[0001] The present invention relates to a molding roll for molding a metal thin plate as
a catalyst carrier employed in a metallic catalyst converter.
[0002] As the metallic catalyst converter in the prior art, for example, there have been
known the converter in which honeycomb carriers are constructed by laminating corrugated
metal thin plates formed of a stainless steel, etc. and flat metal thin plates alternately
to create cells between laminated portions, as disclosed in Patent Application Publication
(KOKAI) Hei 5-138040, Patent Application Publication (KOKAI) Hei 6-393, etc., A converter
in which honeycomb carriers are constructed by rising up a plurality of holding plate
portions which have their upper flat surfaces from corrugated concave portions of
the corrugated metal thin plate in the opposite direction and then laminating the
metal thin plates, as disclosed in Utility Model Application (KOKOKU) Sho 57-8915,
and other converters.
[0003] The former metallic catalyst converter in which the corrugated metal thin plates
and the flat metal thin plates are laminated alternately is disadvantageous in cost
since two types of metal thin plates are needed. This increases the forming step of
the honeycomb carrier as well as the forming step and the managing step of the metal
thin plates.
[0004] In the latter metallic catalyst converter, even in the case that adjacent laminated
metal thin plates are held by holding plates whose upper surfaces being provided at
corrugated concave portions are formed flat, there is a possibility that the metal
thin plates are fitted mutually and thus cells are not properly formed at the laminated
portions when such adjacent laminated metal thin plates are displaced or shifted in
the corrugation direction or the corrugation folded direction.
[0005] US-A-4 297 866 discloses a molding roll for molding metal strip to produce slit segments
of meshes. The molded metal strip comprises a series of first elongate regions that
comprise first convex portions separated by first planar portions and second elongate
regions that comprise second concave portions separated by second planar portions.
The convex portions and concave portions being side-by-side such that the planar portions
define planar strips extending perpendicular to the lengthways direction of the first
and second elongate regions.
[0006] The molding roll of US-A-4 297 866 comprises a series of axially aligned plate-like
blades having a circumferentially extending forming surface comprising alternating
relatively flat equi-spaced portions for producing the first and second planar portions
and convex portions for producing the first convex portions and second concave portions.
The first convex portions and second concave portions have the same length and the
series of blades are set at the same angle with respect to one another.
[0007] The invention provides a molding roll for molding a thin metal plate employed as
a catalyst carrier, the thin metal plate including first elongate regions having first
convex portions and first concave portions and second elongate regions having second
concave portions and second convex portions, the first elongate regions and the second
elongate regions being disposed alternately in a direction perpendicular to the length
thereof, the first convex portions and first concave portions being arranged alternately
along the length of the first elongate regions with cuts being provided between adjacent
first convex portions and first concave portions and the second concave portions and
the second convex portions being arranged alternately along the length of the second
elongate regions with cuts being provided between adjacent second concave portions
and second convex portions,
the molding roll comprising:
a plurality of plate-like blades having the same shape disposed in side-by-side relation
with the center axes of the plates in line,
the blades having forming regions which repeat at a constant first pitch angle to
form a circumferentially extending forming surface, said first pitch angle being an
integral multiple of a second pitch angle,
each forming region comprising roll ridge portions for forming the first and second
convex portions and roll root portions for forming the first and second concave portions,
the number of successive roll ridge portions in the circumferential direction of the
blades being no greater than two,
the number of successive roll root portions in the circumferential direction of the
blades being no greater than two,
the forming regions further comprising substantially flat rack portions disposed between
adjacent roll ridge and roll root portions such that each roll ridge and roll root
portion has respective substantially flat rack portions on either side thereof, the
formation distance between adjacent roll ridge and roll root portions in the circumferential
direction of the blades defining said second pitch angle, and
the blades being arranged in adjacent blade sets that each comprises one or more blades
with each blade set being phase-shifted by an integral multiple of said second pitch
angle relative to the or each adjacent blade set to define alternate first and second
rows of aligned roll ridge portions and roll root portions extending parallel to the
center axis of the molding roll, the first rows comprising alternating roll ridge
portions and roll root portions for respectively forming the first convex portions
and first concave portions, the second rows comprising alternating roll root portions
and roll ridge portions for respectively forming the second concave portions and second
convex portions and the blade sets being arranged such that the first rows of aligned
roll ridge portions and roll root portions produce first elongate regions having first
convex portions and first concave portions of different lengths and the second rows
of aligned roll root portions and roll ridge portions produce second elongate regions,
each having second concave portions and second convex portions of different lengths;
and
a respective spacer provided between adjacent blade sets, the spacers creating a clearance
to permit the opposite projection of adjacent first convex portions and first concave
portions and the opposite projection of adjacent second concave portions and second
convex portions.
[0008] Preferably, the forming regions of each blade comprise the same pattern which is
defined by the roll ridge portions and the roll root portions.
[0009] Preferably, the roll ridge portions and the roll root portions of each first row
are positioned irregularly with respect to the roll ridge portions and roll root portions
of other first rows and the roll ridge portions and roll root portions of each second
row are positioned irregularly with respect to the roll ridge portions and roll root
portions of the other second rows.
[0010] Preferably, the molding roll further comprises:
a holder having an axis portion which has a first flange at one end, the blades and
spacers being mounted on the axis portion;
a second flange which is mounted at the other end of the axis portion, such that the
blades and the spacers are disposed between the first flange and the second flange;
at least one locating pin passing through apertures therefor defined by the first
flange, the second flange, the blades and the spacers; and
fastening members for fastening the blades and the spacer between the first flange
and the second flange.
[0011] Preferably, the molding roll further comprises a stopper plate placed between one
of the first flange and the second flange and the blade that is positioned adjacent
the one of the first flange and the second flange, the stopper plate being arranged
to engage with a partner roll of the molding roll to suppress axial displacement of
the molding roll with respect to the partner roll.
[0012] In order that the present invention may be well understood, an embodiment thereof,
which is given by way of example only, will now be described, with reference to the
accompanying drawings, in which:
FIG.1 is a perspective view showing a molding roll according to an embodiment of the
present invention;
FIG.2 is a front exploded view showing the molding roll in FIG.1;
FIG.3 is a side view showing a blade employed in the molding roll in FIG.1;
FIG.4 is a fragmentary enlarged view showing the blade in FIG.3;
FIG.5 is a plan view showing a metal thin plate molded by the molding roll in FIG.1
;
FIG.6 is a sectional view showing sectional shapes of the metal thin plate at respective
positions VIa, VIb, VIc, VId, VIe in FIG.5;
FIG.7 is a perspective view showing a basic pattern profile of the metal thin plate
in FIG.5;
FIG.8 is a sectional view showing laminated portions of the metal thin plates if a
honeycomb carrier is formed by using the metal thin plates shown in FIG.5;
FIG.9 is a sectional view showing a metallic catalyst carrier;
FIG.10 is a sectional view, taken along a line X-X in FIG.9, showing the metallic
catalyst carrier.
[0013] FIGS. 9, 10 show a metallic catalyst carrier 1 including a metallic catalyst carrier
3 which employs metal thin plate 5 molded by a molding roll. The metallic catalyst
carrier 3 is arranged in a metal outer cylinder 2 which is formed to have an elliptic
sectional shape (including an ellipse).
[0014] Diffusers 4 provided at each end of the outer cylinder 2 are separately formed. The
diffusers 4 are fitted into both ends of the outer cylinder 2 and then fixed thereto.
[0015] The metallic catalyst carrier 3 is formed by coating a binder, which is formed of
alumina called a "wash coat", on a honeycomb carrier 3a as a base body, and then applying
catalysts such as Pt, etc. on a surface of the binder.
[0016] The honeycomb carrier 3a is constructed by folding the metal thin plate 5, which
is formed of stainless steel, etc. and is corrugated, successively like the S-shape
along the corrugation direction and then laminating them like a honeycomb to thus
form cells at respective laminated portions.
[0017] In this case, in addition to the above, the honeycomb carrier 3a may be constructed
by laminating plural sheets of the metal thin plates 5 being cut up into desired lengths,
otherwise the honeycomb carrier 3a may be constructed by winding the metal thin plate
5 to be laminated.
[0018] A standard corrugation pattern of the metal thin plate 5 which is corrugated is shown
in FIGS.5, 6.
[0019] The metal thin plate 5 will be explained with reference to a basic profile of a corrugated
metal thin plate 5' of this type shown in FIG.7.
[0020] The corrugated metal thin plate 5' of this type shown in FIG.7 has ridge portions
5'a and root portions 5'b acting as standard corrugations.
[0021] If the root portion on the left end in FIG.7 is assumed as the root portion 5'b,
the ridge portions 5'a and the root portions 5'b of this corrugated metal thin plate
5' are aligned alternately in sequence in the corrugation direction x (referred to
as an "x direction" hereinafter). Flat rack portions 5'f are then provided successively
at respective center positions of slant walls 5'c, which define the ridge portions
5'a and the root portions 5'b. The flat rack portions 5'f extend in the corrugation
folded direction y (referred to as a "y direction" hereinafter). Using the ridge portions
5'a as their stop ends, a plurality of ridge portion depressions 5'd which project
in the opposite direction are provided along the ridge portions 5a' of the corrugation
at a constant distance along the y direction. Similarly, a plurality of root portion
ridges 5'e which project in the opposite direction are provided along the root portions
5'b of the corrugation at a constant distance along the y direction. In this manner,
in the corrugated metal thin plate 5' in FIG.7, the ridge portions 5'a and the root
portions 5'b are aligned via the rack portions 5'f alternately in sequence along the
x direction, and a plurality of the ridge portion depression 5'd are provided to the
ridge portions 5'a at a constant distance regularly along the y direction and also
a plurality of root portion ridges 5'e are provided to the root portions 5'b at a
constant distance regularly along the y direction.
[0022] The corrugated metal thin plate 5' shown in FIG.7 constitutes a uniform corrugation
pattern in total as described above, whereas the metal thin plate 5 has a certain
regularity but constitutes a nonuniform corrugation pattern in total.
[0023] More particularly, the metal thin plate 5 shown in FIGS.5, 6 has the ridge portions
5a and the root portions 5b of the corrugation as basic profiles, like the metal thin
plate 5' shown in FIG.7. A plurality of ridge portion depressions 5d, which project
from the center position of the slant walls 5c constituting the ridge portions 5a
and the root portions 5b in the opposite direction to the ridge portions 5a, are provided
to the corrugated ridge portions 5a at a constant distance along the y direction,
using the rack portions 5f being provided at the above center positions as the side
ends. A plurality of root portion ridges 5e, which project in the opposite direction
to the root portions 5b, are provided to the corrugated root portions 5b at a constant
distance along the y direction.
[0024] Starting from the left end in FIG.5, there is a half portion of a ridge portion 5a,
a root portion 5b, a ridge portion 5a, a root portion 5b, aligned alternately to form
a corrugation pattern ending with a half portion of a ridge portion 5a at the right
end in FIG.5. As shown in FIG.6, in the VIa column of the metal thin plate 5 located
at the bottom end in FIG.5, starting from the left, there is a ridge portion depression
5d of half ridge portion 5a, a root portion 5b, ridge portion 5a, root portion ridge
5e, ridge portion depression 5d, root portion ridge 5e, ridge portion 5a, root portion
5b, ridge portion depression 5d, root portion ridge 5e and ridge portion depression
5d of the half ridge portion 5a". Similarly, sectional shapes of this metal thin plate
5 in VIb to VIe columns shown at the left end in FIG.5 are given a "ridge- root" arrangement.
In this way, as shown in FIG.5, this metal thin plate 5 constitutes corrugation patterns
such that this "ridge-root" arrangement is arranged with a certain regularity on an
entire surface but arranged nonuniformly in total.
[0025] The metal thin plate 5 is formed by using a molding roll 10 shown in FIGS. 1 to 4.
[0026] FIG.1 is a perspective view showing a molding roll 10 according to an embodiment
of the invention. FIG.2 is an exploded view showing the molding roll 10. FIG.3 is
a side view showing a blade 11 of a plurality of blades used to form the molding roll
10. FIG.4 is a fragmentary enlarged view showing the blade 11 in FIG.3.
[0027] As shown in FIG.1, the molding roll 10 is constructed by laminating a plurality of
sheets of blades 11 which are formed under the same standard and have roll ridge portions
10a, 10e (see FIG.4) and roll root portions 10b, 10d (see FIG.4) formed on their peripheral
surfaces. These roll ridge portions 10a, 10e correspond to the ridge portions 5a and
the root portion ridges 5e of the corrugation of the metal thin plate 5. The roll
root portions 10b, 10d correspond to the root portions 5b and the ridge portion depressions
5d of the metal thin plate 5.
[0028] As shown in FIGS.3, 4, the roll ridge portions 10a, 10e and the roll root portions
10b, 10d of the blade 11 are formed to have a predetermined assignment angles θ with
respect to a blade center point O in this embodiment, respective contiguous numbers
of the roll ridge portions 10a, 10e and the roll root portions 10b, 10d, which are
adjacent along the peripheral direction of the blade 11, are set to not more than
two.
[0029] Almost flat rack portions 1 0f which partition the roll ridge portion 10a and the
roll root portion 10b, or the roll ridge portion 10a and the roll ridge portion 10e,
or the roll root portion 10b and the roll root portion 10d, both being adjacent along
the peripheral direction, are formed on a pitch circle PC which partitions the roll
ridge portions 10a and the roll root portions 10b of the blade 11.
[0030] More specifically, on this blade 11, the roll ridge portion 10a and the roll ridge
portion 10e which respectively correspond to a convex portion being assumed as the
ridge portion 5a of the metal thin plate 5 and a convex portion being assumed as the
root portion ridge 5e respectively are formed as convex portions on the pitch circle
PC, while the roll root portion 10b and the roll root portion 10d respectively correspond
to a concave portion being assumed as the root portion 5b of the metal thin plate
5 and a concave portion being assumed as the ridge portion 5d are formed as concave
portions on the pitch circle PC.
[0031] As shown in FIG.3 and FIG.4 as an enlarged view, for example, a continuous pattern
of the roll ridge portions 10a, 10e and the roll root portions 10b, 10d on the peripheral
surface of the blade 11 is formed successively every 45° as one period around the
blade center point O. That is, in the case of the present embodiment, a pitch angle
θ = 4.5°, and eight 45° period patterns are formed successively to constitute an outer
periphery of the blade 11.
[0032] Plural sheets of blades 11 are inserted onto a cylindrical axis portion 13 of a holder
12, on one end of which a flange 14 is formed as shown in FIG.2, and laminated, as
will be described later. A flange 15 is then inserted onto the other end of the cylindrical
axis portion 13 to put the blades 11 between the flanges 14, 15. The blades 11 are
then positioned by press-fitting a plurality of locating pins 16 through the flanges
14, 15 and the plural sheets of blades 11. The blades 11 are then compressed and fixed
by fastening members which consist of bolts 17 that pass through the flanges 14, 15
and the blades 11 and engage internal threads 18 being provided in the flange 14.
[0033] Therefore, as shown in FIG.3, a plurality of pin insertion holes 20 and a plurality
of bolt insertion holes 21 as well as a center hole 19 into which the axis portion
13 of the holder 12 is inserted are formed symmetrically around the blade center point
O.
[0034] In the present embodiment, six bolts 17 are used. The insertion directions of the
bolts are positioned at symmetrical positions and the bolts are positioned at neighboring
positions are set oppositely respectively. As a result, plural sheets of blades 11
can be fastened uniformly.
[0035] Some of the blades 11 are shifted by an integral multiple of a formation distance
(pitch angle) θ between the roll ridge portions 10a, 10e and the roll root portions
10b, 10d on the peripheral surface, and then laminated.
[0036] For example, if E-type blades 11 constituting the VIa column and D-type blades 11
constituting the VIb column are compared in FIG.5, the "ridge-root" arrangement on
the VIb column is formed to be shifted clockwise relative to the "ridge-root" arrangement
on the VIa column by one pitch, as shown in FIG.6, since the D-type blades 11 are
shifted clockwise relative to the E-type blades 11 by one pitch from the reference
line L.
[0037] In other words, as described above, the blades 11 have the pin insertion holes 20
and the bolt insertion holes 21 respectively and are positioned and fixed by fitting
the locate pins 16 and the bolts 17 into the pin insertion holes 20 and the bolt insertion
holes 21 respectively. Therefore, if a reference position is set on a reference line
L connecting the pin insertion holes 20, 20, for example, the molding roll 10 according
to the present embodiment can be formed by laminating plural types, e.g., ten types
corresponding to A to J (see FIG.5), of blades 11 in combination. Such plural types
of blades 11 are prepared by shifting the period (45° assignment) of the continuously
formed patterns of the roll ridge portions 10a, 10e and the roll root portions 10b,
10d on the peripheral surface from the reference line L by θ degree in phase angle.
[0038] In the present embodiment, if these plural types of A to J blades 11 are laminated,
the roll ridge portions 10e constituting the root portion ridges 5e and the roll root
portions 10d constituting the ridge portion depressions 5d are formed respectively
to have different forming distances and forming lengths in the axis direction of the
molding roll 10 under the condition that respective blades 11 are laminated.
[0039] The laminated states A to J of the blades 11 are shown together with the corrugation
pattern of the metal thin plate 5 in FIG.5.
[0040] Here, character numbers A to J represent the number of laminated sheets of a group
of blades which are formed by laminating plural sheets of blades 11 having the same
profile. For instance, a blade group B is formed by laminating five sheets of blades
having the same profile.
[0041] In addition, spacers 22 (as shown in Fig.2) which can set a clearance S (as shown
in Fig.1) being needed to form the ridge portion depressions 5d and the root portion
ridges 5e of the metal thin plate 5 are interposed between the blade groups A to J
which have different phase angles respectively.
[0042] A distance of this clearance S is decided such that an optimal shearing force is
applied between the blades 11. In the present embodiment, such distance is set below
the plate thickness of the metal thin plate that is to be molded.
[0043] Further, in the present embodiment, for example, spacers 23 (as shown in Fig.2) for
setting a clearance Sa (as shown in Fig.1) to insert guide pieces (not shown) are
interposed between respective laminated blades 11, 11 in blade groups B, H at plural
locations of the blade groups. Such guide pieces can separate the formed metal thin
plate 5 from surfaces of the molding roll 10.
[0044] In other words, spacers 22 for setting a clearance S necessary for forming the portions
5d, 5e are interposed between the blade groups, e.g., between the blade group B and
the blade group A, whereas spacers 23 for setting the clearance Sa to separate the
formed metal thin plate 5 are interposed at desired locations between the blade groups,
e.g., between the blades 11,11 of the blade group B.
[0045] The metal thin plate 5 can be formed by enraging a pair of molding rolls 10, 10,
in which positions of the roll ridge portions 10a, 10e and the roll root portions
10b, 10d are set oppositely, with each other. In this case, mutual slight displacement
of these molding rolls 10, 10 in the axis direction has a great influence on the formation
of the ridge portion depressions 5d and the root portion ridges 5e of the metal thin
plate 5.
[0046] Therefore, in this embodiment, as shown in Fig.2, a stopper plate 24 which can engage
with the pair of molding rolls 10, 10 mutually to prevent axial displacement of the
molding rolls 10, 10 is interposed between any one of the flanges 14, 15 of the molding
roll 10, e.g., the flange 14 and the blade 11 being positioned adjacent to the flange
14.
[0047] When the corrugated metal thin plate 5 is formed by using the molding roll 10 which
has the structure in the above embodiment, the molding roll 10 can be constructed
by laminating plural sheets of same blades 11, in which the roll ridge portions 10a,
10e and the roll root portions 10b, 10d are formed by the predetermined assignment
angle θ to mate with the corrugation pattern of the corrugated metal thin plate 5
to be formed as shown in Fig.4, into the A to J blade groups while shifting the assignment
angle θ as the pitch. Therefore, the desired corrugated metal thin plate 5, which
has a plurality of depressions 5d formed along the corrugated ridge portions 5a and
ridges 5e formed along the corrugated root portions 5b, can be formed easily.
[0048] In addition, the predetermined clearance S is set by interposing the spacers 22 between
the A to J blades groups having different phase angles, and also a pair of molding
rolls 10, 10 have respective stopper plates 24 which engage with each other to prevent
mutual axial displacement of the molding rolls 10,10. Therefore, mutual slight displacement
of the molding rolls 10,10 along the axial direction can be eliminated completely,
and thus the root portion ridges 5e and the ridge portion depression 5d can be formed
properly with good precision.
[0049] In respective blades 11, the rack portions 10f which partition the roll ridge portions
10a, 10e and the roll root portions 10b, 10d being adjacent in the peripheral direction
respectively are formed on the pitch circle PC on the peripheral surface, and also
respective contiguous numbers of the roll ridge portions 10a, 10e and the roll root
portions 10b, 10d are set to not more than two, and in addition combination of the
A to J blade groups are arranged in lamination such that the roll ridge portions 10a,
10e and the roll root portions 10b, 10d have different forming distances and different
forming lengths along the axial direction of the molding roll 10 respectively. Therefore,
as shown in FIGS.5, 6, the ideal corrugated metal thin plate 5 can be achieved wherein
the flat rack portions 5f can be formed at the center positions of the slant walls
5c, which constitute the ridge portions 5a and the root portions 5b of the corrugation,
along the y direction in the corrugated metal thin plate 5 formed by the molding roll
10, and also the ridge portion depressions 5d and the root portion ridges 5e can be
formed on both sides of these rack portions 5f in the y direction to have different
forming distances and different forming lengths respectively, and also the contiguous
number of the ridge portions 5a and root portion ridges 5e of the corrugation and
the contiguous number of the root portions 5b and the ridge portion depressions 5d
of the corrugation, both being continuously adjacent in the x direction, can be set
to not more than two respectively.
[0050] In the event that the honeycomb carrier 3a is constructed by using the metal thin
plate 5 in which the contiguous numbers of all the ridge portions and the root portions
are not more than two in this manner, it is of course that mutual fitting/sticking
of the metal thin plates 5, 5 can be avoided because of the presence of a plurality
of ridge portion depressions 5d and root portion ridges 5e both having different forming
distances and different forming lengths even when the metal thin plates 5, 5 are displaced
mutually along the y direction when superposed, and that mutual fitting/sticking of
the metal thin plates 5, 5 can be avoided to thus keep the cells therebetween because
the ridge portions 5a or the root portion ridges 5e of the corrugation, or the root
portions 5b or the ridge portion depressions 5d of the corrugation come into collision
with the rack portions 5f even when the metal thin plates 5, 5 are displaced mutually
along the x direction. In addition, since the contiguous number of the ridge portions
5a and the root portion ridges 5e of the corrugation and the contiguous number of
the root portions 5b and the ridge portion depressions 5d of the corrugation are not
more than two respectively, it can be prevented that opening areas of the cells which
are formed between the ridge portions 5a and the root portion ridges 5e of the corrugation
of one metal thin plate 5 and the root portions 5b and the ridge portion depressions
5d of the corrugation of the other metal thin plate 5 are increased infinitely, as
shown by A to F of FIG.8, to thus cause extreme differences of respective cells even
though the metal thin plates 5, 5 are displaced mutually along the x direction and
thus the slant walls 5c, 5c are partially stuck. As a result, formation of the cells
can be ensured and also the purification performance for the exhaust gas can be much
more improved.
[0051] In this case, the foregoing ridge-root patterns of the metal thin plate 5 act to
distribute the exhaust gas into many flow paths as the exhaust gas flows through the
cells (see an arrow R labeled to the metal thin plate 5' in FIG.7), whereby the purification
performance for the exhaust gas can be still much more improved.
[0052] Furthermore, since the ridge portion depressions 5d and the root portion ridges 5e,
which are formed adjacent in the corrugation direction of the metal thin plate 5,
are risen up on both sides of the rack portions 5f which are formed at the center
positions of the slant walls 5c constituting the ridge portions 5a and the root portions
5b of the corrugation of the metal thin plate 5, distances corresponding to the widths
of the rack portions 5f can be kept in the corrugation direction between respective
rising-up stop ends of the root portion depressions 5d and the root portion ridges
5e which are positioned in the neighborhood along the corrugation direction, and therefore
rupture of the rising-up stop ends due to difference in a coefficient of thermal expansion
can be avoided. As a result, breaking endurance rigidity of the metal thin plate 5
per se can be enhanced and in turn durability of the honeycomb carrier 3a, i.e., durability
of the metallic catalyst carrier 3 can be improved.
[0053] Meanwhile, plural sheets of blades 11 and the spacers 22, 23 interposed between these
blades 11, which constitute the molding roll 10, are positioned in good order by the
press-fitting positions of the locate pins 16 between the flange 14 provided to one
end of the holder 12 and the flange 15 provided to the other end of the holder 12,
then laminated, and then fastened/fixed tightly by the fastening members which consist
of a plurality of bolts 17, 17 and internal threads 18, 18 being cut in the flanges
14, 15. For this reason, no mutual displacement of the blades 11, 11 is caused along
the peripheral direction, and axial displacement of a pair of molding rolls 10, 10
can be suppressed by the stopper plates 24, and also forming precision of the corrugated
metal thin plate 5 can be improved further more.
[0054] In addition, various corrugation patterns of the metal thin plate 5 can be easily
created by changing phase angles of plural sheets of blades 11 to be laminated, i.e.,
shifting modes of the pitch θ appropriately.
[0055] The above fastening members may be composed of the bolts and nuts. However, it is
preferable that the embedded nut in the flange should be employed as the nuts in view
of fitting to the manufacturing machine.
[0056] In summary, and as best seen with reference to Figures 5 to 7, the embodiment provides
a molding roll for molding a thin metal plate 5 to be employed as a catalyst carrier.
The thin metal plate has first elongate regions having first convex portions (ridge
portions 5a) and first concave portions (ridge portion depressions 5d) and second
elongate regions having second concave portions (root portions 5b) and second convex
portions (root portion ridges 5e). The first elongate regions 5a,5d and the second
elongate regions 5b,5e are disposed alternately in a direction perpendicular to the
length thereof. The first convex portions (ridge portions 5a) and first concave portions
(ridge portion depressions 5d) are arranged alternately along the length of the first
elongate regions with cuts being provided between adjacent first convex portions 5a
and first concave portions 5d. The second concave portions (root portions 5b) and
the second convex portions (root portion ridges 5e) are arranged alternately along
the length of the second elongate regions with cuts being provided between adjacent
second concave portions 5b and second convex portions 5e.
[0057] The molding roll comprises:
a plurality of plate-like blades 11 having the same shape disposed in side-by-side
relation with the center axes of the plates in line. The blades have forming regions
which repeat at a constant first pitch angle 10θ to form a circumferentially extending
forming surface, said first pitch angle 10θ being an integral multiple of a second
pitch angle θ. Each forming region comprises roll ridge portions 10a, 10e for forming
the first and second convex portions 5a,5e and roll root portions 10b,10d for forming
the first and second concave portions 5b,5e. The number of successive roll ridge portions
10a, 10e in the circumferential direction of the blades is no greater than two and
the number of successive roll root portions 10b, 10d in the circumferential direction
of the blades being no greater than two. The forming regions further comprise substantially
flat rack portions 10f disposed between adjacent roll ridge 10a, 0e and roll root
10b,10d portions such that each roll ridge and roll root portion has respective substantially
flat rack portions on either side thereof, the formation distance between adjacent
roll ridge 10a, 10e and roll root 10b, 10d portions in the circumferential direction
of the blades 11 defining said second pitch angle θ.
[0058] The blades 11 are arranged in adjacent blade sets A-J that each comprises one or
more blades. Each blade set A-J is phase-shifted by an integral multiple of said second
pitch angle θ relative to the or each adjacent blade set to define alternate first
and second rows of aligned roll ridge portions and roll root portions extending parallel
to the center axis of the molding roll. The first rows comprise alternating roll ridge
portions 10a and roll root portions 10d for respectively forming the first convex
portions (ridge portions 5a) and first concave portions (ridge portion depressions
5d), the second rows comprises alternating roll root portions 10b and roll ridge portions
10e for respectively forming the second concave portions (root portions 5b) and second
convex portions (root portion ridges 5e). The blade sets A-J are arranged such that
the first rows of aligned roll ridge portions 10a and roll root portions 10e produce
first elongate regions having first convex portions (ridge portions 5a) and first
concave portions (ridge portions 5d) of different lengths and the second rows of aligned
roll root portions 10b and roll ridge portions 10e produce second elongate regions,
each having second concave portions (root portions 5b) and second convex portions
(root portion ridges 5e) of different lengths. The molding roll further comprises
respective spacers 22 between adjacent blade sets A-J. The spacers create a clearance
to permit the opposite projection of adjacent first convex portions (ridge portions
5a) and first concave portions (ridge portion depressions 5d) and the opposite projection
of adjacent second concave portions (root portions 5b) and second convex portions
(root portion ridges 5e).
1. A molding roll for molding a thin metal plate (5) employed as a catalyst carrier,
the thin metal plate including first elongate regions having first convex portions
(5a) and first concave portions (5d) and second elongate regions having second concave
portions (5b) and second convex portions (5e), the first elongate regions (5a,5d)
and the second elongate regions (5b,5e) being disposed alternately in a direction
perpendicular to the length thereof, the first convex portions (5a) and first concave
portions (5d) being arranged alternately along the length of the first elongate regions
with cuts being provided between adjacent first convex portions (5a) and first concave
portions (5d) and the second concave portions (5b) and the second convex portions
(5e) being arranged alternately along the length of the second elongate regions with
cuts being provided between adjacent second concave portions (5b) and second convex
portions (5e),
the molding roll comprising:
a plurality of plate-like blades (11) having the same shape disposed in side-by-side
relation with the center axes of the plates in line,
the blades having forming regions (10a-10f) which repeat at a constant first pitch
angle (10θ) to form a circumferentially extending forming surface, said first pitch
angle (10θ) being an integral multiple of a second pitch angle (θ),
each forming region comprising roll ridge portions (10a,10e) for forming the first
and second convex portions (5a,5e) and roll root portions (10b,10d) for forming the
first and second concave portions (5b,5e),
the number of successive roll ridge portions (10a,10e) in the circumferential direction
of the blades being no greater than two,
the number of successive roll root portions (10b,10d) in the circumferential direction
of the blades being no greater than two,
the forming regions further comprising substantially flat rack portions (10f) disposed
between adjacent roll ridge and roll root portions such that each roll ridge and roll
root portion has respective substantially flat rack portions on either side thereof,
the formation distance between adjacent roll ridge (10a, 10e) and roll root (10b,
10d) portions in the circumferential direction of said blades (11) defining said second
pitch angle (θ), and
the blades (11) being arranged in adjacent blade sets (A-J) that each comprises one
or more blades with each blade set (A-J) being phase-shifted by an integral multiple
of said second pitch angle (θ) relative to the or each adjacent blade set to define
alternate first and second rows of aligned roll ridge portions and roll root portions
extending parallel to the center axis of the molding roll, the first rows comprising
alternating roll ridge portions (10a) and roll root portions (10d) for respectively
forming the first convex portions (5a) and first concave portions (5d), the second
rows comprising alternating roll root portions (10b) and roll ridge portions (10e)
for respectively forming the second concave portions (5b) and second convex portions
(5e) and the blade sets (A-J) being arranged such that the first rows of aligned roll
ridge portions (10a) and roll root portions (10e) produce first elongate regions having
first convex portions (5a) and first concave portions (5d) of different lengths and
the second rows of aligned roll root portions (10b) and roll ridge portions (10e)
produce second elongate regions, each having second concave portions (5b) and second
convex portions (5e) of different lengths; and
a respective spacer (22) provided between adjacent blade sets (A-J), the spacers creating
a clearance to permit the opposite projection of adjacent first convex portions (5a)
and first concave portions (5d) and the opposite projection of adjacent second concave
portions (5b) and second convex portions (5e).
2. A molding roll according to claim 1, wherein the forming regions of each blade (11)
comprise the same pattern which is defined by the roll ridge portions (10a,10e) and
the roll root portions (10b,10d).
3. A molding roll according to claim 1, wherein the roll ridge portions (10a) and the
roll root portions (10d) of each first row are positioned irregularly with respect
to the roll ridge portions (10a) and roll root portions (10d) of other first rows
and the roll ridge portions (10e) and roll root portions (10b) of each second row
are positioned irregularly with respect to the roll ridge portions (10e) and roll
root portions (10b) of the other second rows.
4. A molding roll according to claim 1, further comprising:
a holder having an axis portion (13) which has a first flange (14) at one end, the
blades (11) and spacers (22) being mounted on the axis portion;
a second flange (15) which is mounted at the other end of the axis portion, such that
the blades and the spacers are disposed between the first flange and the second flange;
at least one locating pin (16) passing through apertures therefor defined by the first
flange, the second flange, the blades and the spacers; and
fastening members (17) for fastening the blades and the spacer between the first flange
and the second flange.
5. A molding roll according to claim 1, further comprising:
a stopper plate (24) placed between one of the first flange (14) and the second flange
(15) and the blade (11) that is positioned adjacent the one of the first flange and
the second flange, the stopper plate being arranged to engage with a partner roll
of the molding roll to suppress axial displacement of the molding roll with respect
to the partner roll.
1. Prägewalze zum Formen einer dünnen Metallplatte (5), die als Katalysatorträger verwendet
wird, wobei die dünne Metallplatte erste längliche Zonen umfasst, die erste konvexe
Abschnitte (5a) und erste konkave Ab - schnitte (5d) haben, und z weite längliche
Zonen, die zweite konkave Abschnitte (5b) und zweite konvexe Ab - schnitte (5e) haben,
wobei die ersten länglichen Ab - schnitte (5a, 5d) und die zweiten länglichen Ab -
schnitte (5b, 5e) abwechselnd in eine Richtung senk - recht zu der Länge angeordnet
sind, wobei die ersten konvexen Abschnitte (5a) und ersten konkaven Ab - schnitte
(5d) abwechselnd entlang der ersten läng - lichen Zonen angeordnet sind, wobei Schnitte
zwischen benachbarten ersten konvexen Abschnitten (5a) und ersten konkaven Abschnitten
(5d) vorgesehen sind, und wobei zweite konkave Abschnitte (5b) und zweite kon - vexe
Abschnitte (5e) abwechselnd entlang der Länge der zweiten länglichen Zonen angeordnet
sind, wobei Schnitte zwischen benachbarten zweiten konkaven Ab - schnitten (5b) und
zweiten konvexen Abschnitten (5e) vorgesehen sind,
wobei die Prägewalze Folgendes umfasst:
- eine Vielzahl plattenähnlicher Klingen (11) mit der gleichen Form, die in einer
Beziehung Seite an Seite zu den Mittenachsen der Platten in Linie angeordnet sind,
- wobei die Klingen Formzonen (10a -10f) haben, die sich in einem konstanten ersten
Anstellwinkel (10θ) wiederholen, um eine Formfläche zu bilden, die sich umkreisförmig
erstreckt, wobei der erste Anstellwinkel (10 θ) ein integrales Vielfaches eines zweiten
Anstellwinkels (θ) ist,
- wobei jede Formzone Rollkantenabschnitte (10a, 10e) zum Bilden der ersten und zweiten
konvexen Abschnitte (5a, 5e), und Rollgrundabschnitte (10b, 10d) zum Bilden der ersten
und zweiten konkaven Abschnitte (5b, 5e) umfasst,
- wobei die Anzahl aufeinander folgender Rollkantenabschnitte (10a, 10e) in die Umkreis
- richtung der Klingen nicht größer ist als zwei,
- wobei die Anzahl aufeinander folgender Rollgrundabschnitte (10b, 10d) in die Umkreis
- richtung der Klingen nicht größer ist als zwei,
- wobei die Formzonen ferner im Wesentlichen flache Etagenabschnitte (10f) umfassen,
die zwischen benachbarten Rollkantenabschnitten und Rollgrundabschnitten angeordnet
sind, so dass jeder Roll - kantenabschnitt und jeder Rollgrundabschnitt jeweils im
Wesentlichen flache Etagenabschnitte auf jeder Seite hat und die Formentfernung zwischen
benachbarten Rollkanten (10a, 10e) und Rollgrundabschnitten (10b, 10d) in die Umkreisrichtung
der Klingen (11) den zweiten Anstellwinkel (θ) definiert, und
- die Klingen (11) in benachbarten Klingensätzen (A-J) angeordnet sind, die jeweils
eine oder mehrere Klingen umfassen, wobei jeder Klingensatz (A-J) um ein integrales
Vielfaches des zweiten Anstellwinkels (θ) relativ zu dem oder jedem be - nachbarten
Klingensatz phasenverschoben ist, um abwechselnd erste und zweite Reihen gefluchteter
Rollkantenabschnitte und Rollgrundabschnitte zu definieren, die sich parallel zu der
Mittenachse der Prägewalze erstrecken, wobei die ersten Reihen abwechselnd Rollkantenabschnitte
(10a) und Rollgrundabschnitte (10d) umfassen, um jeweils die ersten konvexen Abschnitte
(5a) und ersten konkaven Abschnitte (5d) zu bilden, wobei die zweiten Reihen abwechselnd
Rollgrundabschnitte (10b) und Rollkantenabschnitte (10e) umfassen, um jeweils die
zweiten konkaven Abschnitte (5b) und zweiten konvexen Abschnitte (5e) zu bilden, und
die Klingensätze (A -J) so angeordnet sind, dass die ersten Reihen gefluchteter Rollkantenab
- schnitte (10a) und Rollgrundabschnitte (10e) erste längliche Zonen bilden, die erste
konvexe Abschnitte (5a) haben, und erste konkave Ab - schnitte (5d) mit unterschiedlichen
Längen und die zweiten Reihen gefluchteter Rollgrundab - schnitte (10b) und Rollkantenabschnitte
(10e) zweite längliche Zonen ergeben, wobei jede zweite konkave Abschnitte (5b) und
zweite konvexe Ab - schnitte (5e) mit unterschiedlichen Längen hat, und
- jeweils ein Abstandshalter (22) zwischen benach - barten Klingensätzen (A - J) vorgesehen
ist, wobei die Abstandshalter einen Durchlass schaffen, um das entge gen gesetzte
Vorragen benachbarter erster konvexer Abschnitte (5a) und erster kon - kaver Abschnitte
(5d) und das entgegen gesetzte Vorragen benachbarter zweiter konkaver Abschnitte (5b)
und zweiter konvexer Abschnitte (5e) zu er - lauben.
2. Prägewalze nach Anspruch 1, wobei die Formzonen jeder Klinge (11) das gleiche Muster
umfassen, das von den Rollkantenabschnitten (10a, 10e) und den Rollgrundab - schnitten
(10b, 10d) definiert ist.
3. Prägewalze nach Anspruch 1, wobei die Rollkantenab - schnitte (10a) und die Rollgrundabschnitte
(10d) jeder ersten Reihe unregelmäßig zu den Rollkantenabschnitten (10a) und den Rollgrundabschnitten
(10d) anderer erster Reihen und die Rollkantenabschnitte (10e) und Rollgrundabschnitte
(10b) jeder zweiten Reihe unregelmäßig zu de n Rollkantenabschnitten (10e) und Roll
- grundabschnitten (10b) anderer zweiten Reihen positioniert sind.
4. Prägewalze nach Anspruch 1, die ferner Folgendes umfasst:
- einen Halter mit einem Achsabschnitt (13), der einen ersten Flansch (14) an einem
Ende hat, wobei die Klingen (11) und Abstandshalter (22) auf dem Achsabschnitt montiert
sind,
- einen zweiten Flansch (15), der an dem anderen Ende des Achsabschnitts montiert
ist, so dass die Klingen und die Abstandshalter zwischen dem ersten Flansch und dem
zweiten Flansch angeordnet sind,
- mindestens ein Positionierstift (16), der durch Öffnungen durchgeht, die dazu von
dem ersten Flansch, dem zweiten Flansch, den Klingen und den Abstandshaltern definiert
werden, und
- Befestigungselemente (17) zum Befestigen der Klingen und Abstandshalter zwischen
dem ersten Flansch und dem zweiten Flansch.
5. Prägewalze nach Anspruch 1, die ferner Folgendes umfasst:
- eine Verschlussplatte (24), die zwischen entweder dem ersten Flansch (14) oder dem
zweiten Flansch (15) und der Klinge angeordnet ist, die benach - bart zu entweder
dem ersten Flansch oder dem zweiten Flansch positioniert ist, wobei die Ver - schlussplatte
eingerichtet ist, um in eine Part - nerwalze der Prägewalze einzugreifen, um axiales
Verschieben der Prägewalze zu der Partnerwalze zu verhindern.
1. Rouleau de moulage pour mouler une plaque métallique mince (5) employée comme support
de catalyseur, la plaque métallique mince comprenant des premières régions allongées
comportant des premières parties convexes (5a) et des premières parties concaves (5d)
et des deuxièmes régions allongées comportant des deuxièmes parties concaves (5b)
et des deuxièmes parties convexes (5e), les premières régions allongées (5a, 5d) et
les deuxièmes régions allongées (5b, 5e) étant disposées de façon alternée dans une
direction perpendiculaire à leur longueur, les premières parties convexes (5a) et
les premières parties concaves (5d) étant agencées alternativement suivant la longueur
des premières régions allongées, des entailles étant formées entre les premières parties
convexes (5a) et les premières parties concaves (5d) voisines et les deuxièmes parties
concaves (5b) et deuxièmes parties convexes (5e) étant agencées alternativement suivant
la longueur des deuxièmes régions allongées, des entailles étant formées entre les
deuxièmes parties concaves (5b) et les deuxièmes parties convexes (5e) voisines,
le rouleau de moulage comprenant :
une pluralité de lames en forme de plaquettes (11) ayant la même forme et placées
côte à côte, les axes des plaquettes alignés,
les lames comportant des régions de formage (10a-10f) qui se répètent avec un premier
angle de pas constant (10θ) pour former une surface de formation qui s'étend dans
le sens de la circonférence, ledit premier angle de pas (10θ) étant un multiple entier
d'un deuxième angle de pas (θ),
chaque région de formage comprenant des parties d'arête de rouleau (10a, 10e) pour
former les premières et deuxièmes parties convexes (5a, 5e) et des parties de creux
de rouleau (10b, 10d) pour former les premières et deuxièmes parties concaves (5b,
5e),
le nombre de parties d'arête de rouleau successives (10a, 10e) dans le sens de la
circonférence des lames n'étant pas supérieur à deux,
le nombre de parties de creux de rouleau successives (10b, 10d) dans le sens de la
circonférence des lames n'étant pas supérieur à deux,
les régions de formage comprenant en outre des parties de palier substantiellement
plates (10f) disposées entre les parties d'arête de rouleau et les parties de creux
de rouleau voisines, de sorte que chaque partie d'arête de rouleau et chaque partie
de creux de rouleau a des parties de palier substantiellement plates respectives sur
chacun de ses côtés, la distance de formation entre parties d'arête de rouleau (10a,
10e) et parties de creux de rouleau (10b, 10d) voisines dans le sens de la circonférence
desdites lames (11) définissant ledit deuxième angle de pas (θ), et
les lames (11) étant agencées en ensembles de lames voisins (A-J) qui comprennent
chacun une ou plusieurs lame(s), chaque ensemble de lames (A-J) étant déphasé d'un
multiple entier dudit deuxième angle de pas (θ) par rapport aux ou à chaque ensemble
de lames voisin pour définir des premières et deuxièmes rangées alternées de parties
d'arête de rouleau et de parties de creux de rouleau alignées s'étendant parallèlement
à l'axe du rouleau de moulage, les premières rangées comprenant des parties d'arête
de rouleau (10a) et des parties de creux de rouleau (10d) alternées pour former respectivement
les premières parties convexes (5a) et les premières parties concaves (5d), les deuxièmes
rangées comprenant des parties de creux de rouleau (10b) et des parties d'arête de
rouleau (10e) alternées pour former respectivement les deuxièmes parties concaves
(5b) et les deuxièmes parties convexes (5e) et les ensembles de lames (A-J) étant
agencés de telle manière que les premières rangées de parties d'arête de rouleau (10a)
et de parties de creux de rouleau (10e) alignées produisent des premières régions
allongées ayant des premières parties convexes (5a) et des premières parties concaves
(5d) de différentes longueurs et les deuxièmes rangées de parties de creux de rouleau
(10b) et de parties d'arête de rouleau (10e) alignées produisent des deuxièmes régions
allongées, chacune ayant des deuxièmes parties concaves (5b) et des deuxièmes parties
convexes (5e) de différentes longueurs ; et
une entretoise respective (22) placée entre les ensembles de lames voisins (A-J),
les entretoises créant un espace vide pour permettre la saillie opposée de premières
parties convexes (5a) et premières parties concaves (5d) voisines et la saillie opposée
de deuxièmes parties concaves (5b) et deuxièmes parties convexes (5e) voisines.
2. Rouleau de moulage selon la revendication 1, dans lequel les régions de formage de
chaque lame (11) comprennent le même motif qui est défini par les parties d'arête
de rouleau (10a, 10e) et les parties de creux de rouleau (10b, 10d).
3. Rouleau de moulage selon la revendication 1, dans lequel les parties d'arête de rouleau
(10a) et les parties de creux de rouleau (10d) de chaque première rangée sont positionnées
de façon irrégulière par rapport aux parties d'arête de rouleau (10a) et aux parties
de creux de rouleau (10d) des autres premières rangées et les parties d'arête de rouleau
(10e) et les parties de creux de rouleau (10b) de chaque deuxième rangée sont positionnées
de façon irrégulière par rapport aux parties d'arête de rouleau (10e) et aux parties
de creux de rouleau (10b) des autres deuxièmes rangées.
4. Rouleau de moulage selon la revendication 1, comprenant en outre :
un support ayant une partie axe (13) qui a une première bride (14) à une extrémité,
les lames (11) et les entretoises (22) étant montées sur la partie axe ;
une deuxième bride (15) qui est montée à l'autre extrémité de la partie axe, de sorte
que les lames et les entretoises sont disposées entre la première bride et la deuxième
bride ;
au moins une broche d'immobilisation (16) passant par des ouvertures définies à cet
effet dans la première bride, la deuxième bride, les lames et les entretoises ; et
des éléments de fixation (17) pour fixer les lames et l'entretoise entre la première
bride et la deuxième bride.
5. Rouleau de moulage selon la revendication 1, comprenant en outre une plaque d'arrêt
(24) placée entre l'une des première bride (14) et deuxième bride (15) et la lame
(11) qui est positionnée juste à côté de ladite première bride ou deuxième bride,
la plaque d'arrêt étant conçue pour se mettre en prise avec un rouleau associé du
rouleau de moulage afin de supprimer le déplacement axial du rouleau de moulage par
rapport au rouleau associé.