NASBA), have proven to be highly sensitive and specific methods for detecting small numbers of RNA molecules. As such, they can be used in direct assays of neoplastic tissue (1-3). Since peripheral blood is readily obtainable from patients with cancer, and metastatic cancer cells are known to circulate in the blood of patients with advanced cancer, several investigators have recently used RT-PCR to detect intracellular RNA extracted from circulating cancer cells (4-7). It must be emphasized that currently investigators apply RT-PCR to detect extracted intracellular RNA from a predominately cellular fraction of blood in order to demonstrate the existence of circulating cancer cells. RT-PCR is applied only to the cellular fraction of blood obtained from cancer patients, i.e., the cell pellet or cells within whole blood. The plasma or serum fraction of blood is usually discarded prior to analysis, but is not examined separately. Since such a cellular fraction approach relies upon the presence of metastatic circulating cancer cells, it is of limited clinical use in patients with early cancers, and is not useful in the detection of non-invasive neoplasms or pre-malignant states.

[0003] The invention described by this patent application demonstrates the novel use of that human or animal tumor-derived or tumor-associated RNA found circulating in the plasma or serum fraction of blood, as a means to detect, monitor, or evaluate cancer and premalignant states. This invention is based upon the application of RNA extraction techniques and nucleic acid amplification assays to detect tumor-derived or associated extracellular RNA found circulating in plasma or serum. In contrast to the detection of viral-related RNA in plasma or serum, and the detection of tumor-associated DNA in plasma and serum, the detection of human or mammalian RNA, and particularly tumor-derived or associated RNA, has never been detected specifically within the plasma or serum fraction of blood using nucleic acid amplification methodology, and thus represents a novel and non-obvious use for these RNA extraction methods and nucleic acid amplification assays. Since this invention is not dependent upon the presence of circulating cancer cells, it is clinically applicable to cases of early cancer, non-invasive cancers, and premalignant states, in addition to cases of invasive cancer and advanced cancer. Further, this invention allows the detection of RNA in previously frozen or otherwise stored plasma and serum, thus making plasma and serum banks available for analysis and otherwise increasing general usefulness.

[0004] Tumor-derived or tumor-associated RNA that is present in plasma and serum may exist in two forms. The first being extracellular RNA, but the second being extractable intracellular RNA from cells occasionally contaminating the plasma or serum fraction. In practice, it is not necessary to differentiate between intracellular and extracellular in order to detect RNA in plasma or serum using the invention, and this invention can be used for detection of both. The potential uses of tumor-derived or associated extracellular RNA have not been obvious to the scientific community, nor has the application of nucleic acid amplification assays to detect tumor-derived or associated extracellular RNA been obvious. Indeed, the very existence of tumor-derived or associated extracellular RNA has not been obvious to the scientific community, and is generally considered not to exist. It is generally believed that plasma ribonucleases rapidly degrade any extracellular mammalian RNA which might circulate in blood, rendering it nondetectable (8). Komeda et al., for example, specifically added free RNA to whole blood obtained from normal volunteers, but were unable to detect that RNA using PCR (54). However, nucleases appear inhibited in the plasma of cancer patients (9). In addition, extracellular RNA, either complexed to lipids and proteolipids, protein-bound, or within apoptotic bodies, would be protected from ribonucleases. Thus, although still undefined, tumor-derived or associated extracellular RNA may be present in plasma or serum via several mechanisms. Extracellular RNA could be secreted or shed from tumor in the form of lipoprotein (proteo-lipid)-RNA or lipid-RNA complexes, it could be found within circulating apoptotic bodies derived from apoptotic tumor cells, it could be found in proteo-RNA complexes released from viable or dying cells including or in association with ribonucleoproteins, or in association with other proteins such as galectin-3, or RNA could be released from necrotic cells and then circulate bound to proteins normally present in plasma. Additionally it could exist circulating within RNA-DNA complexes including those associated with ribonucleoproteins and other nucleic RNA. Further, RNA may exist within several of these moieties simultaneously. For example, RNA may be found associated with ribonucleoprotein found within proteo-lipid apoptotic bodies. The presence of extracellular RNA in plasma or serum makes their detection by nucleic acid amplification assays feasible.

[0005] Several studies in the literature support the existence of tumor-derived or associated extracellular RNA. RNA has been shown to be present on the cell surface of tumor cells, as demonstrated by electrophoresis (10), membrane preparations (11), and P32 release (12). Shedding of phospholipid vesicles from tumor cells is a well described phenomena (13,14), and similar vesicles have been shown to circulate in the blood of patients with cancer (15). Kamm and Smith used a fluorometric method to quantitate RNA concentrations in the plasma of healthy individuals (55). Rosi and colleagues used high resolution nuclear magnetic resonance (NMR) spectroscopy to demonstrate RNA molecules complexed with lipid vesicles which were shed from a human colon adenocarcinoma cell line (16). Further characterization of these lipid-RNA complexes demonstrated the vesicles additionally contained triglycerides, cholesterol esters, lipids, oligopeptide, and phospholipids (17). Mountford et al. used magnetic resonance spectroscopy to identify a proteolipid in the plasma of a patient with an ovarian neoplasm (18). While further evaluation of the proteolipid using the orcinol method suggested RNA was present, this could not be confirmed using other methods. Wieczorek and associates, using UV spectrometry and hydrolysis by RNases, claimed to have found a specific RNA-proteolipid complex in the serum of cancer patients which was not present in healthy individuals (19-20). The complex had unvarying composition regardless of the type cancer. Wieczorek et al. were further able to detect this specific RNA-proteolipid complex using a phage DNA cloned into E. Coli and hybridized to RNA from neoplastic serum, a method distinctly different from the method of this invention. The DNA was then detected by immunoassay (21). However, the RNA found in this complex is described as 10 kilobases, which is so large as to make it questionable whether this truly represents RNA as described. More recently, DNA and RNA-containing nucleoprotein complexes, possibly representing functional nuclear suborganellular elements, were isolated from the nuclei of lymphoma cells (22). It was not shown, however, that these complexes can be shed extracellularly. Other ribonucleoprotein complexes have been associated with c-myc oncogene RNA (56).

[0006] While plasma and serum are generally presumed to be cell-free, in the practical sense, particularly under conditions of routine clinical fractionation, plasma and serum may occasionally be contaminated by cells. These contaminating cells are a source of intracellular RNA which is detectable by the methods of the invention. While the level of contaminating cells may be reduced by filters or high speed centrifugation, these methods may also reduce extracellular RNA, particularly larger apoptotic bodies. Clinical utility of the invention is not dependent upon further separating of plasma or serum RNA into its extracellular and intracellular species.

[0007] While not related to the claims of this patent, similar analogy likely exists for detection of normal RNA (non-tumor derived or non-tumor associated RNA) in plasma and serum. Subsequent to the filing of the provisional patent application for this patent, the inventor has shown that normal RNA (non-tumor derived RNA) could similarly be detected in the plasma or serum of both healthy volunteers and cancer patients using extraction methods and amplification methods as described by this invention. Qualitative results suggested that amplified product was greater when obtained from cancer patients. Further, use of a 0.5 micron filter prior to amplification reduced, but did not eliminate amplifiable RNA, consistent with extracellular RNA being of variable size, with additional contaminating cells possible.

[0008] While the methods of RNA extraction utilized in this invention have been previously used to extract both viral RNA and intracellular RNA, their applicability to extracellular tumor-related or tumor-associated RNA was not obvious. The physical characteristics of the extracellular RNA complexes remain largely unknown, and thus it was not known prior to this invention if the methods of extraction to be described could effectively remove extracellular RNA from their proteo-lipid, apoptotic, vesicular, or protein-bound complexes. This invention describes the applicability of these RNA extraction methods to the extraction of extracellular RNA from plasma or serum, and thus describes a new use for these extraction methods.
In summary, this invention describes a method by which RNA in plasma or serum can be detected and thus utilized for the detection, monitoring, or evaluation of cancer or pre-malignant conditions. This method utilizes nucleic acid amplification assays to detect human or animal tumor-derived or associated extracellular RNA circulating in plasma or serum. The described extraction methods and various nucleic acid amplification assays, including but not limited to RT-PCR, branched DNA signal amplification, transcription-based amplification, amplifiable RNA reporters, boomerang DNA amplification, strand displacement activation, cycling probe technology, isothermal NASBA amplification, and other self-sustained sequence replication assays, have not been used for the detection of tumor-derived or tumor-associated RNA in plasma or serum, reflecting the general scientific bias that mammalian extracellular RNA does not exist circulating in plasma or serum, despite isolated studies to the contrary. Thus, this invention represents both a novel and non-obvious method of detecting, monitoring, and evaluating cancer or pre-malignant conditions, and a novel and non-obvious application of both RNA extraction methodology and nucleic acid amplification assays. This invention, as described below entails a multi-step procedure applied to plasma or serum which consists of three parts, with the initial step (Part A) involving extraction of tumor-derived or associated RNA from plasma or serum, a second step (Part B) involving application of a nucleic acid amplification assay, in which reverse transcription of RNA to its cDNA may be involved, and a third step (Part C) involving detection of the amplified product. Any nucleic acid amplification assay capable of permitting detection of small numbers of RNA molecules or their corresponding cDNA may be used in Part B. Similarly, various methods of detection of amplified product may be used in Part C, including but not limited to agarose gel electrophoresis, ELISA detection methods, electrochemiluminescence, high performance liquid chromatography, and reverse dot blot methods. Furthermore, Part B and Part C may utilize assays which enable either qualitative or quantitative RNA analysis.

[0009] This invention improves upon various methods described in the literature such as that of DE 3717212 (A1) which describes a process for investigating an acellular biological fluid for the presence of cellular oncogenic transcripts or fragments thereof to test for malignancy. According to the process of DE 3717212 A1, a) the RNA is concentrated or separated from an acellular biological fluid in the permanent presence of an effective RNase inhibitor, the RNA is denatured and, in this form, is immobilized on a solid substrate; b) the RNA is placed in contact with labeled oncogenic DNA samples to hybridize the latter with the RNA, when a complementary sequence is present, and c) the product is tested for the presence of labeled DNA. Similarly, WO 90/09456 A1 describes a process wherein, under the constant effect of a RNase inhibitor, the RNA of cancer cell origin is concentrated or separated from an acellular biological fluid, and oncogenic RNA is thereafter amplified and detected. It is required in the processes, described in both DE 3717212 (A1) and WO 90/09456 A1, to pre-treat the whole blood with a RNase inhibitor before separating plasma from the cellular fraction of blood. The present provides a method of detecting extracellular mammalian tumor-derived or tumor-associated RNA in the plasma or serum fraction of blood from a human or animal which does not require the constant effect of a RNase inhibitor.

[0010] The method of the present invention comprises the unique application of these methods to the detection of tumor-derived or associated extracellular RNA from plasma or serum that makes this invention novel. This invention provides a simple means for testing blood plasma or serum for tumor-derived or associated RNA, with the result of identifying patients harboring tumor cells. Since this invention enables detection of extracellular RNA, and does not depend upon the presence of circulating cancer cells, it offers a sensitive yet inexpensive screen for both malignancy and pre-malignancy, as well as a way for monitoring cancer and obtaining other prognostically important clinical information.

OBJECTS AND APPLICATION OF THE INVENTION



[0011] It is therefore the object of this invention to detect or infer the presence of cancerous or precancerous cells whether from non-hematologic or hematologic malignancy, within a human or animal body, both in those known to have cancer and in those not previously diagnosed, by examining the plasma or serum fraction of blood for tumor-derived or associated extracellular RNA, including, but not limited to, that derived from mutated oncogenes, using nucleic acid amplification assays, such as, but not limited to, polymerase chain reaction (RT-PCR), branched DNA signal amplification, isothermal nucleic acid sequence based amplification (NASBA), other self-sustained sequence replication assays, transcription-based amplification, boomerang DNA amplification, strand displacement activation, cycling probe technology, and amplifiable RNA reporters.

[0012] An application of this invention is to allow identification or analysis, either quantitatively or qualitatively, of tumor-derived or associated RNA in the blood plasma or serum of humans or animals during or following surgical procedures to remove premalignant or malignant lesions, and thus to allow stratification of such patients as to their risk of residual cancer following the surgery.

[0013] Another application of this invention is to allow identification or analysis, either quantitatively or qualitatively, of tumor-derived or associated RNA in the blood plasma or serum of humans or animals who are receiving cancer therapies, including but not limited to biotherapy, chemotherapy, or radiotherapy, as a guide to whether adequate therapeutic effect has been obtained or whether additional or alternative therapy is required, and further, to assess prognosis in these patients.

[0014] Another application of this invention is to allow identification or analysis, either quantitatively or qualitatively, of tumor-derived or associated RNA in the blood plasma or serum of humans or animals who have completed therapy as an early indicator of relapsed cancer, impending relapse, or treatment failure.

[0015] Another application of this invention is to allow identification, either by detection or by inference, of the presence of premalignant neoplasms including dysplasias or adenomas by the examination of blood plasma or serum for RNA derived from or associated with those neoplasms. Furthermore, analysis, for example by a panel of assays to detect various RNA, may serve to distinguish malignant from premalignant conditions, or assist in medical monitoring to detect transformation of a neoplasm to an outright malignancy, or to detect regression.

[0016] Thus, an application of this invention is to provide a method of screening both individuals without known risk, and individuals at risk, for cancer and premalignant conditions, and further, for defining risk of cancer when that risk is unknown.

[0017] Another application of this invention is to allow identification or analysis, either quantitatively or qualitatively, of tumor-derived or associated RNA in the blood plasma or serum of humans or animals either newly or recently diagnosed with cancer or a premalignant condition in order to clarify when to initiate therapy, including adjuvant therapies.

[0018] Another application of this invention is to allow identification or analysis of tumor-derived or associated RNA, either singularly or by a panel approach detecting varied RNA, in the blood plasma or serum of humans or animals in order to determine specific characteristics of a given patients tumor, as to assist in the development of patient-specific therapies, help direct a given patient into a given treatment regimen, or help predict prognosis or tumor behavior.

SUMMARY OF THE INVENTION



[0019] The objects, advantages and applications of the present invention are achieved by the hereinafter described method for detecting tumor derived or associated extracellular RNA from mammalian blood plasma or serum by (A) extraction of RNA from blood plasma or serum; (B) amplification of the RNA by nucleic acid amplification assays, including (1) reverse transcription polymerase chain reaction (RT-PCR), ligase chain reaction, branched DNA signal amplification, transcription-based amplification, amplifiable RNA reporters, Q-beta replication, boomerang DNA amplification, strand displacement activation, cycling probe technology, isothermal nucleic acid sequence based amplification (NASBA) and self-sustained sequence replication assays. The primers used may be selected for their ability to characterize the tumor; and (C) detection of the specific amplified RNA.

[0020] This method of detection can be employed in various methods of use including the detection of early cancers and pre-malignant neoplasms and invasive or advanced cancers, and for the monitoring of patients during treatment therapy and for postoperative monitoring, and to develop appropriate patient-specific treatment strategies as described herein.

DETAILED DESCRIPTION OF THE INVENTION



[0021] The use of RNA detection is preferred in many circumstances over DNA detection since a greater number of RNA molecules are potentially available, thus allowing potentially greater sensitivity. Furthermore, since wild-type DNA genetic information is identical in all somatic cells of an individual, discrimination between normal and tumor associated DNA is dependent upon the presence of a mutation. Detection of RNA, by reflecting activity of the gene, allows demonstration of an inappropriately expressing non-mutated gene, as is typically seen in malignancy. Thus, RNA amplification methods allow a way to detect gene expression, whether normal or mutated, which is turned on in cancer. The present invention provides a much greater applicability and versatility to monitoring cancer than do any methods based on DNA analysis. For a DNA method to detect cancers from normals, there must be some mutation or genetic rearrangement present in the cancer, but not in the normal. The present process of using RNA will similarly detect the mutant RNA produced from this DNA. However, it further allows detection of inappropriately expressing "normal" genes. Thus, compared to methods detecting DNA, methods detecting RNA provide greater versatility and applicability in addition to the expected greater sensitivity.

[0022] This invention relates to a method of detecting or inferring the presence of cancerous or pre-cancerous cells, whether from a non-hematologic malignancy (i.e., solid tumor) or from a hematologic malignancy, in a human or animal by the combination of three steps applied to plasma or serum. The first step (Part A) involves the extraction of tumor-derived or associated RNA from blood plasma or serum. The second step (Part B) applies a nucleic acid amplification assay to the extracted RNA. In this step, the extracted RNA may first be reverse transcribed to cDNA prior to amplification of the cDNA. The third step (Part C) allows for the detection of the amplified product. Parts B and C may be performed as to allow either qualitative or quantitative detection of the RNA, depending upon the ultimate clinical objective or application, as described herein. Various methods, as detailed below, may be used in Part A. Similarly, any nucleic acid amplification assay which can be utilized in the detection of small numbers of RNA or corresponding cDNA molecules, including but not limited to the polymerase chain reaction (RT-PCR), branched DNA signal amplification, ligase chain reaction, isothermal nucleic acid sequence based amplification (NASBA), Q-beta replication, transcription-based amplification, amplifiable RNA reporters, boomerang DNA amplification, strand displacement activation, cycling probe technology, and other self-sustained sequence replication assays, as well as variations on these including methods for nucleic acid enrichment such as by using restriction digestion with polymerase chain reaction and the use of nested primers, may be used in Part B. Similarly, any method capable of demonstrating amplified nucleic acid product, including but not limited to agarose gel electrophoresis, ELISA detection methods, electrochemiluminescence, high performance liquid chromatography, and reverse dot blot methods, may be used in Part C. In this invention, any of the various methods in Part A may be combined with any method applicable for Part B, which can then be combined with any applicable method in Part C. It is the new application of these methods to the detection of tumor-derived or associated extracellular RNA in mammalian blood plasma or serum, that makes this invention novel. Several methods applicable for each of Part A, Part B, and Part C, will be described in detail below as a description of the invention. Again, it is to be emphasized that any method in Part A can be combined with any method in Part B, with any method in Part C to follow. Furthermore, it should be emphasized that while the contribution of extracellular RNA versus intracellular RNA as detected in plasma or serum may be defined, for example by using filters or high speed centrifugation, it is not a requirement of the invention that such a definition be made. Either "fresh" blood plasma or serum, or frozen (stored) and subsequently thawed plasma or serum may be used for purposes of this invention. Frozen (stored) plasma or serum should optimally be maintained at storage conditions of -20 to -70 degrees centigrade until thawed and used. "Fresh" plasma or serum should be refrigerated or maintained on ice until used, with RNA extraction being performed as soon as possible.

[0023] Blood is drawn by standard methods into a collection tube, preferably siliconized glass, either without anticoagulant for preparation of serum, or with EDTA, sodium citrate, heparin, or similar anticoagulants for preparation of plasma. The preferred method if preparing plasma or serum for storage, although not an absolute requirement, is that plasma or serum be first fractionated from whole blood prior to being frozen. This reduces the burden of extraneous intracellular RNA released from lysis of frozen and thawed cells which might reduce the sensitivity of the amplification assay or interfere with the amplification assay through release of inhibitors to PCR such as porphyrins and hematin. "Fresh" plasma or serum may be fractionated from whole blood by centrifugation, using preferably gentle centrifugation at 300-800 x g for five to ten minutes, or fractionated by other standard methods. High centrifugation rates capable of fractionating out apoptotic bodies should be avoided. Since heparin may interfere with RT-PCR, use of heparinized blood may require pretreatment with heparinase as described (23), followed by removal of calcium prior to reverse transcription, as described (23). Thus, EDTA is the preferred anticoagulant for blood specimens in which PCR amplification is planned.

PART A: Extraction of Extracellular RNA from Plasma or Serum



[0024] In Part A, RNA extraction methods previously published for the extraction of mammalian intracellular RNA or viral RNA may be adapted, either as published or with modification, for extraction of tumor-derived or associated RNA from plasma and serum. The volume of plasma or serum used in part A may be varied dependent upon clinical intent, but volumes of 100 microliters to one milliliter of plasma or serum are sufficient in part A, with the larger volumes often indicated in settings of minimal or premalignant disease. For example:

[0025] Both extracellular RNA and intracellular RNA may be extracted from plasma or serum using silica particles, glass beads, or diatoms, as in the method or adaptations of Boom et al. (24). Application of the method adapted by Cheung et al. (25) is described:

[0026] Size fractionated silica particles are prepared by suspending 60 grams of silicon dioxide (SiO2, Sigma Chemical Co., St. Louis, MO) in 500 milliliters of demineralized sterile double-distilled water. The suspension is then settled for 24 hours at room temperature. Four-hundred thirty (430) milliliters of supernatant is removed by suction and the particles are resuspended in demineralized, sterile double-distilled water added to equal a volume of 500 milliliters. After an additional 5 hours of settlement, 440 milliliters of the supernatant is removed by suction, and 600 microliters of HCl (32% wt/vol) is added to adjust the suspension to a pH2. The suspension is aliquotted and stored in the dark.

[0027] Lysis buffer is prepared by dissolving 120 grams of guinidine thiocyanate (GuSCN, Fluka Chemical, Buchs, Switzerland) into 100 milliliters of 0.1 M Tris hydrochloride (Tris-HCl) (pH 6.4), and 22 milliliters of 0.2 M EDTA, adjusted to pH 8.0 with NaOH, and 2.6 grams of Triton X-100 (Packard Instrument Co., Downers Grove, IL). The solution is then homogenized.

[0028] Washing buffer is prepared by dissolving 120 grams of guinidine thiocyanate (GuSCN) into 100 milliliters of 0.1 M Tris-HCl (pH 6.4).

[0029] One hundred microliters to two hundred fifty microliters (with greater amounts required in settings of minimal disease) of plasma or serum are mixed with 40 microliters of silica suspension prepared as above, and with 900 microliters of lysis buffer, prepared as above, using an Eppendorf 5432 mixer over 10 minutes at room temperature. The mixture is then centrifuged at 12,000 x g for one minute and the supernatant aspirated and discarded. The silica-RNA pellet is then washed twice with 450 microliters of washing buffer, prepared as above. The pellet is then washed twice with one milliliter of 70% (vol/vol) ethanol. The pellet is then given a final wash with one milliliter of acetone and dried on a heat block at 56 degrees centigrade for ten minutes. The pellet is re-suspended in 20 to 50 microliters of diethyl procarbonate-treated water at 56 degrees centigrade for ten minutes to elute the RNA. The sample can alternatively be eluted for ten minutes at 56 degrees centigrade with a TE buffer consisting of 10 millimolar Tris-HCl-one millimolar EDTA (pH 8.0) with an RNase inhibitor (RNAsin, 0.5 U/microliter, Promega), with or without Proteinase K (100 ng/ml) as described by Boom et al. (26). Following elution, the sample is then centrifuged at 12,000 x g for three minutes, and the RNA containing supernatant recovered..The RNA extract is now used in Part B.

[0030] As an alternative method extracellular RNA may be extracted from plasma or serum in Part A using the Acid Guanidinium Thiocyanate-Phenol-Chloroform extraction method described by Chomczynski and Sacchi (27) as follows:

[0031] The denaturing solution consists of 4 M guanidinium thiocyanate, 25 millimolar sodium citrate, pH 7.0, 0.5% sarcosyl, 0.1 M 2-mercaptoethanol. The denaturing solution is prepared as follows: A stock solution is prepared by dissolving 250 grams of guanidinium thiocyanate (GuSCN, Fluka Chemical) with 293 milliliters of demineralized sterile double-distilled water, 17.6 milliliters of 0.75 M sodium citrate, pH 7.0, and 26.4 milliliters of 10% sarcosyl at 65 degrees centigrade. The denaturing solution is prepared by adding 0.36 milliliters 2-mercaptoethanol/50 milliliters of stock solution.

[0032] One hundred microliters to one milliliter of plasma or serum is mixed with one milliliter of denaturing solution. Sequentially, 0.1 milliliter of 2 M sodium acetate, pH 4.0, 1 milliliter of phenol, and 0.2 milliliter of chloroform-isoamyl alcohol (49:1) are added, with mixing after addition of each reagent. The resultant mixture is shaken vigorously for 10 seconds, cooled on ice for 15 minutes, and then centrifuged at 10,000 x g for 20 minutes at 4 degrees centigrade. The aqueous phase is then transferred to a clean tube and mixed with 1 milliliter of isopropanol. The mixture is then cooled at -20 degrees centigrade for 1-2 hours to precipitate RNA. After centrifugation at 10,000 x g for 20 minutes the resulting RNA pellet is dissolved in 0.3 milliliter of denaturing solution, and then reprecipitated with 1 volume isopropanol at -20 degrees centigrade for one hour. Following another centrifugation at 10,000 x g for ten minutes at 4 degrees centigrade, 75% ethanol is added to re-suspend the RNA pellet, which is then sedimented and vacuum dried, and then dissolved in 5-25 microliters of 0.5% SDS at 65 degrees centigrade for ten minutes. The RNA extract is now used in Part B.

[0033] As the preferred embodiment for Part A, and as an alternative method, extracellular RNA may be extracted from plasma or serum in Part A using variations of the acid guanidinium thiocyanate-phenol-chloroform extraction method. For example, in the preferred embodiment RNA is extracted from plasma or serum using TRI reagent, a monophase guanidine-thiocyanate-phenol, solution, as described by Chomczynski (28). One hundred microliters to one milliliter of plasma or serum is processed using one milliliter of TRI Reagent(TM) (TRI Reagent, Sigma Trisolv(TM), BioTecx Laboratories, Houston, TX, TRIzol(TM), GIBCO BRL/Life Technologies, Gaithersburg, MD, ISOGEN(TM), Nippon Gene, Toyama, Japan, RNA Stat(TM) 60, Tel-test, Friendsword, TX) according to manufacturer's directions. Minor adaptations may be applied as currently practiced within the art. Thus, from one hundred microliters to one milliliter of plasma or serum is mixed with one milliliter of TRI Reagent. Then 0.2 milliliter of chloroform is mixed for 15 seconds, and the mixture allowed to stand for 3 minutes at room temperature: The mixture is then centrifuged at 4 degrees centigrade for 15 minutes at 12,000 x g. The upper aqueous phase is removed to which 0.5 milliliter of isopropanol is mixed, and then left at room temperature for five minutes, followed by centrifugation at 4 degrees centigrade for ten minutes at 12,000 x g.

[0034] The RNA pellet is then washed with one milliliter of 75% ethanol by centrifuging at 12,000 x g for 5 minutes. The pellet is air dried and resuspended in 11.2 microliters of RNAse free water. Contamination by polysaccharides and proteoglycans, which may be present in extracellular proteolipid-RNA complexes, may be reduced by modification of the precipitation step of the TRI Reagent(TM) procedure, as described by Chomczynski and Mackey (29) as follows:

[0035] One hundred microliters to one milliliter of plasma or serum is mixed with TRI Reagent(TM) as per manufacturer's directions, being subjected to phase separation using either chloroform or bromo-chloropropane (30) and centrifugation at 10,000 x g for 15 minutes. The aqueous phase is removed and then mixed with 0.25 milliliters of isopropanol followed with 0.25 milliliters of a high-salt precipitation solution (1.2 M NaCl and 0.8 M sodium citrate). The mixture is centrifuged at 10,000 x g for 5 minutes and washed with one milliliter of 75% ethanol. The RNA pellet is then vacuum dried and then dissolved in 5-25 microliters of 0.5% SDS at 65 degrees centigrade for ten minutes. The RNA extract is now used in Part B.

[0036] Alternative methods may be used to extract RNA from plasma or serum in Part A, including but not limited to centrifugation through a cesium chloride gradient, including the method as described by Chirgwin et al. (31), and co-precipitation of extracellular RNA from plasma or serum with gelatin, such as by adaptations of the method of Fournie et al. (32) to RNA extraction.

[0037] Circulating extracellular deoxyribonucleic acid (DNA), including tumor-derived or associated extracellular DNA, is also present in plasma and serum (33). Since this DNA will additionally be extracted to varying degrees during the RNA extraction methods described above, it may be desirable or necessary (depending upon clinical objectives) to further purify the RNA extract and remove trace DNA prior to proceeding to Part B. This may be accomplished using DNase, for example by the method as described by Rashtchian (34), as follows:

[0038] For one microgram of RNA, in a 0.5 milliliter centrifuge tube placed on ice, add one microliter of 10 x DNase I reaction buffer (200 micromolar Tris-HCl (pH 8.4), 500 micromolar KCl, 25 micromolar MgCl2, one micromolar per milliliter BSA). Add to this one unit DNase I (GIBCO/BRL catalog #18068-015). Then bring the volume to ten microliter with DEPC-treated distilled water, and follow by incubating at room temperature for 15 minutes. The DNase I is then inactivated by the addition of 20 millimolar EDTA to the mixture, and heating for 10 minutes at 65 degrees centigrade. The treated RNA may now go directly to Part B.

[0039] Alternatively, primers in Part B may be constructed which favor amplification of the RNA products, but not of contaminating DNA, such as by using primers which span the splice junctions in RNA, or primers which span an intron. Alternative methods of amplifying RNA but not the contaminating DNA include the methods as described by Moore et al. (35), and methods as described by Buchman et al. (36), which employs a dU-containing oligonucleotide as an adaptor primer.

PART B: Nucleic Acid Amplification



[0040] In Part B, RNA which has been extracted from plasma or serum during Part A, or its corresponding cDNA, is amplified using any nucleic acid amplification assay utilized for detection of low numbers of RNA molecules. Applicable assays include but are not limited to reverse transcriptase polymerase chain reaction (RT-PCR), ligase chain reaction (37), branched DNA signal amplification (38), amplifiable RNA reporters, Q-beta replication, transcription-based amplification, boomerang DNA amplification, strand displacement activation, cycling probe technology, isothermal nucleic acid sequence based amplification (NASBA) (39), and other self-sustained sequence replication assays. It is not necessary to modify these assays from their published methods for Part B. The referenced publications are incorporated herein by reference in their entirety for their descriptions for performing the various assays identified therein. It is the application of these nucleic acid amplification assays to the detection of tumor-derived or associated extracellular RNA in plasma or serum that makes their use novel. The preferred embodiment for Part B uses the reverse transcriptase polymerase chain reaction (RT-PCR).

[0041] Primers used in the amplification assay should be based on the specific tumor-derived or associated RNA of interest which characterizes the tumor. Tumor-derived or associated RNA includes but is not limited to:

mRNA related to mutated oncogenes or mutated DNA, a partial list of which includes H-ras, K-ras, N-ras, c-myc, her-2-neu, bcr-abl, fms, src, fos, sis, jun, erb-B-1, VHL, PML/RAR, AML1-ETO, EWS/FLI-1, EWS/ERG.

mRNA related to tumor suppressor genes, a partial list of which includes p53, RB, MCC, APC, DCC, NF1, WT.



[0042] mRNA related to tumor-associated protein which is found elevated in certain cancers, a partial list of which includes alpha-feto protein (AFP), carcinoembryonic antigen (CEA), TAG-72, CA 19-9, CA-125, prostate specific antigen (PSA), CD44, and hcg (human chorionic gonadotropin).

[0043] mRNA related to tumor-derived protein not normally found circulating in blood, a partial list of which includes tyrosinase mRNA, keratin 19 mRNA.

[0044] mRNA related to tumor-specific antigens, such as in MAGE 1, MAGE 2, MAGE 3, MAGE 4, GP-100, and MAGE 6, MUC 18, P97.

[0045] mRNA or messenger-like RNA associated with ribonucleoproteins and RNA within ribonucleoproteins, a partial list of which includes telomerase RNA, and RNA associated with heterogenous nuclear ribonucleoprotein A1 (hn RNP-A1) and A2/B1 (hn RNP-A2/B1) complexes, and heterogenous nuclear ribonucleoprotein K (hn RNP-K), such as c-myc oncogene RNA, in addition to those RNA previously described above when associated with ribonucleoprotein.

[0046] For example, oligonucleotide primer sequences for the bcr-abl transcript may be as follows (40):

Primer 1 at the M-bcr location:

(5'-TGGAGCTGCAGATGCTGACCAACTCG-3').

Primer 2 at the exon II abl location:

(5'-ATCTCCACTGGCCACAAAATCATACA-3').

Primer 3 at the M-bcr location:

(5'-GAAGTGTTTCAGAAGCTTCTCC-3').

Primer 4 at the exon II abl location:

(5'-TGATTATAGCCTAAGACCCGGA-3').



[0047] The nested RT-PCR assay yields a 305 or a 234 base pair product, depending upon bcr exon 3 expression.

[0048] As another example, nested primers for human tyrosinase CDNA amplification can be as follows (41):

Primer 1 (outer, sense) - (5'-TTGGCAGATTGTCTGTAGCC-3')

Primer 2 (outer, anti-sense) - (5'-AGGCATTGTGCATGCTGCTT-3')

Primer 3 (nested, sense) - (5'-GTCTTTATGCAATGGAACGC-3')

Primer 4 (nested, anti-sense) - (5'-GCTATCCCAGTAAGTGGACT-3')



[0049] The outer primers result in a PCR amplification product of 284 base pairs, and the nested primers result in a fragment of 207 base pairs.

[0050] The preferred oligonucleotide primer sequences for specific tumor-related or tumor-associated mRNA are previously published, with referenced publications incorporated herein by reference in their entirety.

[0051] Some, but not all, amplification assays require reverse transcription of RNA to cDNA. As noted, the method of reverse transcription and amplification may be performed by previously published or recommended procedures, which referenced publications are incorporated herein by reference in their entirety, and modification is not required by the invention beyond steps as described in Part A. Various reverse transcriptases may be used, including, but not limited to, MMLV RT, RNase H- mutants of MMLV RT such as SuperScript and Superscript II (Life Technologies, GIBCO BRL, Gaithersburg, MD), AMV RT, and thermostable reverse transcriptase from Thermus Thermophilus. For example, one method, but not the only method, which may be used to convert RNA extracted from plasma or serum in Part A to cDNA is the protocol adapted from the Superscript II Preamplification system (Life Technologies, GIBCO BRL, Gaithersburg, MD; catalog no. 18089-011), as described by Rashtchian (34), adapted as follows:

[0052] 1-5 micrograms of RNA extracted from plasma or serum in Part A in 13 microliters of DEPC-treated water is added to a clean microcentrifuge tube. Then one microliter of either oligo (dT) (0.5 milligram/milliliter) or random hexamer solution (50 ng/microliter) is added and mixed gently. The mixture is then heated to 70 degrees centigrade for 10 minutes and then incubated on ice for one minute. Then, it is centrifuged briefly followed by the addition of 2 microliters of 10 x synthesis buffer (200 mM Tris-HCl, pH 8.4, 500 mM KCl, 25 mM magnesium chloride, one milligram/milliliter of BSA), one microliter of 10 mM each of dNTP mix, 2 microliters of 0.1 M DTT, one microliter of Superscript II RT (200 U/microliter) (Life Technologies, GIBCO BRL, Gaithersburg, MD). After gentle mixing, the reaction is collected by brief centrifugation, and incubated at room temperature for ten minutes. The tube is then transferred to a 42 degrees centigrade water bath or heat block and incubated for 50 minutes. The reaction is then terminated by incubating the tube at 70 degrees centigrade for 15 minutes, and then placing it on ice. The reaction is collected by brief centrifugation, and one microliter of RNase H (2 units) is added followed by incubation at 37 degrees centigrade for 20 minutes before proceeding to nucleic acid amplification.

[0053] Nucleic acid amplification then proceeds as follows:

[0054] To the cDNA mixture add the following: 8 microliters of 10 x synthesis buffer (200 mM Tris-HCl, pH 8.4, 500 mM KCl, 25 mM magnesium chloride, 1 mg/ml of BSA), 68 microliters sterile double-distilled water, one microliter amplification primer 1 (10 micromolar), one microliter amplification primer 2 (10 micromolar), one microliter Taq DNA polymerase (2-5 U/microliter). Mix gently and overlay the reaction mixture with mineral oil. The mixture is heated to 94 degrees centigrade for 5 minutes to denature remaining RNA/cDNA hybrids. PCR amplification is then performed in an automated thermal-cycler for 15-50 cycles, at 94 degrees centigrade for one minute, 55 degrees centigrade for 30 to 90 seconds, and 72 degrees centigrade for 2 minutes. The amplified PCR product is then detected in Part C.

[0055] Furthermore, if the primers contain appropriate restriction sites, restriction digestion may be performed on the amplified product to allow further discrimination between mutant and wild-type sequences.

[0056] Cycling parameters and magnesium concentration may vary depending upon the specific case. For example, an alternative method using nested primers useful for detection of human tyrosinase mRNA in Part B is the method described by Smith et al. (4), as follows:

[0057] Primer sequences are as described above for human tyrosinase. Ten microliters of RNA extracted in Part A from plasma or serum are treated for reverse transcription by heating at 90 degrees centigrade for 4 minutes, cooling rapidly, and diluting to 20 microliters with a mixture consisting of 1 x PCR buffer (10 mmol/liter Tris-HCl, pH 8.4, 50 mmol/liter KCl, 100 microgram/milliter gelatin), 8 mmol/liter magnesium chloride, 1 mmol/liter each dATP, dCTP, dGTP, and dTTP, 25 pmol tyrosinase primer 2 (as previously described), 20 units of 'RNA guard' (Pharmacia), and 4 units of murine moloney leukemia virus reverse transcriptase (Pharmacia). The total mixture is then incubated at 37 degrees centigrade for one hour, half the sample removed, and diluted to 50 microliters containing 1 x PCR buffer, 200 micromol/liter each of dATP, dCTP, dGTP, and dTTP, 1.6 mmol/liter magnesium chloride, 150 pmol primer 1 and primer 2, 0.1% Triton X-100, and 1 unit Taq DNA polymerase (Promega). The mixture is overlaid with oil, and heated at 95 degrees centigrade for 5 minutes, followed by 30 cycles of PCR in a thermal cycler at 95 degrees centigrade for 65 seconds, 55 degrees centigrade for 65 seconds, and 72 degrees centigrade for 50 seconds. The products are then reamplified with nested primer 3 and nested primer 4 using 5 microliters in a 1:100 dilution. These were amplified in a 25 microliter reaction volume for an additional 30 cycles. This final amplified PCR product is now detected in Part C, either by being electrophoresed on an agarose gel, or by other method.

[0058] The preferred embodiments for Part B amplification of specific tumor-related or tumor-associated RNA, including specific primers, method of reverse transciption, and method of RT-PCR, are described by the following referenced publications which are incorporated herein by reference in their entirety for their description for performing the various assays identified therein.

[0059] For Part B amplification of tyrosinase mRNA, a mRNA associated with malignant melanoma, the preferred method is that of Brossart et al. (41).

[0060] For Part B amplification of Keratin 19 mRNA, a mRNA associated with breast cancer and other epithelial malignancies, the preferred method is that of Datta et al. (5).

[0061] For Part B amplification of prostate-specific antigen (PSA) mRNA, a mRNA associated with prostate cancer, the preferred method is that of Katz et al. (72).

[0062] For Part B amplification of alpha-fetoprotein (AFP) mRNA, a mRNA associated with hepatocellular carcinoma, testicular cancer, and other cancers, the preferred method is that of Komeda et al. (54).

[0063] For Part B amplification of BCR/abl mRNA, a mRNA associated with chronic myeloid leukemia (CML), the preferred method is that of Stock et al. (57), or alternatively, by the method of Edmonds et al. (40).

[0064] For Part B amplification of carcinoembryonic antigen (CEA) mRNA, a mRNA associated with gastrointestinal cancers and breast cancer, the preferred method is that of Gerhard et al. (58).

[0065] For Part B amplification of P97 mRNA, a mRNA associated with malignant melanoma, the preferred method is that of Hoon et al. (59).

[0066] For Part B amplification of MUC 18 mRNA, a RNA associated with malignant melanoma, the preferred method is that of Hoon et al. (59).

[0067] For Part B amplification of PML/RAR -α mRNA, a mRNA associated with acute promyelocytic leukemia, the preferred method is that of Miller et al. (60).

[0068] For Part B amplification of CD44 mRNA, a mRNA associated with lung cancer, the preferred method is that of Penno et al. (61).

[0069] For Part B amplification of EWS/FLI-1 mRNA, a mRNA associated with Ewing's sarcoma and other Ewing's tumors, the preferred method is that of Pfleiderer et al. (62).

[0070] For Part B amplification of EWS/ERG mRNA, a mRNA associated with Ewing's sarcoma and other Ewing's tumors, the preferred method is that of Pfleiderer et al. (62).

[0071] For Part B amplification of AML1/ETO mRNA, a mRNA associated with acute myelogenous leukemia, the preferred method is that of Maruyama et al. (63).

[0072] For Part B amplification of MAGE mRNA, including mRNA of MAGE-1, MAGE-2, MAGE-3, and MAGE-4, which are associated with bladder cancer, ovarian cancer, melanoma, lung cancer, head and neck cancer, and others, the preferred method is that of Patard et al. (64).

[0073] For Part B amplification of beta-human chorionic gonadotropin mRNA, a mRNA associated with malignant melanoma, germ cell tumors, and other cancers, the preferred method is that of Doi et al. (65).

[0074] For Part B amplification of human Telomerase-associated RNA, the preferred method is by application of the TRAP PCR method as described by Kim et al (69). Alternatively, other amplification methods may be used as described herein where primer selection is designed based upon the human Telomerase template sequence as described by Feng et al (76).

[0075] Alternative methods of nucleic acid amplification which may be used in Part B include other variations of RT-PCR, including quantitative RT-PCR, for example as adapted to the method described by Wang et al. (43) or by Karet et al. (44).

[0076] An alternative method of nucleic acid amplification which may be used in Part B is ligase chain reaction (66). Extracellular RNA extracted from plasma or serum in Part A must be reverse transcribed to cDNA. Oligonucleotide primers are selected which lie directly upon the cDNA site of interest. If a mutation site is present, oligonucleotides which are complementary to the site are made to contain the mutation only at their 3-prime end, excluding hybridization of non-mutated, wild-type DNA. Restriction sites can also be utilized to discriminate between mutant and wild-type sequences if necessary.

[0077] An alternative method of either qualitative or quantitative amplification of nucleic acid which may be used in Part B is branched DNA signal amplification, for example as adapted to the method described by Urdea et al. (38), with modification from the reference as follows: plasma or serum should only be centrifuged at lower speeds, as previously outlined. Extracellular RNA is then extracted from plasma or serum as described in Part A, and then added directly to microwells. The method for detection of tumor-related or tumor-associated RNA then proceeds as referenced (38), with target probes specific for the tumor-related or tumor-associated RNA or cDNA of interest, and with chemiluminescent light emission proportional to the amount of tumor-associated RNA in the plasma or serum specimen. The specifics of the referenced method are described further bu Urdea et al (71) with this reference incorporated herein in its entirety.

[0078] An alternative method of either qualitative or quantitative amplification of nucleic acid which may be used in Part B is isothermal nucleic acid sequence based amplification (NASBA), for example as adapted to the method described by Kievits et al. (39), or by Vandamme et al. (45). The method of Sooknanan et al. (67) may be used for the detection and quantification of BCR/ABL mRNA.

[0079] Alternative methods of either qualitative or quantitative amplification of nucleic acids which may be used in Part B include, but are not limited to, Q-beta replication, other self-sustained sequence replication assays, transcription-based amplification assays, and amplifiable RNA reporters, boomerang DNA amplification, strand displacement activation, and cycling probe technology.

[0080] The amplified product from Part B is next detected in Part C. Depending upon the detection method used in Part C, primers may need to be biotinylated or otherwise modified in Part B.

Part C: Detection of Amplified Product



[0081] There are numerous methods to detect amplified nucleic acid product, any of which may be used in Part C to detect the amplified product from Part B. The referenced publications, including those pertaining to detection of specific tumor-related or associated RNA or its corresponding cDNA as previously cited, and those pertaining to RNA or its corresponding cDNA detection as follows, are incorporated herein by reference in their entirety for the descriptions for performing the various assays identified therein.

[0082] In the preferred method, amplified product is detected in Part C using gel electrophoresis. In the preferred embodiment, 25 microliters of amplified (or post-amplification digested) product is electrophoresed through a 3% agarose gel in 1 x TBE at 75 VDC. Electrophoresis is carried out for one to two hours before staining with ethidium bromide. As an alternative to ethidium bromide, the amplified product can be transferred from the gel to a membrane by blotting techniques to be detected with a labeled probe (46).

[0083] An alternative method which may be used in Part C to detect the amplified product from Part B is ELISA detection. Depending upon the ELISA detection method used, it may be necessary to biotinylate or otherwise modify the primers used in part B.

[0084] For example, one ELISA detection method which may be used in Part C is the method described by Landgraf et al. (47), as follows:

[0085] Primers are modified with biotinylamidocaproat-N-hydroxysuccinimidester (Sigma) and fluoroescein isothiocyanate (FITC) (Sigma) by the method of Landgraf et al. (48). Following invention Part B, the ELISA is carried out in microtiter plates coated with 1 microgram/milliliter affinity-purified avidin (13 U/mg, Sigma). One microliter of the final amplification product (or post-digestion product) is diluted with 50 microliters of PBS-Tween, and then incubated at room temperature for 30 minutes in the microtiter plate well. Non-incorporated primers are removed by washing with PBS-Tween. The plates are then incubated at room temperature for 30 minutes after adding 50 microliters per well of anti-FITC antibody-HRPO conjugate (Dakopatts) which is at a 1:500 dilution with PBS-Tween. Following this, 80 microliters of an ELISA solution made from one milligram 3, 3', 5, 5'-tetramethylbenzidin (Sigma) dissolved in one milliliter dimethyl sulfoxide, and diluted 1:10 with 50 millimol Na-acetate: citric acid, pH 4.9, with 3 microliter of 30% (vol/vol) H2O2 added, is added to each well. After 2-5 minutes, the reaction is stopped by adding 80 microliter of 2M H2SO4. The optical density is then read at 450 nm.

[0086] Alternative methods of ELISA detection which may be used in Part C include, but are not limited to, immunological detection methods using monoclonal antibody specific for RNA/DNA hybrids, such as by adapting methods described by Coutlee et al. (49), or by Bobo et al. (50), which publications are also incorporated herein by reference in their entirety for their description of the detection methods identified therein.

[0087] Alternative methods of ELISA detection which may be used in Part C include, but are not limited to, commercial detection systems such as the SHARP signal system (Digene Diagnostics, Inc.), and the DNA enzyme immunoassay (DEIA), (GEN-ETI-K DEIA, Sorin Biomedica).

[0088] Alternative methods by which amplified product from Part B may be detected in Part C include but are not limited to all methods of electrochemiluminescence detection, such as by adapting the method described by Blackburn et al. (51), or by DiCesare et al. (52), and all methods utilizing reverse dot blot detection technology (53), and all methods utilizing high-performance liquid chromatography.

Therapeutic Applications



[0089] The extraction of extracellular tumor-associated or derived RNA from plasma or serum, and the amplification of that RNA or its corresponding cDNA to detectable levels, permits further analysis or other manipulation of that RNA, or the corresponding cDNA, from which further clinical utility is realized. In this optional step of the invention, amplified extracellular RNA or the corresponding cDNA is analyzed to define the characteristics or composition of the tumor from which the RNA originates. Any of several methods may be used, dependent upon the desired information, including nucleic acid sequencing, spectroscopy including proton NMR spectroscopy, biochemical analysis, and immunologic analysis. In the preferred embodiment, amplified cDNA is isolated - for example by excising DNA bands from an agarose gel - reamplified, cloned into a plasmid vector, for example the pGEM-T vector plasmid (Promega) and sequenced using a commercial kit such as Sequenase 2.0 (USB). Analysis to define the characteristics or composition of the tumor-associated RNA in plasma or serum, and thus the tumor of origin, affords a wide array of clinical utility, including the description, characterization, or classification of the tumor, whether known or occult, such as by tissue of origin, by type (such as premalignant or malignant), phenotype, and genotype, and by description or characterization of tumor behavior, physiology and biochemistry, as to gain understanding of tumor invasiveness, propensity to metastasize, and sensitivity or resistance to various therapies, thereby allowing the prediction of response to either ongoing or planned therapy and, further, allowing evaluation of prognosis. Comparison of the characteristics of extracellular RNA to previous biopsy or surgical specimens permits further evaluation of tumor heterogeneity or similarity in comparison to that specimen, and thus evaluation of tumor recurrence.

[0090] Following extraction of extracellular tumor-derived or tumor-associated RNA from plasma or serum and amplification of the corresponding cDNA, ribonucleic acid (RNA) may be transcribed or manufactured back from the amplified DNA as a further option. Transcription of RNA may be performed by employing a primer with an RNA polymerase promoter region joined to the standard primer sequence of the cDNA in an amplification reaction. RNA is then transcribed from the attached promoter region. In the preferred embodiment, amplified cDNA is cloned into an expression vector, and RNA is transcribed. Furthermore, as an optional preferred embodiment, the RNA is used in an in vitro translation reaction to manufacture tumor-associated or tumor-specific protein or associated peptides or oligopeptides, according to methods currently known in the art (73-76). Note, these cited references, and those to follow, are incorporated herein by reference in their entirety for their description for performing the various assays identified therein.

[0091] Extraction of tumor-derived or tumor-associated extracellular RNA, its amplification, characterization, and translation to tumor-associated or tumor-specific protein, provides significant utility, both in the assignment of therapy and in the development of tumor-specific therapies. Sequencing of RNA or cDNA allows assignment or development of antisense compounds, including synthetic oligonucleotides and other antisense constructs appropriately specific to the DNA, such as by construction of an expression plasmid such as by adapting the method of Aoki et al. (68) which is incorporated by reference in its entirety, or by other construction and use as referenced (77-81). Thus, application of the invention in this manner would entail the extraction of tumor-associated RNA from plasma or serum, followed by an optional step of reverse transcribing to cDNA, followed by amplification of the RNA or cDNA. The amplified product can then be sequenced to define the nucleic acid sequence of the tumor-associated RNA or cDNA. An antisense oligonucleotide is then constructed in such a manner as referenced above specific to the defined sequence, or alternatively, an already manufactured antisense compound is determined to be applicable, or may be manufactured when the sequence is known based upon knowledge of the primer sequence. Similarly, defining tumor characteristics by analysis of extracellular RNA allows assignment of specific monoclonal antibody or vaccine therapies appropriately specific to the tumor. Production of corresponding immunologic protein can be used in the development of tumor-specific monoclonal antibodies. Thus, application of the invention in this manner would entail the extraction of tumor-associated RNA from plasma or serum, followed by amplification to obtain a tumor-associated amplified product. The amplified product is translated, or transcribed and translated, into a protein or associated peptides or oligopeptides as previously described, thus providing a tumor-associated antigen. The tumor-associated antigen thus enables production of a monoclonal antibody directed against the antigen by use of hybridoma technology or other methods as currently practiced by the art (82). Said monoclonal antibody may further be conjugated with a toxin or other therapeutic agent (83), or with a radionucleotide (84) to provide further therapeutic or diagnostic use directed against the tumor. Similarly, translated protein or associated peptides or oligopeptides can be used in tumor-specific vaccine development. Furthermore, the extracellular RNA and complimentary DNA permit a means of defining or allowing the construction of a DNA construct which may be used in vaccine therapy. Specifically, the invention is applied to either define or obtain tumor-associated protein or peptides, RNA, or cDNA, by methods as previously described, and from which a tumor-directed vaccine may be developed or constructed. The methods by which the vaccine is further developed or constructed vary, but are known to the art (85-90), and are referenced herein in their entirety.

[0092] Of particular value, the invention allows the development and application of these tumor-specific therapies even when only premalignant tumors, early cancers, or occult cancers are present. Thus, the invention allows therapeutic intervention when tumor burden is low, immunologic function is relatively intact, and the patient is not compromised, all increasing the potential for cure.

Hypothetical Examples of the Invention



[0093] In the following examples, illustrative hypothetical clinical cases are presented to demonstrate the potential clinical use of the invention.

Case 1



[0094] A 26 year old asymptomatic hypothetical man presents for evaluation after learning his 37 year old brother was recently diagnosed with colon cancer. Peripheral blood is drawn in order to use the invention to evaluate for the presence of extracellular CEA mRNA in the patient's plasma. Plasma extracellular RNA is extracted during invention Part A by the Acid Guanidinium thiocyanate-Phenol-chloroform extraction method as previously described, followed by qualitative RT-PCR amplification in invention Part B using CEA mRNA primers as previously described. The amplification assay as previously described (58) is performed in invention Part B. The final amplified product is detected by gel electrophoresis on a 3% agarose gel in invention Part C. Results are positive in this patient indicating the presence of CEA mRNA in the blood plasma.

[0095] CEA has been associated with colon cancer. While colon cancer is highly curable if diagnosed at an early stage, it is fatal when diagnosed at advanced metastatic stages. The positive results of the invention for this patient, in the setting of a strongly positive family history for colon cancer, are suggestive of either premalignant or malignant colon cancer. It is recommended that the patient undergo colonoscopy, and if no lesion is found, receive surveillance more frequently than would normally be given.

[0096] This hypothetical case illustrates how the invention can be used to screen high risk patients for cancer, detect either premalignant or malignant conditions prior to the metastatic state, and play a role in clinical management. While CEA mRNA is associated with other cancers, such as liver cancer, the addition of a multiplex panel approach using the invention to detect multiple different tumor-associated extracellular RNA, including for example K-ras, P53, DCC, and APC RNA, enables clarification as to whether the CEA mRNA is likely associated with a colon tumor, and further, whether the findings are consistent with a premalignant or a malignant tumor.

Case 2



[0097] A 33 year old hypothetical woman sees her local dermatologist after noting a "bleeding mole" on her back. Local excision diagnoses a malignant melanoma of 0.3 millimeter depth. Wide surgical re-excision is performed, and the patient is told she is likely cured and no further therapy is needed. Three months following her surgery the patient seeks a second opinion regarding the need for further therapy. Peripheral blood is drawn to evaluate her plasma for the presence of extracellular tyrosinase messenger RNA by the invention. Plasma extracellular RNA is extracted in invention Part A using the preferred TRI-Reagent method as previously described, followed by RT-PCR using nested primers for tyrosinase cDNA in invention Part B as previously described, with ELISA detection in invention Part C. Invention results detect the presence of tyrosinase mRNA in the patient's plasma. Tyrosinase is common to both normal melanocytes and malignant melanoma. However, tyrosinase mRNA does not normally circulate in blood, and its presence in plasma indicates latent malignant melanoma. Consequently, the patient is started on adjuvant therapy with interferon-alpha. Plasma extracellular tyrosinase RNA levels are subsequently serially followed in a quantitative fashion using the invention. Blood is drawn from the patient every two months, and plasma extracellular RNA is extracted in invention Part A using the silica extraction method as previously described. Quantitative RT-PCR amplification for tyrosinase mRNA is then performed in invention Part B using biotinylated primer using electrochemiluminescence based detection in invention Part C. Invention data demonstrates a serial rise in the patient's plasma extracellular tyrosinase mRNA levels. Consequent to this data, the interferon is stopped, and the patient is enrolled into an experimental adjuvant therapy protocol.

[0098] This hypothetical case illustrates several uses of the invention, including the detection of latent cancer, predicting prognosis and cancer recurrence following surgical excision, determining the need for additional therapy, evaluating the benefit of therapy and the need to change therapies, and evaluating prognosis of patients on therapy.

Case 3



[0099] A 76 year old hypothetical man is noted to have a pancreatic mass on CT scan imaging. His chest x-ray and colonoscopy are normal. The patient refuses to consider surgery because of the significant surgical risks. He elects to receive patient-specific therapy made possible by use of the invention. Since K-ras mutations are present in 80-90% of pancreatic cancers, peripheral blood is drawn to evaluate for and characterize extracellular mutant K-ras RNA circulating in plasma using the invention. Plasma extracellular RNA is extracted in invention Part A using the TRI reagent extraction method as previously described, followed by RT-PCR in invention Part B, with high performance liquid chromatography detection in Part C. Mutant K-ras amplification products are then separated following chromatography and the K-ras mutation is sequenced using standard techniques as previously described. Detection of mutant K-ras mRNA in the plasma confirms the likelihood of the pancreatic mass being a pancreatic cancer. Based upon the mutation sequence, a patient-specific therapy (i.e., specific to the patient's own cancer) is developed, in this case a ras vaccine specific to the mutant oncogene in this patient's pancreatic cancer. Alternatively, mutant K-ras specific protein, generated as previously described, may be used to develop a tumor-specific monoclonal antibody.

[0100] In this hypothetical case, the invention is used not only to help confirm a suspected diagnosis of pancreatic cancer, but to develop a patient-specific therapy. Patient-specific therapies - i.e., therapies specifically designed for a given patient's cancer, or a given type of cancer, are possible when specific characteristics of the tumor are recognized. Since the invention results in amplification of pure tumor product, it becomes possible to characterize the tumor, in this case using sequence analysis and/or transcription and translation. The technological leap that the invention enables is that it allows tumors to be characterized without the need for biopsy or surgery. Thus, it becomes possible to treat tumors even before they become clinically evident, i.e., treating at latent stages, pre-recurrence stages, or even pre-malignant stages. Early treatment of cancer before metastatic cells enter the bloodstream increases the likelihood of cure.

Case 4



[0101] A 36 year old hypothetical woman who has three small children at home was diagnosed with breast cancer two years ago. She had been treated with surgery followed by six months of chemotherapy. In addition, her blood serum has been serially evaluated for extracellular keratin 19 mRNA using the invention in which serum extracellular kerain 19 mRNA is extracted in invention Part A using the silica extraction method, followed by RT-PCR amplification in invention Part B with ELISA detection in invention Part C. Keratin 19 mRNA encodes for an intermediate filament protein not normally found in blood which can serve as a marker for breast cancer. While previous results for this patient had been negative, her blood serum is now testing positive for extracellular keratin 19 mRNA by the invention, suggesting an impending cancer recurrence. A multiplex panel for serum extracellular myc, ras, P53, EGFr, and Her-2-neu RNA is performed using the invention. This data confirms that tumor characteristics are identical to those of the original breast cancer primary, confirming a recurrence rather than a new primary. Consequently, serum extracellular keratin 19 mRNA is measured in a quantitative fashion using a branched DNA signal amplification assay in invention Part B, with measurements performed 2 months and 4 months later. Quantitative measurements indicate increasing levels of keratin 19 mRNA, and allow extrapolation to predict that clinical recurrence will be noted in approximately 2 years. This information allows both the physician and the patient to plan future therapeutic options in the context of the patient's current social and family situation.

[0102] This hypothetical case illustrates the use of the invention to monitor patients following therapy for recurrence of their cancer, to determine characteristics of their tumor, and to predict prognosis. Breast cancer patients have a high incidence of second primaries, but the invention permits delineation of primary versus recurrent cancer by using a multiplex panel approach to evaluate tumor characteristics. Furthermore, since quantitative analysis in invention Part B allows clarification of prognosis, the patient is in a better position to plan therapy within the context of her social/family situation. Lastly, since the invention allows detection of tumor-derived extracellular RNA, and does not depend upon the presence of circulating cancer cells, recurrence can be detected at a very early stage (in this hypothetical case - 2 years before clinical detection), which increases the likelihood of effective therapy.

BIBLIOGRAPHY



[0103] 
  1. 1. Mori, M., Mimori, K., Inoue, H., et al.: Detection of cancer micrometastases in lymph nodes by reverse transcriptase-polymerase chain reaction. Cancer Res 55:3417-3420, 1995.
  2. 2. Higashiyama, M., Taki, T., Ieki, Y., et al.: Reduced motility related protein-1 (MRP-1/CD9) gene expression as a factor of poor prognosis in non-small cell lung cancer. Cancer Res 55:6040-6044, 1995.
  3. 3. Ozcelik, H., Mousses, S., Andrulis, I.L.: Low levels of expression of an inhibitor of cyclin-dependent kinases (CIPl/WAFl) in primary breast carcinomas with p53 mutations. Clin Cancer Res 1:907-912, 1995.
  4. 4. Smith, B., Selby, P., Southgate, J., et al.: Detection of melanoma cells in peripheral blood by means of reverse transcriptase and polymerase chain reaction. Lancet 338:1227-1229, 1991.
  5. 5. Datta, Y.H., Adams, P.T., Drobyski, W.R., et al.: Sensitive detection of occult breast cancer by the reverse-transcriptase polymerase chain reaction. J Clin Oncol 12:475-482, 1994.
  6. 6. Moreno, J.G., Croce, C.M., Fischer, R., et al.: Detection of hematogenous micrometastasis in patients with prostate cancer. Cancer Res 52:6110-6112, 1992.
  7. 7. Ghossein, R.A., Scher, H.I., Gerald, W.I., et al.: Detection of circulating tumor cells in patients with localized and metastatic prostatic carcinoma: clinical implications. J Clin Oncol 13:1195-1200, 1995.
  8. 8. Reddi, K.K. and Holland, J.F.: Elevated serum ribonuclease in patients with pancreatic cancer. Proc Nat Acad Sci USA 73:2308-2310, 1976.
  9. 9. Leon, S.A., Shapiro, B., Servi, P., et al.: A comparison of DNA and DNA-binding protein levels in malignant disease. Europ J Cancer 17:533-538, 1981.
  10. 10. Juckett, D.A. and Rosenberg, B.: Actions of cis-diamminedichloroplatinum on cell surface nucleic acids in cancer cells as determined by cell electrophoresis techniques. Cancer Res 42:3565-3573, 1982.
  11. 11. Davidova, S.Y. and Shapot, V.S.: Liporibonucleoprotein complex as an integral part of animal cell plasma membranes. FEBS Lett. 6:349-351, 1970.
  12. 12. Rieber, M. and Bacalao, J.: An "external" RNA removable from mammalian cells by mild proteolysis. Proc Natl Acad Sci USA 71:4960-4964, 1974.
  13. 13. Taylor, D.D. and Blak, P.H.: Shedding of plasma membrane fragments. Neoplastic and developmental importance. In: The Cell Surface in Development and Cancer, Develop Biol Vol 3, pp. 33-57. Editor: M.S. Steinberg. Plenum Press, New York, London. 1985
  14. 14. Barz, D., Goppelt, M., Szamel, M., et al.: Characterization of cellular and extracellular plasma membrane vesicles from a non-metastasing lymphoma (Eb) and its metastasing variant (Esb). Biochim. Biophys. Acta 814:77-84, 1985.
  15. 15. Carr, J.M., Dvorak, A.M. and Dvorak, H.F.: Circulating membrane vesicles in leukemic blood. Cancer Res 45:5944-5951, 1985.
  16. 16. Rosi, A., Guidoni, L., Luciani, A.M., et al.: RNA-lipid complexes released from the plasma membrane of human colon carcinoma cells. Cancer Lett. 39:153-160, 1988.
  17. 17. Masella, R., Cantafora, A., Guidoni, L., et al.: Characterization of vesicles, containing an acylated oligopeptide, released by human colon adenocarcinoma cells. FEBS Lett. 246:25-29, 1989.
  18. 18. Mountford, C.E., May, G.L., Wright, L.C., et al.: Proteolipid identified by magnetic resonance spectroscopy in plasma of a patient with borderline ovarian tumor. Lancet i:829-834, 1987.
  19. 19. Wieczorek, A.J., Rhyner, C., Block, L.H.: Isolation and characterization of an RNA-proteolipid complex associated with the malignant state in humans. Proc Natl Acad Sci USA 82:3455-3459, 1985.
  20. 20. Wieczorek, A.J., Sitaramam, V., Machleidt, W., et al.: Diagnostic and prognostic value of RNA-proteolipid in sera of patients with malignant disorders following therapy: First clinical evaluation of a novel tumor marker. Cancer Res 47:6407-6412, 1987.
  21. 21. Wieczorek, A.J. and Rhyner, K.: Ein gensondentest fur RNA-proteolipid in serumproben bei neoplasie. Schweiz med Wschr 119:1342-1343, 1989.
  22. 22. Rosenberg-Nicolson, N.L. and Nicolson, G.L.: Nucleoprotein complexes released from lymphoma nuclei that contain the abl oncogene and RNA and DNA polymerase and RNA primase activities. J Cell Biochem 50:43-52, 1992.
  23. 23. Imai, H., Yamada, O., Morita, S., et al.: Detection of HIV-1 RNA in heparinized plasma of HIV-1 seropositive individuals. J Virol Methods 36:181-184, 1992.
  24. 24. Boom, R., Sol, C.J.A., Salimans, M.M.M., et al.: Rapid and simple method for purification of nucleic acids. J Clin Micro 28:495-503, 1990.
  25. 25. Cheung, R.C., Matsui, S.M. and Greenberg, H.B.: Rapid and sensitive method for detection of hepatitis C virus RNA by using silica particles. J Clin Micro 32:2593-2597, 1994.
  26. 26. Boom, R., Sol, C.J.A., Heijtink, R., et al.: Rapid purification of hepatitis B virus DNA from serum. J Clin Micro 29:1804-1811, 1991.
  27. 27. Chomczynski, P. and Sacchi, N.: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162:156-159, 1987.
  28. 28. Chomczynski, P.: A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotech 15:532-537, 1993.
  29. 29. Chomczynski, P. and Mackey, K.: Modification of the TRI reagent(TM) procedure for isolation of RNA from polysaccharide- and proteoglycan-rich sources. BioTechniques 19:942-945, 1995.
  30. 30. Chomczynski, P. and Mackey, K.: Substitution of chloroform by bromo-chloropropane in the single-step method of RNA isolation. Analytical Biochemistry 225:163-164, 1995.
  31. 31. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J., et al.: Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294-5299, 1979.
  32. 32. Fournie, G.J., Gayral-Taminh, M., Bouche, J.-P., et al.: Recovery of nanogram quantities of DNA from plasma and quantitative measurement using labeling by nick translation. Analytical Biochemistry 158:250-256, 1986.
  33. 33. Stroun, M., Anker, P., Maurice, P., et al.: Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 46:318-322, 1989.
  34. 34. Rashtchian, A.: Amplification of RNA. PCR Methods Applic 4:S83-S91, 1994.
  35. 35. Moore, R.E., Shepherd., J.W. and Hoskins, J.: Design of PCR primers that detect only mRNA in the presence of DNA. Nucleic Acids Res. 18:1921, 1991.
  36. 36. Buchman, G.W., Schuster, D.M. and Rashtchian, A.: Selective RNA amplification: A novel method using d UMP-containing primers and uracil DNA glycosylase. PCR Methods Applic 3:28-31, 1993.
  37. 37. Abravaya, K., Carrino, J.J., Muldoon, S., et al.: Detection of point mutations with a modified ligase chain reaction (Gap-LCR). Nucleic Acids Research 23:675-682, 1995.
  38. 38. Urdea, M.S., Wilber, J.C., Yeghiazarian, T., et al.: Direct and quantitative detection of HIV-1 RNA in human plasma with a branched DNA signal amplification assay. AIDS 7(suppl 2):S11-S14, 1993.
  39. 39. Kievits, T., van Gemen, B., van Strijp, D., et al.: NASBA(TM) isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J Virological Methods 35:273-286, 1991.
  40. 40. Edmands, S., Kirk, J., Lee, A., et al.: Rapid RT-PCR amplification from limited cell numbers. PCR Methods Applic 3:317-319, 1994.
  41. 41. Brossart, P., Keilholz, U., Scheibenbogen, C., et al.: Detection of residual tumor cells in patients with malignant melanoma responding to immunotherapy. J Immunotherapy 15:38-41, 1994.
  42. 42. Kahn, S.M., Jiang, W., Culbertson, T.A., et al.: Rapid and sensitive nonradioactive detection of mutant K-ras genes via 'enriched' PCR amplification. Oncogene 6:1079-1083, 1991.
  43. 43. Wang, A.M., Doyle, M.V. and Mark, D.F.: Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci USA 86:9717-9721, 1989.
  44. 44. Karet, F.E., Charnock-Jones, D.S., Harrison-Woolrych, M.L., et al.: Quantification of mRNA in human tissue using fluorescent nested reverse-transcriptase polymerase chain reaction. Analytical Biochemistry 220:384-390, 1994.
  45. 45. Vandamme, A.-M., Van Dooren, S., Kok, W., et al.: Detection of HIV-1 RNA in plasma and serum samples using the NASBA amplification system compared to RNA-PCR. J Virological Methods 52:121-132, 1995.
  46. 46. Nguyen, T.D.: Southern blot analysis of polymerase chain reaction products on acrylamide gels. BioTechniques 7:238-240, 1989.
  47. 47. Landgraf, A., Reckmann, B. and Pingoud, A.: Direct analysis of polymerase chain reaction products using enzyme-linked immunosorbent assay techniques. Analytical Biochemistry 198:86-91, 1991.
  48. 48. Landgraf, A., Reckmann, B. and Pingoud, A.: Quantitative analysis of polymerase chain reaction (PCR) products using primers labeled with biotin and a fluorescent dye. Analytical Biochemistry 193:231-235, 1991.
  49. 49. Coutlee, F., Bobo, L., Mayur, K., et al.: Immunodetection of DNA with biotinylated RNA probes: A study of reactivity of a monoclonal antibody to DNA-RNA hybrids. Analytical Biochemistry 181:96-105, 1989.
  50. 50. Bobo, L., Coutlee, F., Yolken, R.H., et al.: Diagnosis of chlamydia trachomatis cervical infection by detection of amplified DNA with an enzyme immunoassay. J Clin Micro 28:1968-1973, 1990.
  51. 51. Blackburn, G.F., Shah, H.P., Kenten, J.H., et al.: Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics. Clin Chem 37/9:1534-1539, 1991.
  52. 52. DiCesare, J., Grossman, B., Katz, E., et al.: A high-sensitivity electrochemiluminescence-based detection system for automated PCR product quantitation. BioTechniques 15:152-157, 1993.
  53. 53. Saiki, R.K., Walsh, D.S. and Erlich, H.A.: Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Science 233:1076-1078, 1989.
  54. 54. Komeda, T., Fukuda, Y., Sando, T. et al.: Sensitive detection of circulating hepatocellular carcinoma cells in peripheral venous blood. Cancer 75: 2214-2219, 1995.
  55. 55. Kamm, R.C., and Smith, A.G.: Nucleic acid concentrations in normal human plasma. Clinical Chemistry 18: 519-522, 1972.
  56. 56. Chu, E., Takechi, T., Jones, K. L. et al.: Thymidylate synthase binds to c-myc RNA in human colon cancer cells and in vitro. Mol. Cell. Biol. 15: 179-185, 1995.
  57. 57. Stock, W., Westbrook, C. A., Peterson, B. et al: Value of molecular monitoring during the treatment of chronic myeloid leukemia: A cancer and leukemia group B study. J. Clin. Oncology 15: 26-36, 1997.
  58. 58. Gerhard, M., Juhl, H., Kalthoff, H. et al.: Specific detection of carcinoembryonic antigen-expressing tumor cells in bone marrow aAspirates by polymerase chain reaction. J. Clin. Oncol. 12: 725-729, 1994.
  59. 59. Hoon, D.S.B., Wang, Y., Dale, P.S. et al.: Detection of occult melanoma cells in blood with a multiple-marker polymerase chain reaction assay. J. Clin. Oncol. 13: 2109-2116, 1995.
  60. 60. Miller, W. H. Jr., Levine, K., DeBlasio, A. et al.: Detection of minimal residual disease in acute promyelocytic leukemia by a reverse transcription polymerase chain reaction assay for the PML/RAR- alpha fusion mRNA. Blood 82: 1689-1694, 1993.
  61. 61. Penno, M.B., August, J.T., Bayline, S.B. et al.: Expression of CD44 in human lung tumors. Cancer Research 54: 1381-1387, 1994.
  62. 62. Pfleiderer, C., Zoubek, A., Gruber, B. et al.: Detection of tumour cells in peripheral blood and bone marrow from ewing tumour patients by RT-PCR. Int. J. Cancer (Pred. Oncol.) 64: 135-139, 1995.
  63. 63. Maruyama, F., Stass, S.A., Estey, E.H. et al.: Detection of AML1/ETO fusion transcript as a tool for diagnosing t(8; 21) positive acute myelogenous leukemia. Leukemia 8: 40-45, 1994.
  64. 64. Patard, J-J., Brasseur, F., Gil-Diez, S. et al.: Expression of MAGE genes in transitional-cell carcinomas of the urinary bladder. Int. J. Cancer 64: 60-64, 1995.
  65. 65. Doi, F., Chi, D.D, Charuworn, B.B et al.: Detection of beta-human chorionic gonadotropin mRNA as a marker for cutaneous malignant melanoma. Int. J. Cancer. 65: 454-459, 1996.
  66. 66. Wiedmann, M., Wilson, W.J., Czajka, J. et al.: Ligase chain reaction (LCR) - overview and applications. PCR Methods Appl. 3: 551-64, 1994.
  67. 67. Sooknanan, R., Malek, L., Wang, X-H. et al.: Detection and direct sequence identification of BCR-ABL mRNA in Ph + chronic myeloid leukemia. Experimental Hematology 21: 1719-1724, 1993.
  68. 68. Aoki, K., Yoshida, T., Sugimura, T. et al.: Liposome-meidated in vivo gene transfer of antisense K-ras construct inhibits pancreatic tumor dissemination in the murine peritoneal cCavity. Cancer Res. 55: 3810-3816, 1995.
  69. 69. Kim, N.W., Piatyszek, M.A., Prowse, K.R., et al.: Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011-2015, 1994.
  70. 70. Feng, J., Funk, W.D., Wang, S-S., et al.: The RNA component of human telomerase. Science 269: 1236-1241, 1995.
  71. 71. Urdea, M.S., Horn, T., Fulte, T.J., et al.: Branched DNA amplification multimers for the sensitive, direct detection of human hepatitis viruses. Nucleic Acids Research Symposium Series 24: 197-200, 1991.
  72. 72. Katz, A. E., DeVries, G. M., Begg, M.D. et al.: Enhanced Reverse Transcriptase-Polymerase Chain Reaction for Prostate Specific Antigen as an Indicator of True Pathologic Stage in Patients with Prostate Cancer. Cancer 75: 1642-1648, 1995.
  73. 73. Roggenbuck, B., Larsen, P. M., Fey, S. J. et al.: Human Papillomavirus Type 18 E6 and E6, and E7 Protein Synthesis in Cell Free Translation Systems and Comparison of E6 and E7 In Vitro Translation Products to Proteins Immunoprecipitated from Human Epithelial Cells. J. Virol. 65: 5068-72, 1991.
  74. 74. Dosaka, A. H., Rosenberg, R. K., Minna, J. D. et al.: A Complex Pattern of Translational Initiation and Phosphorylation in L-Myc Proteins. Oncogene 6: 371-378, 1991.
  75. 75. Alkema, M. J., Wiegant, J., Raap, A. K. et al.: Characterization and Chromosomal Localization of the Human Proto-Oncogene BMI-1. Human Mol. Genet. 2: 1597-1603, 1993.
  76. 76. Shen, R., Su, Z. Z., Olsson, C. A. et al.: Identification of the Human Prostate Carcinoma Oncogene PTI-1 by Rapid Expression Cloning and Differential RNA Display. Proc. Natl. Acad., Sci. USA. 92: 6778-6782, 1995.
  77. 77. Cohen, J.S.: Biochemical Therapy: Antisense Compounds. In: Biologic Teraphy of Cancer, (DeVita, VT, Hellman S., Rosenberg, S. A., eds.) J. B. Lippincott, Co., Philadelphia, 1991, pp. 763-775.
  78. 78. Polushin, N. N. and Cohen, J. S.: Antisense Pro-Drugs: 5'-ester Oligodeoxynuclotides. Nucleic Acids Res. 22: 5492-5496, 1994.
  79. 79. Sakakura, C., Hagiwara, A., Tsujimoto, H. et al.: Inhibition of Gastric Cancer Cell Prolifeation by antisense Oligonucleotides Targeting the Messenger RNA Encoding Proliferating Cell Nuclear Antigen. Br. J. Cancer. 70: 1060-1066, 1994.
  80. 80. Colomer, R., Lupu, R., Bacus, S. S. et al.: erbB-2 Antisense Oligonucleotides Inhibit the Proliferation of Breast Carcinoma Cells with erbB-2 Oncogene Amplification. Br. J. Cancer. 70: 819-825, 1994.
  81. 81. Skorski, T., Nieborowska-Skorska, M., Nicolaides, N.C. et al.: Suppression of Philadelphial Leukemia Cell Growth in Mice by BCR-ABL Antisense Oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA. 91: 4504-4508, 1994.
  82. 82. Schlom, J.: Antibodies in Cancer Therapy: Basic Principles of Monoclonal Antibodies. In: Biologic Therapy of Cancer, (DeVita, V.T., Hellman, S., Hellman, S., Rosenberg, S. A. eds.) J. B. Lippincott, Co., Philadelphia, 1991, pp. 464-481.
  83. 83. Vitetta, E. S., Thorpe, P. E.: Immunotoxins. In: Biologic Therapy of Cancer, (DeVita, V. T., Hellman, S., Rosenberg, S. A., eds.) J. B. Lippincott, Co., Philadelphia, 1991, pp. 482-495.
  84. 84. Larson, S. M., Cheung, N-K V., Leibel, S. A.: Radioisotope Conjugates. In: Biologic Therapy of Cancer (DeVita, V. T., Hellman, S., Rosenberg, S. A. eds.) J. B. Lippincott, Co., Philadelphia, 1991, pp. 496-511.
  85. 85. Hoover, H. C., Jr., Hanna, M. G., Jr.: Immunotheraphy by Active Specific Immunization: Clinical Applications. In: Biologic Therapy of Cancer (DeVita, V. T., Hellman, S., Rosenberg, S. A. eds.) J. B. Lippincott, Co., Philadelphia, 1991, pp. 670-682.
  86. 86. McCabe, B. J., Irvine, K. R., Nishimura, M. I. et al.: Minimal Determinant Expressed by a Recombinant Vaccinia Virus Elicits Therapeutic Antitumor Cytolytic T Lymphocyte Responses. Cancer Res., 55: 1741-1747, 1995.
  87. 87. Bauer, S., Heeg, K., Wagner, H. et al.: Identification of H-2Kb Binding and Immunogenic Peptides from Human Papilloma Virus Tumour Antigens E6 and E7. Scand. J. Immunol. 42: 317-323, 1995.
  88. 88. Bocchia, M., Wentworth, P. A., Southwood, S. et al.: Specific Binding of Leukemia Oncogene Fusion Protein Peptides to HLA Class I Molecules. Blood. 85: 2680-2684, 1995.
  89. 89. Peoples, G. E., Goedegebuure, P. S., Smith, R. et al.: Breast and Ovarian Cancer-Specific Cytotoxic T Lymphocytes Recognize the Same HER-2/Neu Derived Peptide. Proc. Natl. Acad. Sci. USA., 92: 432-436, 1995.
  90. 90. Yanuck, M., Carbone, D. P., Pendleton, C. D. et al.: A Mutant P53 Tumor Suppressor Protein is a Target for Peptide-Induced CD8+ Cytotoxic T-Cells. Cancer Res. 53: 3257-3261, 1993.



Claims

1. A method of detecting extracellular mammalian tumor-derived or tumor-associated RNA in the plasma or serum fraction of blood from a human or animal as an aid in the detection, diagnosis, monitoring, treatment, or evaluation of neoplastic disease, including early cancer, non-invasive cancers, premalignant states, invasive cancer, advanced cancer, and benign neoplasms, the method characterized by the steps of:

a) extracting mammalian total RNA from plasma or serum from a human or animal, a portion of which comprises extracellular mammalian tumor-derived or tumor-associated RNA;

b) amplifying the extracted extracellular mammalian tumor-derived or tumor-associated RNA or its corresponding cDNA, in either a qualitative or quantitative fashion; and

c) detecting the amplified RNA or its corresponding cDNA, in either a qualitative or quantitative fashion.


 
2. A method according to claim 1 characterized in that the mammalian RNA is from plasma or serum from a human with adenoma or dysplasia.
 
3. A method according to claim 1 or 2, characterized in that the extracellular mammalian tumor-derived or tumor-associated RNA is extracted from plasma or serum using a RNA extraction method selected from:

a) gelatin extraction method;

b) silica, glass bead, or diatom extraction method;

c) TRI reagent or similar extraction method such as TRIsolv, TRIsol, or ISOGEN;

d) guanidinium thiocyanate acid-based extraction methods;

e) centrifugation through a cesium chloride or similar gradient; and

f) phenol-chloroform-based extraction methods.


 
4. A method according to any one of the preceding claims, characterized in that a portion of the total RNA extracted is mammalian RNA, selected from

a) tyrosinase mRNA;

b) keratin 19 mRNA;

c) p97 mRNA;

d) MUC 18 mRNA;

e) CD44 mRNA;

f) MAGE-1 mRNA;

g) MAGE-2 mRNA;

h) MAGE-3 mRNA;

i) MAGE-4 mRNA;

j) beta-human chorionic gonadotropin (β HCG) mRNA;

k) telomerase-associated RNA; and

l) mixtures thereof.


 
5. A method according to any one of the preceding claims, characterized in that the amplification is performed by an RNA amplification method, including those in which RNA is first reverse transcribed to cDNA, and in which cDNA is amplified, selected from:

a) reverse transcriptase polymerase chain reaction;

b) ligase chain reaction;

c) branched DNA signal amplification;

d) amplifiable RNA reporters;

e) Q-beta replication;

f) transcription-based amplification;

g) isothermal nucleic acid sequence based amplification (NASBA);

h) any other self-sustained sequence replication assays;

i) boomerang DNA amplification;

j) strand displacement activation;

k) cycling probe technology; and

l) any combination or variation thereof.


 
6. A method according to claim 5, characterized in that primers employed in the amplification assay are selected for specific tumor-derived or tumor-associated RNA or cDNA derived therefrom, which characterize a tumor, and wherein said RNA is selected from:

a) tyrosinase mRNA;

b) keratin 19 mRNA;

c) p97 mRNA;

d) MUC 18 mRNA;

e) CE44 mRNA;

f) MAGE-1 mRNA;

g) MAGE-2 mRNA;

h) MAGE-3 mRNA;

i) MAGE-4 mRNA;

j) beta-human chorionic gonadotropin (β HCG) mRNA;

k) telomerase-associated RNA; and

l) mixtures thereof.


 
7. A method according to claim 6, characterized in that the primers employed in the amplification assay may optionally be nested or hemi-nested primers.
 
8. A method according to claim 5, characterized in that probes employed in an amplification assay are selected for specific mammalian tumor-derived or tumor-associated RNA or cDNA derived therefrom, which characterize a tumor, and wherein said RNA are selected from:

a) tyrosinase mRNA;

b) keratin 19 mRNA;

c) p97 mRNA;

d) MUC 18 mRNA;

e) CD44 mRNA;

f) MAGE-1 mRNA;

g) MAGE-2 mRNA;

h) MAGE-3 mRNA;

i) MAGE-4 mRNA;

j) beta-human chorionic gonadotropin (β HCG) mRNA;

k) telomerase-associated RNA; and

l) mixtures thereof.


 
9. A method according to any one of the preceding claims, characterized in that detection of the amplified RNA or cDNA is performed by at least one detection method selected from the group consisting of:

a) gel electrophoresis;

b) ELISA detection, including modifications, including biotinylated or otherwise modified primers, and immunological detection methods using monoclonal antibodies;

c) labeled fluorescent or chromogenic probe;

d) Southern blot analysis;

e) electrochemiluminescence;

f) reverse dot blot detection; and

g) high-performance liquid chromatography.


 
10. A method according to any one of the preceding claims, characterized in that a human is screened for malignancy or premalignancy and wherein the presence of extracellular mammalian tumor associated RNA in the plasma or serum of said human infers the presence of malignant or premalignant cells in the body of said human.
 
11. A method according to claim 10, characterized in that the human being screened has a risk of malignancy that is unknown or unsuspected.
 
12. A method according to claim 10 or 11 wherein the method is used to evaluate progression of pre-malignant cells with respect to phenotypes or genotypes which are characterized by greater malignant potential in which

a) the method is employed in a serial manner;

b) plasma or serum is evaluated for the presence of extracellular mammalian tumor-associated RNA of which the corresponding intracellular RNA of said RNA is known to be associated with increased malignant potential of a cell when found within that cell; and

c) inferring cells of increased malignant potential to be present when said mammalian tumor-associated RNA is detected in plasma or serum.


 
13. The product of amplification of extracellular mammalian tumor-associated RNA or tumor-derived RNA extracted from plasma or serum, or cDNA derived therefrom, as a composition of matter, which includes nucleic acid sequences identical or substantially identical to said RNA or its fragment, or a corresponding cDNA, which is produced by the method of any one of claims 1 to 12.
 
14. A method of monitoring or evaluating a human or animal for malignant or premalignant disease, the method characterised by the steps of:

a) testing for extracellular mammalian tumor-derived or tumor-associated RNA in the plasma or serum of a human or animal by;

1) extracting total RNA from plasma or serum from a human or animal, a portion of which comprises extracellular mammalian tumor-derived or tumor-associated RNA;

2) amplifying the extracted mammalian tumor-derived or tumor-associated RNA or its corresponding cDNA in either a qualitative or quantitative fashion;

3) detecting the presence or absence of the amplified RNA or corresponding cDNA in either a qualitative or quantitative fashion; and

b) optionally repeating the testing of step a) in a serial fashion.


 
15. A method according to claim 14 characterised in that a method is provided for:

a) evaluation of response to therapy, such as surgical therapy, chemotherapy, radiation therapy, hormonal therapy, immunotherapy, or biotherapy;

b) indicating and measuring disease progression;

c) indicating and measuring disease relapse;

d) indicating and predicting prognosis;

e) indicating and measuring residual disease; and

f) determining the need for additional therapy, or evaluating the benefit of therapy, or evaluating the need to change therapy.


 
16. The method according to any one of claims 1 to 12 characterised in that amplified mammalian RNA or cDNA from subpart (b) may be further characterized by one or more of the following:

a) nucleic acid sequencing;

b) spectroscopy;

c) immunologic analysis;

d) biochemical analysis;

e) production of the corresponding RNA; or

f) production of the corresponding protein.


 
17. A method according to any one of claims 1 to 12 as an aid in the designing of a patient's treatment program, including the assignment or development of tumor-specific therapies, including vaccine therapy, monoclonal antibody therapy, and antisense therapy.
 
18. A method of reverse transcribing extracellular mammalian RNA extracted from plasma or serum of a human without cancer, wherein cDNA corresponding to extracellular mammalian RNA is produced, characterized in that said cDNA may further be:

a) amplified;

b) sequenced;

c) cloned;

d) transcribed;

e) used in a recombinant genetic construct; or

f) otherwise manipulated.


 
19. A method wherein extracellular mammalian tumor-associated RNA or extracellular mammalian tumor-derived RNA, or a corresponding cDNA, is amplified as to permit the sequencing of said RNA or its corresponding cDNA as to obtain the nucleic acid sequence, the method characterized by the steps of:

a) extracting total RNA from plasma or serum from a human or animal, wherein a portion of the extracted RNA comprises Extracellular mammalian tumor-derived or tumor-associated RNA;

b) amplifying the extracted extracellular mammalian RNA or a corresponding cDNA; and

c) sequencing the amplified RNA or cDNA.


 
20. A method according to claim 19 characterized in that:

a) the nucleic acid sequence of tumor-associated extracellular mammalian RNA or its corresponding cDNA is determined;

b) antisense compounds, including synthetic oligodeoxynucleotides, are manufactured based upon the said nucleic acid sequence, and

c) optionally, said antisense compounds are used therapeutically.


 
21. A method according to claim 19, characterized in that the nucleic acid sequence identical or substantially identical to an extracellular mammalian RNA or its fragments, or a corresponding cDNA, identifies a treatment for a human or animal.
 
22. A method according to claim 1, as applied to the detection of multiple extracellular mammalian tumor-associated RNA species in plasma or serum, the method characterized by the steps of:

a) extracting multiple tumor-derived or tumor-associated extracellular mammalian RNA species from plasma or serum;

b) amplifying the extracted extracellular mammalian RNA species or its cDNA in either a qualitative or quantitative fashion; and

c) detecting the amplified RNA or its cDNA in either a qualitative or quantitative fashion.


 
23. A method of detecting an extracellular mammalian RNA species in the plasma or serum from a human without cancer, the methods characterised by the steps of:

a) extracting extracellular mammalian total RNA from plasma or serum from a human without cancer, wherein a portion of said extracted mammalian total RNA contains a mammalian RNA species;

b) amplifying a portion of the extracted extracellular mammalian RNA for the mammalian RNA species, or cDNA derived therefrom; and

c) detecting the amplified RNA or corresponding cDNA.


 
24. A method of detecting extracellular mammalian RNA in the plasma or serum fraction of blood from a human, wherein the mammalian RNA is an RNA species of a translocated gene, the method characterised by the steps of:

a) extracting mammalian total RNA from plasma or serum from a human, wherein a portion of the extracted RNA comprises an extracellular mammalian RNA species of a translocated gene;

b) amplifying the extracted extracellular mammalian RNA comprising an RNA species of a translocated gene, or cDNA derived therefrom; and

c) detecting the amplified RNA or corresponding cDNA.


 
25. A method according to claim 24, wherein a portion of the extracted mammalian total RNA is a RNA species selected from

a) BCR/abl mRNA;

b) PML/RAR-α, mRNA;

c) EWS/FLI-1 mRNA;

d) EWS/EKG mRNA; and

e) AML1/ETO mRNA.


 


Ansprüche

1. Verfahren zur Bestimmung von extrazellulärer Tumor-abgeleiteter oder Tumor-assoziierter Säugetier-RNA in der Plasma- oder Serumfraktion des Bluts eines Menschen oder eines Tiers als Hilfsmittel bei der Bestimmung, Diagnose, Überwachung, Behandlung oder Bewertung einer neoplastischen Erkrankung, einschließlich eines frühen Krebses, von nichtinvasiven Krebsarten, prämalignen Zuständen, invasivem Krebs, fortgeschrittenem Krebs und gutartigen Neoplasmen, wobei das Verfahren gekennzeichnet ist durch die Schritte:

a) Extrahieren der gesamten Säugetier-RNA aus Plasma oder Serum von einem Menschen oder Tier, wobei ein Teil davon eine extrazelluläre Tumor-abgeleitete oder Tumor-assoziierte Säugetier-RNA umfasst;

b) Amplifizieren der extrahierten extrazellulären Tumor-abgeleiteten oder Tumor-assoziierten Säugetier-RNA oder ihrer entsprechenden cDNA entweder auf qualitative oder quantitative Weise; und

c) Bestimmen der amplifizierten RNA oder ihrer entsprechenden cDNA auf entweder qualitative oder quantitative Weise.


 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Säugetier-RNA aus einem Plasma oder Serum eines Menschen mit einem Adenom oder einer Dysplasie stammt.
 
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die extrazelluläre Tumor-abgeleitete oder Tumor-assoziierte Säugetier-RNA aus Plasma oder Serum unter Anwendung eines RNA-Extraktionsverfahrens extrahiert wird, das ausgewählt ist aus:

a) Gelatine-Extraktionsverfahren;

b) Kieselsäure-, Glasperlen- oder Diatomeeh-Extraktionsverfahren;

c) TRx-Reagens-oder einem ähnlichen Extraktionsverfahren, wie beispielsweise TRIsolv, TRIsol oder ISOGEN;

d) auf Guanidiniumthiocyanatsäure basierenden Extraktionsverfahren;

e) Zentrifugation durch einen Cäsiumchlorid- oder ähnlichen Gradienten; und

f) auf Phenol-Chloroform basierenden Extraktionsverfahren.


 
4. Verfahren nach irgendeinem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass ein Teil der extrahierten Gesamt-RNA eine Säugetier-RNA ist, die ausgewählt ist aus:

a) Tyrosinase mRNA;

b) Keratin 19 mRNA;

c) p97 mRNA;

d) MUC 18 mRNA;

e) CD44 mRNA;

f) MAGE-1 mRNA;

g) MAGE-2 mRNA;

h) MAGE-3 mRNA;

i) MAGE-4 mRNA;

j) human-beta-Choriongonadotropin (β HCG) mRNA;

k) Telomerase-assoziierter RNA; und

l) Mischungen davon.


 
5. Verfahren nach irgendeinem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass die Amplifikation mittels eines RNA-Amplifikationsverfahren durchgeführt wird, einschließlich solcher, bei denen RNA zuerst revers in cDNA transkribiert wird, und bei denen cDNA amplifiziert wird, ausgewählt aus:

a) Reverstranskriptase-Polymerase-Kettenreaktion;

b) Ligase-Kettenreation;

c) verzweigte DNA-Signalamplifikation;

d) amplifizierbaren RNA-Reportern;

e) Q-beta-Replikation;

f) Transkriptions-basierender Amplifikation;

g) isothermer Nucleinsäuresequenz-basierter Amplifikation (NASBA);

h) irgendwelchen anderen selbsterhaltenden Sequenzreplikationsassays;

i) Bumerang-DNA-Amplifizierung;

j) Strangverdrängungs-Aktivierung;

k) cyclischer Sonden-Technologie; und

l) irgendeiner Kombination oder Variation davon.


 
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass Primer, die in dem Amplifikatfonsassay verwendet werden, ausgewählt werden aus einer spezifischen Tumor-abgeleiteten oder Tumor-assoziierten RNA oder einer davon abgeleiteten cDNA, die einen Tumor charakterisieren, und wobei die RNA ausgewählt ist aus:

a) Tyrosinase mRNA;

b) Keratin 19 mRNA;

c) p97 mRNA;

d) MUC 18 mRNA;

e) CD44 mRNA;

f) MAGE-1 mRNA;

g) MAGE-2 mRNA;

h) MAGE-3 mRNA;

i) MAGE-4 mRNA;

j) human-beta-Choriongonadotropin (β HCG) mRNA;

k) Telomerase-assoziierter RNA; und

l) Mischungen davon.


 
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die in dem Amplifikationsassay verwendeten Primer gegebenenfalls nested oder semi-nested Primer sind.
 
8. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass Sonden, die in einem Amplifikationsassay verwendet werden, ausgewählt sind aus einer spezifischen Tumor-abgeleiteten oder Tumor-assoziierten Säugetier-RNA oder davon abgeleiteter cDNA, die einen Tumor charakterisieren, und wobei die genannte RNA ausgewählt ist aus:

a) Tyrosinase mRNA;

b) Keratin 19 mRNA;

c) p97 mRNA;

d) MUC 18 mRNA;

e) CD44 mRNA;

f) MAGE-1 mRNA;

g) MAGE-2 mRNA;

h) MAGE-3 mRNA;

i) MAGE-4 mRNA;

j) beta-Human-Choriongonadotropin (β HCG) mRNA;

k) Telomerase-assoziierter RNA; und

l) Mischungen davon.


 
9. Verfahren nach irgendeinem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass die Bestimmung der amplifizierten RNA oder cDNA durch wenigstens ein Bestimmungsverfahren durchgeführt wird, das aus der Gruppe ausgewählt ist, die besteht aus:

a) Gelelektrophorese;

b) ELISA-Bestimmung, einschließlich von Modifikationen, einschließlich biotinylierter oder auf andere Weise modifizierter Primer, sowie immunologischen Bestiznmungsverfahren unter Verwendung monoklonaler Antikörper;

c) markierten fluoreszierenden oder chromogenen Sonden;

d) Southern-Blot-Analyse;

e) Elektrochernilumineszenz:

f) reversem Dot-Blot-Bestimmung; und

g) Hochleistungsflüssigkeitschromatographie.


 
10. Verfahren nach irgendeinem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass ein Mensch auf einen malignen oder prämalignen Zustand untersucht wird und wobei die Anwesenheit von extrazellulärer Tumor-assoziierter Säugetier-RNA im Plasma oder Serum des Menschen das Vorliegen von maglignen oder prämalignen Zellen im Köper des Menschen bedeutet.
 
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das untersuchte menschliche Wesen ein Risiko bezüglich einer malignen Erkrankung aufweist, die unbekannt ist oder nicht vermutet wird.
 
12. Verfahren nach Anspruch 10 oder 11, wobei das Verfahren dazu verwendet wird, die Progression von prämalignen Zellen im Hinblick auf Phänotypen oder Genotypen zu bewerten, die durch ein größeres malignes Potential charakterisiert sind, bei dem

a) das Verfahren auf serielle Weise angewandt wird;

b) Serum oder Plasma im Hinblick auf die Anwesenheit einer extrazellulären Tumor-assoziierten Säugetier-RNA bewertet wird, für die bekannt ist, dass die entsprechende intrazelluläre RNA der genannten RNA mit einem erhöhten malignen Potential einer Zelle assoziiert ist, wenn sie innerhalb der Zelle gefunden wird; und

c) Schließen, dass Zellen mit einem erhöhten malignen Potential vorhanden sind, wenn die Tumor-assoziierte Säugetier-RNA im Plasma oder Serum nachgewiesen wird.


 
13. Amplifikationsprodukt einer extrazellulären Tumor-assoziierten oder Tumor-abgeleiteten Säugetier-RNA, die aus Plasma oder Serum extrahiert ist, oder einer davon abgeleiteten cDNA, als Stoffzusammensetzung, die Nucleinsäuresequenzen beinhaltet, die identisch oder im Wesentlichen identisch mit der genannten RNA oder ihren Fragmenten sind, oder einer entsprechenden cDNA, das hergestellt wird nach dem Verfahren nach irgendeinem der Ansprüche 1 bis 12.
 
14. Verfahren zum Überwachen oder Bewerten eines Menschen oder eines Tiers auf eine maligne oder prämaligne Erkrankung, wobei das Verfahren durch die Schritte charakterisiert ist:

a) Testen auf extrazelluläre Tumor-abgeleitete oder Tumor-assoziierte Säugetier-RNA im Plasma oder Serum eines Menschen oder eines Tiers durch:

1) Extrahieren der Gesamt-RNA aus Plasma oder Serum eines Menschen oder eines Tiers, von der ein Teil davon eine extrazelluläre Tumor-abgeleitete oder Tumor-assoziierte Säugetier-RNA umfasst;

2) Amplifizieren der extrahierten Tumor-abgeleiteten oder Tumor-assoziierten Säugetier-RNA oder ihrer entsprechenden cDNA auf entweder qualitative oder quantitative Weise;

3) Bestimmen der Anwesenheit oder des Fehlens der amplifizierten RNA oder der entsprechenden cDNA auf entweder qualitative oder quantitative Weise; und

b) Wiederholen des Testens von Stufe a) in einer seriellen Weise.


 
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass das Verfahren bereitgestellt wird für:

a) die Bewertung einer Reaktion auf eine Therapie, wie beispielsweise eine chirurgische Therapie, Chemotherapie, Bestrahlungstherapie, hormonelle Therapie, Immunotherapie oder Biotherapie;

b) Anzeigen und Messen des Fortschreitens einer Krankheit;

c) Anzeigen und Messen der Remission einer Krankheit;

d) Anzeigen und Vorhersagen einer Prognose;

e) Anzeigen und Messen einer Resterkrankung; und

f) Fetstellen der Notwendigkeit einer zusätzlichen Therapie, oder Bewertung des Vorteils einer Therapie, oder Bewertung der Notwendigkeit, die Therapie zu ändern.


 
16. Verfahren nach irgendeinem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die amplifizierte Säugetier-RNA oder -cDNA aus Unterpunkt (b) durch eines oder mehrere der folgenden weiter charakterisiert werden kann:

a) Nucleinsäuresequenzieren;

b) Spektroskopie;

c) Immunologische Analyse;

d) Biochemische Analyse;

e) Produktion der entsprechenden RNA; oder

f) Produktion des entsprechenden Proteins.


 
17. Verfahren nach irgendeinem der Ansprüche 1 bis 12 als Hilfsmittel bei der Festlegung eines Behandlungsprogramms für einen Patienten, einschließlich der Zuordnung oder Entwicklung von Tumor-spezifischen Therapien, einschließlich einer Impfstofftherapie, einer Therapie mit monoklonalen Antikörpern, und einer Antisense-Therapie.
 
18. Verfahren zur Revers-Transkription einer extrazellulären Säugetier-RNA, die aus einem Plasma oder Serum eines krebsfreien Menschen extrahiert wurde, wobei die cDNA, die der extrazellulären Säugetier-RNA entspricht, hergestellt wird, dadurch gekennzeichnet, dass die cDNA außerdem sein kann:

a) amplifiziert;

b) sequenziert;

c) geklont;

d) transkribiert;

e) in einem rekombinanten genetischen Konstrukt verwendet; oder

f) auf andere Weise manipuliert.


 
19. Verfahren, bei dem eine extrazelluläre Tumor-assoziierte Säugetier-RNA oder eine extrazelluläre Tumor-abgeleitete Säugetier-RNA oder eine entsprechende cDNA amplifiziert wird, um das Sequenzieren der genannten RNA oder ihrer entsprechenden cDNA zu ermöglichen, um die Nucleinsäuresequenz zu erhalten, wobei das Verfahren gekennzeichnet ist durch die Schritte:

a) Extrahieren der gesamten RNA aus Plasma oder Serum eines Menschen oder eines Tieres, wobei ein Teil der extrahierten RNA eine extrazelluläre Turmor-abgeleitete oder Turmor-assoziierte Säugetier-RNA umfasst;

b) Amplifizieren der extrahierten extrazellulären Säugetier-RNA oder einer entsprechenden cDNA; und

c) Sequenzieren der amplifizierten RNA oder cDNA.


 
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass

a) die Nucleinsäuresequenz einer Tumor-assoziierten extrazellulären Säugetier-RNA oder ihrer entsprechenden cDNA bestimmt wird;

b) Antisense-Verbindungen, einschließlich synthetischer Oligodesoxynucleotide, erzeugt auf der Basis der genannten Nucleinsäuresequenz werden, und

c) die Antisense-Verbindungen gegebenenfalls therapeutisch verwendet werden.


 
21. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass die Nucleinsäuresequenz, die identisch ist oder im Wesentlichen identisch ist mit einer extrazellulären Säugetier-RNA oder ihren Fragmenten, oder einer entsprechenden cDNA, eine Behandlung für einen Menschen oder ein Tier identifiziert.
 
22. Verfahren nach Anspruch 1, bei seiner Anwendung auf die Bestimmung von mehreren extrazellulären Tumor-assozüerten Säugetier-RNA-Spezies in Plasma oder Serum, wobei das Verfahren charakterisiert ist durch die Schritte:

a) Extrahieren mehrerer Tumor-abgeleiteter oder Tumor-assoziierter extrazellulärer Säugetier-RNA-Spezies aus Plasma oder Serum;

b) Amplifizieren der extrahierten extrazellulären Säugetier-RNA-Spezies oder ihrer cDNA auf entweder qualitative oder quantitative Weise; und

c) Bestimmen der amplifizieren RNA oder ihrer cDNA auf entweder qualitative oder quantitative Weise.


 
23. Verfahren zur Bestimmung einer extrazellulären Säugetier-RNA-Spezies im Plasma oder Serum eines Menschen ohne Krebs, wobei das Verfahren charakterisiert ist durch die Schritte:

a) Extrahieren einer extrazelluläre Gesamt-Säugetier-RNA aus Plasma oder Serum eines krebsfreien Menschen, wobei ein Teil der genannten extrahierten Gesamt-Säugetier-RNA eine Säugetier-RNA-Spezies enthält;

b) Amplifizieren eines Teils der extrahierten extrazellulären Säugetier-RNA im Hinblick auf die Säugetier-RNA-Spezies oder die davon abgeleitete cDNA; und

c) Bestimmen der amplifizierten RNA oder der entsprechenden cDNA.


 
24. Verfahren zur Bestimmung einer extrazellulären Säugetier-RNA in der Plasma- oder Serum-Fraktion des Bluts eines Menschen, wobei die Säugetier-RNA eine RNA-Spezies eines translozierten Gens ist, wobei das Verfahren durch die Stufen charakterisiert ist:

a) Extrahieren Gesamt-Säugetier-RNA aus dem Plasma oder dem Serum eines Menschen, wobei ein Teil der extrahierten RNA eine extrazelluläre Säugetier-RNA-Spezies eines translozierten Gens umfasst;

b) Amplifizieren der extrahierten extrazellulären Säugetier-RNA, die eine RNA-Spezies eines translozierten Gens oder die davon abgeleitete cDNA umfasst, und

c) Bestimmen der amplifizierten RNA oder der entsprechenden cDNA.


 
25. Verfahren nach Anspruch 24, wobei ein Teil der extrahierten Gesamt-Säugetier-RNA eine RNA-Spezies ist, die ausgewählt ist aus:

a) BCR/abl mRNA;

b) PML/RAR-α mRNA;

c) EWS/FLI-1 MRNA;

d) EWS/EKG mRNA; und

e) AML 1/ETO mRNA.


 


Revendications

1. Procédé de détection d'ARN de mammifère extracellulaire dérivé d'une tumeur ou associé à une tumeur dans une fraction de plasma ou de sérum dans le sang provenant d'un être humain ou d'un animal en tant qu'aide à la détection, au diagnostic, à la surveillance, au traitement ou à l'évaluation de maladies néoplasiques, comprenant un cancer à un stade précoce, des cancers non invasifs, des états précancéreux, un cancer invasif un cancer avancé, et des néoplasmes bénins, le procédé étant caractérisé par les étapes consistant à :

a) extraire un ARN total de mammifère d'un plasma ou d'un sérum provenant d'un être humain ou d'un animal, dont une partie comprend un ARN de mammifère extracellulaire dérivé d'une tumeur ou associé à une tumeur,

b) amplifier l'ARN de mammifère extracellulaire extrait, dérivé d'une tumeur ou associé à une tumeur ou son ADNc correspondant, de manière soit qualitative, soit quantitative, et

c) détecter l'ARN amplifié ou son ADNc correspondant amplifie, de manière soit qualitative, soit quantitative.


 
2. Procédé selon la revendication 1, caractérisé en ce que l'ARN de mammifère est issu d'un plasma ou d'un sérum provenant d'un être humain ayant un adénome ou une dysplasie.
 
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'ARN de mammifère extracellulaire dérivé d'une tumeur ou associé à une tumeur est extrait d'un plasma ou d'un sérum à l'aide d'un procédé d'extraction d'ARN sélectionné parmi :

a) un procédé d'extraction par gélatine,

b) un procédé d'extraction par silice, par billes de verre ou diatomée,

c) un procédé d'extraction par réactif TRI ou similaire tel que TRIsolv, TRIsol ou ISOGENE,

d) des procédés d'extraction à base d'acide de thiocyanate de guanidinium,

e) une centrifugation par l'intermédiaire d'un chlorure de césium ou d'un gradient similaire, et

f) des procédés d'extraction à base de phénol-chloroforme.


 
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une partie de l'ARN total extrait est de l'ARN de mammifère sélectionné parmi de :

a) l'ARNm de tyrosinase,

b) l'ARNm de kératine 19,

c) l'ARNm de P97,

d) l'ARNm de MUC 18,

e) l'ARNm de CD 44,

f) l'ARNm de MAGE-1,

g) l'ARNm de MAGE-2,

h) l'ARNm de MAGE-3,

i) l'ARNm de MAGE-4,

j) l'ARNm de gonadotrophine chorionique bêta-humaine (ßHCG),

k) l'ARN associé à de la télomérase, et

l) des mélanges de ceux-ci.


 
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'amplification est réalisée par un procédé d'amplification d'ARN, y compris ceux dans lesquels l'ARN subit une première transcription inverse en ADNc et où l'ADNc est amplifié, sélectionné parmi :

a) une amplification en chaîne par polymérase de transcriptase inverse,

b) une réaction en chaîne de ligase,

c) une amplification de signal ADN ramifié,

d) des rapporteurs d'ARN amplifiables,

e) une réplication Q-bêta,

f) une amplification à base de transcription,

g) une amplification basée sur des séquences d'acides nucléiques isothermes (NASBA),

h) tout autre dosage de réplication de séquences auto-entretenues,

i) une amplification d'ADN boomerang,

j) une activation de déplacement de brin,

k) une technologie de sonde cyclique, et

l) toute combinaison ou variation de ces éléments.


 
6. Procédé selon la revendication 5, caractérisé en ce que les amorces employées dans le dosage d'amplification sont sélectionnées pour un ARN spécifique dérivé d'une tumeur ou associé à une tumeur ou un ADNc dérivé de celui-ci, qui caractérise une tumeur, et dans lequel ledit ARN est sélectionné parmi :

a) l'ARNm de tyrosinase,

b) l'ARNm de kératine 19,

c) l'ARNm de P97,

d) l'ARNm de MUC 18,

e) l'ARNm de CD 44,

f) l'ARNm de MAGE-1,

g) l'ARNm de MAGE-2,

h) l'ARNm de MAGE-3,

i) l'ARNm de MAGE-4,

j) l'ARNm de gonadotrophine chorionique bêta-humaine (β HCG),

k) l'ARNm associé à de la télomérase, et

l) des mélanges de ceux-ci.


 
7. Procédé selon la revendication 6, caractérisé en ce que les amorces employées dans le dosage d'amplification peuvent optionnellement être des amorces nichées ou à moitié nichées.
 
8. Procédé selon la revendication 5, caractérisé en ce que les sondes employées dans un dosage d'amplification sont sélectionnées pour un ARN spécifique de mammifère dérivé d'une tumeur ou associé à une tumeur ou un ADNc dérivé de celui-ci, qui caractérise une tumeur, et dans lequel lesdits ARN sont sélectionnés parmi :

a) l'ARNm de tyrosinase,

b) l'ARNm de kératine 19,

c) l'ARNm de P97,

d) l'ARNm de MUC 18,

e) l'ARNm de CD 44,

f) l'ARNm de MAGE-1,

g) l'ARNm de MAGE-2,

h) l'ARNm de MAGE-3,

i) l'ARNm de MAGE-4,

j) l'ARNm de gonadotrophine chorionique bêta-humaine (β HCG),

k) l'ARNm associé à de la télomérase, et

l) des mélanges de ceux-ci.


 
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la détection de l'ARN amplifié ou de l'ADNc amplifié est réalisée par au moins un procédé de détection sélectionné parmi le groupe constitué :

a) d'une électrophorèse en gel,

b) d'une détection ELISA, comprenant des modifications, y compris des amorces biotinylatées ou autrement modifiées, et des procédés de détection immunologiques à l'aide d'anticorps monoclonaux,

c) d'une sonde fluorescente ou chromogénique à marqueur,

d) d'un buvardage de Southern ou analyse dite "Southern blot",

e) d'une électro-chimioluminescence,

f) d'une détection de transfert en point inverse, et

g) d'une chromatographie liquide haute performance.


 
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un être humain subit un dépistage en ce qui concerne une malignité ou une prémalignité et dans lequel la présence d'un ARN de mammifère extracellulaire associé à une tumeur dans le plasma ou le sérum dudit être humain implique la présence de cellules malignes ou prémalignes dans le corps dudit être humain.
 
11. Procédé selon la revendication 10, caractérisé en ce que l'être humain dépisté présente un risque de malignité qui n'est pas connu ou n'est pas suspecté.
 
12. Procédé selon la revendication 10 ou 11, où le procédé est utilisé pour évaluer la progression des cellules prémalignes par rapport aux phénotypes ou aux génotypes qui sont caractérisés par un potentiel malin plus important où

a) le procédé est employé en série,

b) le plasma ou le sérum est évalué pour la présence d'un ARN de mammifère extracellulaire associé à une tumeur dont l'ARN intracellulaire correspondant dudit ARN est connu comme étant associé à un potentiel malin accru d'une cellule lorsqu'il est découvert dans cette cellule, et

c) des cellules d'un potentiel malin accru sont supposées présentes lorsque ledit ARN de mammifère associé à une tumeur est détecté dans le plasma ou le sérum.


 
13. Produit d'amplification d'un ARN de mammifère extracellulaire associé à une tumeur ou d'un ARN dérivé d'une tumeur extrait d'un plasma ou d'un sérum, ou d'un ADNc dérivé de celui-ci, à titre de composition objet ou de substance, qui comprend des séquences d'acides nucléiques identiques ou sensiblement identiques audit ARN ou à son fragment, ou à un ADNc correspondant, qui est produit par le procédé selon l'une quelconque de revendications 1 à 12.
 
14. Procédé de surveillance ou d'évaluation d'un être humain ou d'un animal concernant une maladie maligne ou prémaligne, le procédé étant caractérisé par les étapes consistant à :

a) tester un ARN de mammifère extracellulaire dérivé d'une tumeur ou associé à une tumeur dans le plasma ou le sérum provenant d'un être humain ou d'un animal par :

1) l'extraction d'un ARN total du plasma ou du sérum provenant d'un être humain ou d'un animal, dont une partie comprend un ARN de mammifère extracellulaire dérivé d'une tumeur ou associé à une tumeur,

2) l'amplification de l'ARN de mammifère extrait dérivé d'une tumeur ou associé à une tumeur ou de son ADNc correspondant d'une manière soit qualitative, soit quantitative,

3) la détection de la présence ou de l'absence de l'ARN amplifié ou de l'ADNc correspondant amplifié de manière soit qualitative, soit quantitative, et

b) répéter optionnellement l'essai de l'étape a) en série.


 
15. Procédé selon la revendication 14, caractérisé en ce qu'un procédé est prévu pour :

a) l'évaluation d'une réponse à une thérapie, telle qu'une thérapie chirurgicale, une chimiothérapie, une thérapie par rayons, une thérapie hormonale, une immunothérapie ou une biothérapie,

b) l'indication et la mesure d'une progression de la maladie,

c) l'indication et la mesure d'une rechute de la maladie,

d) l'indication et la prédiction d'un pronostic,

e) l'indication et la mesure d'une maladie résiduelle, et

f) la détermination du besoin d'une thérapie supplémentaire, ou l'évaluation du bénéfice de la thérapie, ou l'évaluation de la nécessité de modifier la thérapie.


 
16. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce qu'un ARN de mammifère amplifié ou un ADNc amplifié, issu d'une sous-partie b) peut en outre être caractérisé par un ou plusieurs des éléments suivants :

a) un séquençage d'acides nucléiques,

b) une spectroscopie,

c) une analyse immunologique,

d) une analyse biochimique,

e) une production de l'ARN correspondant, ou

f) une production de la protéine correspondante.


 
17. Procédé selon l'une quelconque des revendications 1 à 12 sous forme d'une aide dans la conception d'un programme de traitement d'un patient, y compris l'affectation ou le développement de thérapies spécifiques à des tumeurs, y compris une thérapie par vaccin, une thérapie par anticorps monoclonaux et une thérapie par l'antisens.
 
18. Procédé de transcription inverse d'un ARN de mammifère extracellulaire extrait d'un plasma ou d'un sérum provenant d'un être humain non atteint par un cancer, dans lequel l'ADNc correspondant à l'ARN de mammifère extracellulaire est produit, il est caractérisé en ce que ledit ADNc peut en outre être :

a) amplifié,

b) séquencé,

c) cloné,

d) transcrit,

e) utilisé dans une construction génétique recombinante, ou

f) manipulé autrement.


 
19. Procédé dans lequel un ARN de mammifère extracellulaire associé à une tumeur ou un ARN de mammifère extracellulaire déviré d'une tumeur, ou un ADNc correspondant, est amplifié afin de permettre le séquençage dudit ARN ou de son ADNc correspondant de façon à obtenir la séquence d'acides nucléiques, le procédé étant caractérisé par les étapes consistant à :

a) extraire l'ARN total du plasma ou du sérum provenant d'un être humain ou d'un animal, dans lequel une partie de l'ARN extrait comprend de l'ARN de mammifère extracellulaire dérivé d'une tumeur ou associé à une tumeur,

b) l'amplification de l'ARN de mammifère extracellulaire extrait ou d'un ADNc correspondant, et

c) le séquençage de l'ARN amplifié ou de l'ADNc amplifié.


 
20. Procédé selon la revendication 19, caractérisé en ce que :

a) la séquence d'acides nucléiques de l'ARN de mammifère extracellulaire associé à une tumeur ou de son ADNc correspondant est déterminée,

b) des composants antisens, comprenant des oligodésoxynucléotides synthétiques, sont fabriqués sur la base de ladite séquence d'acides nucléiques, et

c) optionnellement, lesdits composés antisens sont utilisés de façon thérapeutique.


 
21. Procédé selon la revendication 19, caractérisé en ce que la séquence d'acides nucléiques identique ou sensiblement identique à un ARN de mammifère extracellulaire ou à ses fragments, ou à un ADNc correspondant, identifie un traitement pour un être humain ou un animal.
 
22. Procédé selon la revendication 1, appliqué à la détection de multiples espèces d'ARN de mammifère extracellulaire associé à une tumeur dans un plasma ou un sérum, le procédé étant caractérisé par les étapes consistant à :

a) extraire de multiples espèces d'ARN de mammifère extracellulaire dérivé d'une tumeur ou associé à une tumeur, d'un plasma ou d'un sérum,

b) amplifier les espèces d'ARN de mammifère extracellulaire extraites ou son ADNc de manière soit qualitative, soit quantitative, et

c) détecter l'ARN amplifié ou son ADNc amplifié de manière soit qualitative, soit quantitative.


 
23. Procédé de détection d'une espèce d'ARN de mammifère extracellulaire dans le plasma ou le sérum provenant d'un être humain non atteint par un cancer, le procédé étant caractérisé par les étapes consistant à :

a) extraire un ARN total de mammifère extracellulaire d'un plasma ou d'un sérum provenant d'un être humain non atteint par un cancer, dans lequel une partie dudit ARN total de mammifère extrait contient une espèce d'ARN de mammifère,

b) amplifier une partie de l'ARN de mammifère extracellulaire extrait pour l'espèce d'ARN de mammifère, ou l'ADNc dérivé de celui-ci, et

c) détecter l'ARN amplifié ou l'ADNc correspondant amplifié,


 
24. Procédé de détection d'un ARN de mammifère extracellulaire dans la fraction de plasma ou de sérum du sang provenant d'un être humain, dans lequel l'ARN de mammifère est une espèce d'ARN d'un gène transloqué, le procédé étant caractérisé par les étapes consistant à :

a) extraire l'ARN total de mammifère d'un plasma ou d'un sérum provenant d'un être humain, où une partie de l'ARN extrait comprend l'espèce d'ARN de mammifère extracellulaire d'un gène transloqué,

b) amplifier l'ARN de mammifère extracellulaire extrait comprenant une espèce d'ARN d'un gêne transloqué, ou un ADNc dérivé de celui-ci, et

c) détecter l'ARN amplifié ou l'ADNc correspondant amplifié.


 
25. Procédé selon la revendication 24, dans lequel une partie de l'ARN total de mammifère extrait est une espèce d'ARN sélectionnée parmi :

a) l'ARNm de BCR/abl,

b) l'ARNm de PML/RAR-α,

c) l'ARNm de EWS/FLI-1,

d) l'ARNm de EWS/EKG, et

e) l'ARNm de AML1/ETO.


 






Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description