| (19) |
 |
|
(11) |
EP 0 948 757 B9 |
| (12) |
CORRECTED EUROPEAN PATENT SPECIFICATION |
|
Note: Bibliography reflects the latest situation |
| (15) |
Correction information: |
|
Corrected version no 1 (W1 B1) |
|
Corrections, see
|
| (48) |
Corrigendum issued on: |
|
19.01.2005 Bulletin 2005/03 |
| (45) |
Mention of the grant of the patent: |
|
04.08.2004 Bulletin 2004/32 |
| (22) |
Date of filing: 17.12.1997 |
|
| (86) |
International application number: |
|
PCT/US1997/023714 |
| (87) |
International publication number: |
|
WO 1998/027463 (25.06.1998 Gazette 1998/25) |
|
| (54) |
METHOD OF CONTACT PRINTING ON GOLD COATED FILMS
KONTAKTKOPIERVERFAHREN AUF EINEM MIT GOLD BESCHICHTETEN FILM
METHODE DE TIRAGE PAR CONTACT SUR DES FILMS ENDUITS D'OR
|
| (84) |
Designated Contracting States: |
|
BE DE ES FR GB IT NL SE |
| (30) |
Priority: |
18.12.1996 US 769594
|
| (43) |
Date of publication of application: |
|
13.10.1999 Bulletin 1999/41 |
| (73) |
Proprietor: KIMBERLY-CLARK WORLDWIDE, INC. |
|
Neenah, Wisconsin 54956 (US) |
|
| (72) |
Inventors: |
|
- EVERHART, Dennis, S.
Alpharetta,
GA 30201 (US)
- WHITESIDES, George, M.
Newton,
MA 02158 (US)
|
| (74) |
Representative: Davies, Christopher Robert |
|
Frank B. Dehn & Co.
Patent and Trade Mark Attorneys,
179 Queen Victoria Street London EC4V 4EL London EC4V 4EL (GB) |
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
Technical Field
[0001] The present invention is in the field of contact printing and, more specifically
the present invention is in the field of microcontact printing on metal films such
as gold.
Background of the Invention
[0002] Microcontact printing is a technique for forming patterns of organic monolayers with
µm and submicron lateral dimensions. It offers experimental simplicity and flexibility
in forming certain types of patterns. It relies on the remarkable ability of self-assembled
monolayers of long-chain alkanethiolates to form on gold and other metals. These patterns
can act as nanometer resists by protecting the supporting metal from corrosion by
appropriately formulated etchants, or, can allow for the selective placement of fluids
on hydrophilic regions of the pattern. Patterns of self-assembled monolayers having
dimensions that can be less than 1 µm are formed by using the alkanethiol as an "ink",
and by printing them on the metal support using an elastomeric "stamp". The stamp
is fabricated by molding a silicone elastomer using a master prepared by optical or
X-ray microlithography or by other techniques.
[0003] US-A-5 512 131 relates to a method of patterning a material surface. A polymer substrate
is disclosed having a metal coating onto which is printed a self-assembling monolayer
in order to use the created device in a process for stamping or as a switch.
[0004] Microcontact printing of patterned self-assembled monolayers brings to microfabrication
a number of new capabilities. First, microcontact printing makes it possible to form
patterns that are distinguished only by their constituent functional groups; this
capability permits the control of surface properties such as interfacial free energies
with great precision. Second, because microcontact printing relies on molecular self-assembly,
it generates a system that is (at least locally) close to a thermodynamic minimum
and is intrinsically defect-rejecting and self-healing. Simple procedures, with minimal
protection against surface contamination by adsorbed materials or by particles, can
lead to surprisingly low levels of defects in the final structures. The procedure
can be conducted at atmospheric pressure, in an unprotected laboratory atmosphere.
Thus, microcontact printing is especially useful in laboratories that do not have
routine access to the equipment normally used in microfabrication, or for which the
capital cost of equipment is a serious concern. Third, the patterned self-assembled
monolayers can be designed to act as resists with a number of wet-chemical etchants.
[0005] Working with liquid etchants suffers from the disadvantages of handling solvents
and disposing of wastes, but also enjoys substantial advantages: a high degree of
control over contamination of surfaces; reduced damage to the substrate from energetic
interactions with atoms or ions; the ability to manipulate complex and sensitive organic
functionalities. Because the self-assembled monolayers are only 1 - 3 nm thick, there
is little loss in edge definition due to the thickness of the resist; the major determinants
of edge resolution seem to be the fidelity of the contact printing and the anisotropy
of etching the underlying metal. In the current best cases, features of size 0.2 µm
can be fabricated; edge resolution in systems showing this resolution in feature size
is less than 50 nm.
[0006] In the prior art, a gold film 5 to 2000 nanometers thick is typically supported on
a titanium-primed Si/SiO
2 wafer or glass sheet. The titanium serves as an adhesion promoter between gold and
the support. However, the silicon wafer is rigid, brittle, and cannot transmit light.
These silicon wafers are also not suitable for a large-scale, continuous printing
process, such as in letterpress, gravure, offset, and screen printing (see
Printing Fundamentals, A. Glassman, Ed. (Tappi Press Atlanta, GA 1981);
Encyclopedia Britannica, vol. 26, pp. 76-92, 110-111 (Encyclopedia Brittanica, Inc. 1991)). In addition,
silicon must be treated in a separate step with an adhesion promoter such as Cr or
Ti, or Au will not adequately adhere, preventing formation of a stable and well-ordered
self-assembling monolayer. Finally, silicon is opaque, so any diffraction pattern
obtained must be created with reflected, not transmitted light. What is needed is
an easy, efficient and simple method of contact printing on an optically transparent,
flexible substrate, that is amenable to continuous processing.
Summary of the Invention
[0007] The present invention comprises a method of making an optical sensor comprising a
film with at least one patterned self-assembling monolayer thereon as defined in claim
17. The present invention further provides an optical sensor comprising a film with
at least one patterned self-assembling monolayer thereon, as defined in claim 1. The
dependent claims relate to preferred embodiments of the present invention.
[0008] Patterned self-assembling monolayers allow for the controlled placement of fluids
thereon which can contain a chemically reactive, indicator functionality. The optical
sensing devices produced thereby when the film is exposed to an analyte and light
produce optical diffraction patterns which differ depending on the reaction of the
self-assembling monolayer with the analyte of interest. The light can be in the visible
spectrum, and is transmitted through the film and the analyte can be any compound
reacting with the self-assembling monolayer. The present invention also provides a
flexible support for a self-assembling monolayer on gold or other suitable metal.
[0009] The present invention includes a support for a self-assembling monolayer on gold
or other suitable material which does not require an adhesion promoter for the formation
of a well-ordered self-assembling monolayer. The present invention also provides a
support for a self-assembling monolayer on gold or other material which is suitable
for continuous, rather than batch, fabrication. Finally the present invention provides
a low-cost, disposable sensor which can be mass produced.
[0010] These and other objects, features and advantages of the present invention will become
apparent after a review of the following detailed description of the disclosed embodiments.
Brief Description of the Figures
[0011]
Figure 1 is a schematic of contact printing of self-assembling monolayers. A polydimethylsiloxane
(PDMS; silicone elastomer 184; Dow Corning Corp., Midland, MI) is polymerized on a
silicone master containing a predetermined pattern. The PDMS is peeled away from the
master, and then exposed to a solution containing HS(CH2)15CH3. The alkane-thiol coated stamp is then stamped onto the gold-coated substrate. Then,
the surface of the substrate is exposed to a solution containing a different alkane-thiol
such as HS(CH2)11OH.
Figure 2 is an atomic force microscopy image of evaporated gold on MYLAR®, purchased
from Courtaulds Performance Films (Canoga Park, CA). The average roughness of the
gold layer is 3-4 nanometers, with maximum roughness of 9 nanometers.
Figures 3a, 3b and 3c are atomic force microscopy images of a hydrophilic self-assembling
monolayer circle of 16-mercaptohexadecanoic acids, as described in Example 1. Figure
3a is a topography image, Figure 3b is a lateral force image, and Figure 3c is a three-dimensional
graphic of a topography image.
Figure 4 is a field emission secondary electron microscope image of 10 micron-diameter
circles of hydrophilic self-assembling monolayers formed by printing of 16-mercaptohexadecanoic
acid, as described in Example 1, below.
Figure 5a is an optical photomicrograph at 300x magnification of 10 micron-diameter
circles of hydrophilic self-assembling monolayers formed by printing of 16-mercaptohexadecanoic
acid, as described in Example 1, below, and after exposure to a high surface energy,
curable, optical adhesive. The adhesive was cured by ultraviolet light (UV) exposure.
Figure 5b is a photograph of the diffraction pattern formed by visible light shown
through the self-assembling monolayer pattern described by Figure 5a.
Figure 6 is a field emission secondary electron micrograph image of 10 micron-diameter
circles formed by printing of self-assembled photocurable polymers on hydrophilic
self-assembling monolayers.
Figures 7a and 7b are field emission secondary electron micrographs of 1.5 micron
diameter circles formed of self-assembling photocurable polymers on hydrophilic self-assembling
monolayers, printed as described in Example 1.
Detailed Description
[0012] The present invention provides a method of making an optical sensor comprising a
film with at least one patterned self-assembling monolayer thereon as defined in claim
17. The present invention further provides an optical sensor comprising a film with
at least one patterned self-assembling monolayer thereon, as defined in claim 1. The
method of making an optical sensor may comprise contact printing of patterned, self-assembling
monolayers of alkanethiolates, carboxylic acids, hydroxamic acids, and. phosphonic
acids on metallized polymer films, desirably thermoplastic polymer films. Patterned
self-assembling monolayers allow for the controlled placement of fluids thereon which
can contain a chemically reactive, indicator functionality. The term "patterned self-assembling
monolayers thereon" as used herein means the self-assembling monolayers in any pattern
on the metallized polymer films including a solid pattern.
[0013] Optical sensing devices are produced according to the present invention. When the
film with the self-assembling monolayers thereon is exposed to an analyte that is
capable of reacting with the self-assembling monolayer, the film will produce optical
diffraction patterns which differ depending on the reaction of the self-assembling
monolayer with the analyte of interest. The liquid may be a high surface tension fluid
such as water. The light can be in the visible spectrum, and is transmitted through
the film and the analyte can be any compound reacting with the self-assembling monolayer
[0014] Self-assembled monolayers of organic compounds on inorganic or metal surfaces are
becoming increasingly important in many areas of materials science. Although there
are many different systems of self-assembling monolayers based on different organic
components and supports, desired systems are those of alkanethiolates, HS(CH
2)
nR, on gold films. Typically, a gold film, 5 to 2000 nm thick, is supported on a titanium-primed
Si/SiO
2 wafer or glass sheet. The titanium serves as an adhesion promoter between gold and
the support. The alkanethiols chemisorb on the gold surface from a solution in which
the gold film is immersed, and form adsorbed alkanethiolates with loss of hydrogen.
Adsorption can also occur from the vapor. Self-assembling monolayers formed on gold
from long-chain alkanethiolates of structure X(CH
2)
nY(CH
2)
mS are highly ordered and can be considered as crystalline or quasi-crystalline molecular
arrays. A wide variety of organic functional groups (X,Y) can be incorporated into
the surface or interior of the monolayer.
[0015] Self-assembling monolayers can therefore be tailored to provide a wide variety of
material properties: wettability and protection against corrosion by chemical etchants
are especially relevant to µCP.
[0016] Figure 1 outlines the procedure used for microcontact printing. An elastomeric stamp
is used to transfer alkanethiol "ink" to a gold surface by contact; if the stamp is
patterned, a patterned self-assembling monolayer forms. The stamp is fabricated by
casting polydimethylsiloxane (PDMS) on a master having the desired pattern. Masters
are prepared using standard photolithographic techniques, or constructed from existing
materials having microscale surface features.
[0017] In a typical experimental procedure, a photolithographically produced master is placed
in a glass or plastic Petri dish, and a 10:1 ratio (w:w or v:v) mixture or SYLGARD
silicone elastomer 184 and SYLGARD silicone elastomer 184 curing agent (Dow Corning
Corporation) is poured over it. The elastomer is allowed to sit for approximately
30 minutes at room temperature and pressure to degas, then cured for 1 - 2 hours at
60°C, and gently peeled from the master. "Inking" of the elastomeric stamp is accomplished
by exposing the stamp to a 0.1 to 1.0 mM solution of alkanethiol in anhydrous ethanol,
either by pouring the solution over the surface of the stamp, or by rubbing the stamp
gently with a Q-tip that has been saturated with the inking solution. The stamp is
allowed to dry until no liquid is visible by eye on the surface of the stamp (typically
about 60 seconds), either under ambient conditions, or by exposure to a stream of
nitrogen gas. Following inking, the stamp is applied (typically by hand) to a gold
surface. Very light hand pressure is used to aid in complete contact between the stamp
and the surface. The stamp is then gently peeled from the surface. Following removal
of the stamp, the surface is washed of excess thiol and the patterned gold surface
can be subjected to chemical etchants (see below) that selectively remove underivatized
areas of the gold surface, and if desired, the underlying support(s). Alternatively,
further derivatization of unstamped areas can be accomplished, either by using a second
stamp, or by washing the entire surface with a different alkanethiol.
[0018] The elastomeric character of the stamp is essential to the success of the process.
Polydimethylsiloxane (PDMS), when cured, is sufficiently elastomeric to allow good
conformal contact of the stamp and the surface, even for surfaces with significant
relief; this contact is essential for efficient contact transfer of the alkanethiol
"ink" to the gold film. The elastomeric properties of PDMS are also important when
the stamp is removed from the master: if the stamp were rigid (as is the master) it
would be difficult to separate the stamp and master after curing without damaging
one of the two substrates. PDMS is also sufficiently rigid to retain its shape, even
for features with sub-micron dimensions: we have successfully generated patterns with
lines as small as 200 nm in width. The surface of PDMS has a low interfacial free
energy (y = 22.1 dynes/cm), and the stamp does not adhere to the gold film. The stamp
is durable: we have used the same stamp up to 100 times over a period of several months
without significant degradation in performance. The polymeric nature of PDMS also
plays a critical role in the inking procedure, by enabling the stamp to absorb the
alkanethiol ink by swelling.
[0019] Microcontact printing on gold surfaces can be conducted with a variety of alkanethiol
"inks": Alkanethiols that do not undergo reactive spreading (after application to
the gold film) are required for formation of small features with high resolution.
For stamping in air, one can use autophobic alkanethiols such as hexadecanethiol.
Microcontact printing of other non-autophobic alkanethiols, for example, HS(CH
2)
15COOH, can be conducted by stamping under a liquid such as water. Patterned self-assembling
monolayers of alkanethiols on gold provide excellent resist character with a number
of wet-chemical etchants.
[0020] In one embodiment of the present invention, the self-assembling monolayer is formed
of a carboxy-terminated alkane thiol stamped with a patterned elastomeric stamp onto
a gold-surfaced thermoplastic film such as MYLAR®. The alkanethiol is inked with a
solution of alkanethiol in ethanol, dried, and brought into contact with a surface
of gold. The alkanethiol is transferred to the surface only at those regions where
the stamp contacts the surface, producing a pattern of self-assembling monolayer which
is defined by the pattern of the stamp. Optionally, areas of unmodified gold surface
next to the stamped areas can be rendered hydrophobic by reaction with a methyl-terminated
alkane thiol.
[0021] A more detailed description of the methods and optical sensors of the present invention
follows.
[0022] Any thermoplastic film upon which a metal substrate can be deposited is suitable
for the present invention. These include, but are not limited to polymers such as:
polyethylene-terephthalate (MYLAR®), acrylonitrile-butadiene-styrene, acrylonitrile-methyl
acrylate copolymer, cellophane, cellulosic polymers such as ethyl cellulose, cellulose
acetate, cellulose acetate butyrate, cellulose propionate, cellulose triacetate, polyethylene,
polyethylene - vinyl acetate copolymers, ionomers (ethylene polymers) polyethylene-nylon
copolymers, polypropylene, methyl pentene polymers, polyvinyl fluoride, and aromatic
polysulfones. Preferably, the plastic film has an optical transparency of greater
than 80%. Other suitable thermoplastics and suppliers may be found, for example, in
reference works such as the
Modern Plastics Encyclopedia (McGraw-Hill Publishing Co., New York 1923-1996).
[0023] In one embodiment of the invention, the thermoplastic film with the metal coating
thereon has an optical transparency of between approximately 5% and 95%. A more desired
optical transparency for the thermoplastic film used in the present invention is between
approximately 20% and 80%. In a desired embodiment of the present invention, the thermoplastic
film has at least an approximately 80% optical transparency, and the thickness of
the metal coating is such as to maintain an optical transparency greater than about
20%, so that diffraction patterns can be produced by transmitted light. This corresponds
to a metal coating thickness of about 20 nm. However, in other embodiments of the
invention, the gold thickness may be between approximately 1 nm and 1000 nm.
[0024] The preferred metal for deposition on the film is gold. However, silver, aluminum,
copper, iron, zirconium, platinum and nickel, as well as other metals, may be used.
Preferred metals are ones that do not form oxides, and thus assist in the formation
of more predictable self-assembling monolayers.
[0025] In principle, any surface with corrugations of appropriate size could be used as
masters. The process of microcontact printing starts with an appropriate relief structure,
from which an elastomeric stamp is cast. This 'master' template may be generated photolithographically,
or by other procedures, such as commercially available diffraction gratings. In one
embodiment, the stamp may be made from polydimethylsiloxane.
[0026] In one embodiment of the present invention, the self-assembling monolayer has the
following general formula:
X-R-Y
[0027] X is reactive with metal or metal oxide. For example, X may be asymmetrical or symmetrical
disulfide (-R'SSR, -RSSR), sulfide (-R'SR, -RSR), diselenide (-R'Se-SeR), selenide
(-R'SeR, -RSeR), thiol (-SH), nitrile (-CN), isonitrile, nitro (-NO
2), selenol (-SeH), trivalent phosphorous compounds, isothiocyanate, xanthate, thiocarbamate,
phosphine, thioacid or dithioacid, carboxylic acids, hydroxylic acids, and hydroxamic
acids.
[0028] R and R' are hydrocarbon chains which may optionally be interrupted by hetero atoms
and which are preferably non-branched for the sake of optimum dense packing. At room
temperature, R is greater than or equal to seven carbon atoms in length, in order
to overcome natural randomizing of the self-assembling monolayer. At colder temperatures,
R may be shorter. In a preferred embodiment, R is -(CH
2)
n- where n is between 10 and 12, inclusive. The carbon chain may optionally be perfluorinated.
[0029] Y may have any surface property of interest. For example, Y could be any among the
great number of groups used for immobilization in liquid chromatography techniques,
such as hydroxy, carboxyl, amino, aldehyde, hydrazide, carbonyl, epoxy, or vinyl groups.
Examples of sensing layer materials are set forth in "Patterning Self-Assembled Monolayers
Using Microcontact Printing: A New Technology for Biosensors?," by Milan Mrksich and
George M. Whitesides, published in TIBTECH, June, 1995 (Vol. 13), pp. 228-235.
[0030] Self assembling monolayers of alkyl phosphonic, hydroxamic, and carboxylic acids
may also be useful for the methods and optical sensors of the present invention. Since
alkanethiols do not adsorb to the surfaces of many metal oxides, carboxylic acids,
phosphonic acids, and hydroxamic acids may be preferred for X for those metal oxides.
See J. P. Folkers, G.M. Whitesides,
et al., Langmuir, 1995, vol. 11, pp. 813-824.
[0031] R may also be of the form (CH
2)
a-Z-(CH
2)
b, where a≥0, b≥7, and Z is any chemical functionality of interest, such as sulfones,
urea, lactam, etc.
[0032] The stamp may be applied in air, or under a fluid such as water to prevent excess
diffusion of the alkanethiol. For large-scale or continuous printing processes, it
is most desirable to print in air, since shorter contact times are desirable for those
processes.
[0033] In one embodiment of the present invention, the pattern is formed on the metallized
thermoplastic polymer with the self-assembling monolayer. In another embodiment of
the present invention, the relief of the pattern is formed with the self-assembling
monolayer. After the stamping process, the metallized areas on the plastic may optionally
be passivated, for example, with a methyl-terminated self-assembling monolayer such
as hexadecylmercaptan.
[0034] This invention and properties of embodiments thereof is further illustrated by the
following examples, which are not to be construed in any way as imposing limitations
upon the scope thereof. On the contrary, it is to be clearly understood that resort
may be had to various other embodiments, modifications, and equivalents thereof, which,
after reading the description herein, may suggest themselves to those skilled in the
art without departing from the scope of the present invention as defined by the appended
claims.
Example 1
Printing of gold-coated MYLAR® (polyethylene terephthalate) with patterns of 16-mercaptohexadecanoic
acid and hexadecanethiol
[0035] Patterns of gold-coated MYLAR® (polyethylene terephthalate) were printed with patterns
of 16 mercaptohexadecanoic acid and hexadecanethiol, as shown in Figure 1, and described
below.
[0036] MYLAR® film modified with a plasma deposited gold topcoat was obtained from Courtaulds
Performance Films (21034 Osborne Street, Canoga Park, CA 91304). An atomic force microscopy
image of this MYLAR film is shown in Figure 2. Polymer film thickness between 2 and
7 mils and gold topcoats producing a surface resistance of 65 ohms per square centimeter
with a visible light transmittance between 20% and 65% were used.
[0037] Patterns of hydrophilic, carboxy-terminated alkane thiols were stamped onto gold-coated
film using 16-mercaptohexadecanoic acid by the following method. An exposed and developed
photoresist pattern of 10 micron diameter circles on a silicon wafer was used as the
master. Polydimethylsiloxane (PDMS; silicone elastomer 184; Dow Coming Co., Midland,
MI), was polymerized on a master to produce a stamp with ten micron-diameter circles
spaced five microns apart. The stamp was inked by exposure to a solution (1 to 10
mM in ethanol) of 16-mercaptohexadecanoic acid, and allowed to air-dry. The substrate
was contacted with the stamp for 50 seconds and washed for 2 to 4 seconds with a solution
of hexadecanethiol (1 to 10 mM in ethanol). The substrate was finally washed for 10
seconds in ethanol and dried in a stream of nitrogen. The results of this printing
are shown-in Figure 3 and Figure 4 for the 10 micron diameter circles of the carboxylic
acid terminated self-assembling monolayer.
[0038] These hydrophilic self-assembling monolayer circles allow for selective placement
of high surface tension fluids such as water, triethylene glycol, or ultraviolet light
curable urethane acrylic adhesives. These liquids can contain dissolved and suspended
reagents that react chemically or physically with targeted analytes, thus making the
coated plastic film a collection of 10 micron microreactors suitable for low cost,
disposable chemical sensors. An example of such a device is shown in Figure 5a, Figure
6, and Figures 7a and 7b.
[0039] Diffraction of visible light was shown with these optical sensors. Both reflected
and transmitted diffraction patterns were observed when using 5mW, 670 nm laser illumination.
Figure 5b is a photograph of the diffraction pattern formed by visible light shown
through the self-assembling monolayer pattern of Figure 5a. Rainbow diffraction colors
were observed with transmitted white light.
Example 2
Printing of aluminum-coated MYLAR® with patterns of 16-carboxy-hexadecanoic acid and
hexadecanecarboxylate
[0040] The procedure of Example 1 was followed for 2.54 mm (100 gauge) aluminum-coated MYLAR®
with 35% visible light transmission, substituting the 1, 16-dihydroxamic acid of hexadecane
and 1-hexadecane hydroxamic acid for the hydrophilic and hydrophobic thiols, respectively,
of Example 1. Diffraction of visible light occurred. Both reflected and transmitted
diffraction patterns were observed when using 5mW, 670 nm laser illumination. Rainbow
diffraction colors were observed with transmitted white light.
Example 3
Comparison of gold-coated MYLAR® with gold-coated silicon wafers.
[0041] Gold films (100 angstroms to 1 micrometer) were deposited by electron beam evaporation
on silicone wafers that had been primed with titanium (5-50 angstroms) to promote
adhesion between silicon and gold. Stamping on both gold-coated film and gold-coated
silicon wafers was performed as in Example 1.
Measurement of Contact Angles
[0042] Contact angles were measured on a Ramé-Hart Model 100 goniometer at room temperature
and ambient humidity. Water for contact angles was deionized and distilled in a glass
and Teflon apparatus. Advancing and receding contact angles were measured on both
sides of at least three drops of each liquid per slide; data in the figures represents
the average of these measurements. The following method was used for measuring contact
angles: A drop approximately 1-2 microliters in volume was grown on the end of a pipette
tip (Micro-Electrapette syringe; Matrix Technologies; Lowell, MA). The tip was then
lowered to the surface until the drop came in contact with the surface. The drop was
advanced by slowly increasing the volume of the drop (rate approximately 1 microliter/second).
Advancing contact angles of water were measured immediately after the front of the
drop had smoothly moved a short distance across the surface. Receding angles were
taken after the drop had smoothly retreated across the surface by decreasing the volume
of the drop.
X-ray Photoelectron Spectroscopy (XPS)
[0043] X-ray photoelectron spectra were collected on a Surface Science SSX-100 spectrometer
using a monochromatized Al K-alpha source (hv=1486.6 electron volts). The spectra
were recorded using a spot size of 600 micrometers and a pass energy on the detector
of 50 electron volts (acquisition time for one scan was approximately 1.5 minutes).
For the monolayers, spectra were collected for carbon and oxygen using the 1s peaks
at 285 and 530 eV, respectively; the binding energies for elements in the monolayer
were referenced to the peak due to hydrocarbon in the C 1s region, for which we fixed
the binding energy at 284.6 eV. Spectra for the solid hydroxamic acid were collected
using an electron flood gun of 4.5 eV to dissipate charge in the sample. The following
signals were used for the substrates; Al 2p at 73 eV for Al(0), and at 75 eV for Al(III).
The binding energies for the substrates were not standardized to a reference sample.
All spectra were fitted using an 80% Gaussian/20% Lorentzian peak shape and a Shirley
background subtraction. See J.P. Folkers, G.M. Whitesides,
et al., Langmuir, vol. 11, no. 3, pp. 813-824 (1995).
Condensation Figures
[0044] Condensation figures (CFs) are arrays of liquid drops that form upon condensation
of vapor onto a solid surface. The examination of condensation figures has historically
been used as a method to characterize the degree of contamination on an otherwise
homogeneous surface. One is able to impose a pattern on arrays of condensed drops
by patterning the surface underlying them into regions of different solid-vapor interfacial
free energy and to characterize the patterned CFs by photomicroscopy and optical diffraction.
It can be demonstrated that appropriately patterned CFs can be used as optical diffraction
gratings and that examination of the diffraction patterns provides both a rapid, nondestructive
method for characterizing patterned self-assembling monolayers and an approach to
sensing the environment. Because the form of the CFs-that is, the size, density, and
distribution of the drops-is sensitive to environmental factors, CFs of appropriate
size and pattern diffract light and can be used as sensors. This principle is demonstrated
by correlating the temperature of a substrate patterned into hydrophobic and hydrophilic
regions, in an atmosphere of constant relative humidity, with the intensity of light
diffracted from CFs on these regions.
[0045] Appropriate patterns are formed from self-assembled monolayers (self-assembling monolayers)
on gold by using combinations of hexadecanethiol [CH
3((CH
2)
15SH], 16-mercaptohexadecanoic acid [HS(CH
2)
14COOH], and 11-mercaptoundecanol [HS(CH)
11OH]. Several techniques are now available for preparing patterns of two or more self-assembling
monolayers having 0.1- to 10-µm dimensions.
[0046] At 20°C, an incident beam of light from a laser (helium-neon laser, wavelength =
632.8 nm) produced a single transmitted spot because no water had condensed on the
surface, and the transmittance of the regions covered with different self-assembling
monolayers were effectively indistinguishable. As the surface was exposed to warm,
moist air, droplets of water condensed preferentially on the hydrophilic regions.
Diffraction patterns appeared in the light transmitted from the surface. Under these
conditions, light was transmitted coherently from the regions where no water had condensed
and was scattered by the regions where water had condensed. The condensation figures
disappeared within several seconds as the water droplets which condensed on the self-assembling
monolayers evaporated.
[0047] The ability to form condensation figures can be ascertained by the relative contact
angles of water on the hydrophobic and hydrophilic self-assembling monolayers. Unpatterned
monolayers of the appropriate thiol were prepared by immersion of the substrate in
a dilute solution for one hour, followed by rinsing with ethanol and air drying.
Table I
| Comparison of Gold-Coated MYLAR with Gold-Coated Silicon Wafers: Reactions of ω-functionalized
alkane-thiols |
| |
XPS Results |
Water Contact Angles |
| Untreated Controls |
%C |
%O |
%Au |
| Au on MYLAR |
47.4 |
3.9 |
48.8 |
| Au on MYLAR* (2nd sample) |
42.6 |
ND |
57.4 |
| Au on SiOx** |
47.5 |
ND |
52.5 |
| |
| React with CH3(CH2)15SH |
|
|
|
| Au on SiOx |
72.7 |
ND |
27.3 |
| |
72.7 |
ND |
27.3 |
| Au on MYLAR |
71.4 |
ND |
28.6 |
| |
71.8 |
ND |
28.2 |
| |
| React with HOC(O)(CH2)14SH |
|
|
|
| Au on SiOx |
64.9 |
8.5 |
26.6 |
| |
65.4 |
8.2 |
26.4 |
| Au on MYLAR |
68.9 |
7.2 |
23.9 |
| * Gold-caated MYLAR substrate |
** Silicon Oxide Substrate
"ND" means "not detected", i.e., less than 0.2 atom-percent. |
[0048] Condensation Figures [
Science, Vol. 263, 60 (1994)] with equivalent optical diffraction can be formed on Au:MYLAR®,
relative to known art with Au:SiOx. The chemistry of alkanethiols reacting with Au:MYLAR
is similar to that reported in the literature for Au:SiOx.
Example 4
Comparison of Aluminuml AlOx-coated MYLAR® with Al/AlOx-coated silicon wafers; Reaction of the hydroxamic acid CH3-(CH2)16-CONH(OH)
[0049] Using the procedures of Example 2, unpatterned monolayers of the appropriate hydroxamic
acid were prepared by immersion of the substrate in a dilute solution for one hour,
followed by rinsing with ethanol and air drying. The results are set forth in Table
II, below.
TABLE II
| Comparison of Aluminum/AlOx Coated MYLAR® with Al/Al/OxCoated Silicon Wafers: Reaction of the Hydroxamic Acid CH3(CH2)16CONH(OH) |
| XPS Results |
%C |
%O |
| Untreated Controls |
|
|
AlOx on MYLAR®
(repeat analysis) |
28.9 |
41.2 |
| 30.3 |
38.6 |
| AlOx on SiOx |
49.7 |
24.6 |
| 48.7 |
24.3 |
| Water Contact Angles Untreated Controls |
|
| AlOx on MYLAR® |
68-74° |
| AlOx on SiOx |
74-78° |
| Reacted with Hydroxamic Acid Compound for 10 minutes |
|
| AlOx on MYLAR® |
90-92° |
| AlOx on SiOx |
90-92° |
[0050] Condensation figures [per method of
Science, Vol. 263, p. 60 (1994)] with equivalent optical diffraction can be formed via contact
printing.
[0051] A1-coated, optical grade MYLAR® shows similar abilities to A1-coated silicon in promoting
contact printing of self-assembling monolayers.
Example 5
Self-assembled photocurable polymers on hydrophilic self-assembling monolayers.
[0052] Figure 6 is a field emission secondary electron microscopy image of 10 micron-diameter
self-assembled photocurable polymers on hydrophilic self- assembling monolayers.
1. An optical sensor comprising a film with at least one patterned self-assembling monolayer
thereon comprising:
a polymer film coated with metal; and
a self-assembling monolayer printed (SAM) onto the polymer film coated with metal,
wherein the self-assembling monolayer is printed in a first, non-diffracting pattern
such that when an analyte binds to the SAM, the film diffracts transmitted light to
form a second pattern, wherein the second pattern is a diffraction pattern; and
further wherein the polymer film coated with metal is optically transparent.
2. The optical sensor of claim 1, wherein the metal is selected from the group consisting
of gold, silver, nickel, platinum, aluminium, iron, copper or zirconium.
3. The optical sensor of claim 1, wherein the metal is gold.
4. The optical sensor of claim 3, wherein the gold coating is between 1 nanometer and
1000 nanometers in thickness.
5. The optical sensor of claim 1, wherein the polymer film is polyethylene-terephthalate,
acrylonitrile-butadiene-styrene, acrylonitrile-methyl acrylate copolymer, cellophane,
cellulosic polymers such as ethyl cellulose, cellulose acetate, cellulose acetate
butyrate, cellulose propionate, cellulose triacetate, polyethylene, polyethylene -
vinyl acetate copolymers, iononers (ethylene polymers) polyethylene-nylon copolymers,
polypropylene, methyl pentene polymers, polyvinyl fluoride and aromatic polysulfones.
6. The optical sensor of claim 5, wherein the polymer film is polyethylene-terephthalate.
7. The optical sensor of claim 1, wherein the polymer film is a themoplastic film.
8. The optical sensor of claim 7, wherein the thermoplastic film with the metal coating
thereon has an optical transparency between 5% and 95%.
9. The optical sensor of claim 7, wherein the thermoplastic film with the metal coating
thereon has an optical transparency between 20% and 80%.
10. The optical sensor of claim 1, wherein the self-assembling monolayer is formed from
compounds with the following general formula:
X-R-Y
wherein:
X is reactive with the metal or metal oxide on the polymer film;
R is a hydrocarbon chain which may optionally be interrupted by heteroatoms, and which
may optionally be perfluorinated, and which is preferably non-branched, or R is a
compound of the form (CH2)a-Z-(CH2)b, wherein a ≥ 0, b ≥ 7, and Z is any chemical functionality of interest; and
Y is a compound with any property of interest.
11. The optical sensor of claim 10, wherein:
X is an asymmetrical or symmetrical disulfide (-R'SSR, - RSSR), sulfide (-R'SR, -
RSR), diselenide (-R'SeSeR), selenide (-R'SeR, - RSeR), thiol (-SH), nitrile (-CN),
isonitrile, nitro (-NO2), selenol (-SeH), trivalent phosphorous compounds, isothiocyanate, xanthate, thiocarbamate,
phosphine, thioacid or dithioacid, carboxylic acids, hydroxylic acids and hydroxamic
acids;
R and R' in the definition of X are hydrocarbon chains which may optionally be interrupted
by hetero atoms, and which may optionally be perfluorinated, and which are preferably
non-branched; and
Y is selected from the group consisting of hydroxy, carboxyl, amino, aldehyde, hydrazide,
carbonyl, epoxy or vinyl groups.
12. The optical sensor of claim 10, wherein R is greater than 7 carbon atoms in length.
13. The optical sensor of claim 10, wherein R is a compound of the form (CH2)a-Z-(CH2)b, wherein a≥0, b≥7, and Z is any chemical functionality of interest.
14. The optical sensor of claim 13, wherein z is selected from the group consisting of
sulfones, lactams and urea.
15. The optical sensor of claim 1, wherein there are two or more Belt-assembling monolayers
with different chemical properties.
16. The optical sensor of claim 1, wherein a first self-assembling monolayer is hydrophobic,
and a second self-assembling monolayer is hydrophilic.
17. A method of making an optical sensor comprising a film with at least one patterned
self-assembling monolayer thereon comprising stamping at least one pattern of self-assembling
monolayers on a polymer film coated with metal;
wherein the self-assembling monolayer (SAM) is stamped in a first, non-diffracting
pattern such that when the SAM binds an analyte, the film diffracts transmitted light
to form a second pattern, wherein the second pattern is a diffraction pattern; and
further wherein the polymer film coated with metal is optically transparent.
18. The method of claim 17, wherein the metal is selected from the group consisting of
gold, silver, nickel, platinum, aluminium, iron, copper or zirconium.
19. The method of claim 17, wherein the metal is gold.
20. The method of claim 19, wherein the gold coating is between 1 nanometer and 1000 nanometers
in thickness.
21. The method of claim 17, wherein the polymer film is polyethylene-terephthalate, acrylonitrile-butadiene-styrene,
acrylonitrile-methyl acrylate copolymer, cellophane, cellulosic polymers such as ethyl
cellulose, cellulose acetate, cellulose acetate butyrate, cellulose propionate, cellulose
triacetate, polyethylene, polyethylene - vinyl acetate copolymers, ionomers (ethylene
polymers) polyethylene-nylon copolymers, polypropylene, methyl pentene polymers, polyvinyl
fluoride and aromatic polysulfones.
22. The method of claim 21, wherein the polymer film is polyethylene-terephthalate.
23. The method of claim 17, wherein the polymer film with the metal coating thereon has
an optical transparency between 5% and 95%.
24. The method of claim 17, wherein the polymer film with the metal coating thereon has
an optical transparency between 20% and 80%.
25. The method of claim 17, wherein the self-assembling monolayer is formed from compounds
with the following general formula:
X-R-Y
wherein:
X is reactive with the metal or metal oxide on the polymer film;
R is a hydrocarbon chain which may optionally be interrupted by heteroatoms, and which
may optionally be perfluorinated, and which is preferably non-branched, or R is a
compound of the form (CH2)a-Z-(CH2)b, wherein a ≥ 0, b ≥ 7, and Z is any chemical functionality of interest; and
Y is a compound with any property of interest.
26. The method of claim 25, wherein:
X is an asymmetrical or symmetrical disulfide (-R'SSR, - RSSR), sulfide (-R'SR, -
RSR), diselenide (-R'SeSeR), selenide (-R'SeR, -RSeR), thiol (-SH), nitrile (-CN),
isonitrile, nitro (-NO2), selenol (-SeH), trivalent phosphorous compounds, isothiocyanate, xanthate, thiocarbamate,
phosphine, thioacid or dithioacid, carboxylic acids, hydroxylic acids and hydroxamic
acids;
R and R' in the definition of X are hydrocarbon chains which may optionally be interrupted
by hetero atoms, and which may optionally be perfluorinated, and which are preferably
non-branched; and
Y is selected from the group consisting of hydroxy, carboxyl, amino, aldehyde, hydrazide,
carbonyl, epoxy or vinyl groups.
27. The method of claim 25, wherein R is greater than 7 carbon atoms in length.
28. The method of claim 25, wherein R is a compound of the form (CH2)a-Z-(CH2)b, wherein a≥0, b≥7, and Z is any chemical functionality of interest.
29. The method of claim 28, wherein Z is selected from the group consisting of sulfones,
lactams and urea.
30. The method of claim 17, wherein there are two or more self-assembling monolayers with
different chemical properties.
31. The method of claim 17, wherein a first self-assembling monolayer is hydrophobic,
and a second self-assembling monolayer is hydrophilic.
1. Ein optischer Sensor, umfassend einen Film mit zumindest einer musterbildenden selbstorganisierenden
Monoschicht darauf, umfassend:
einen Polymerfilm gecoated mit Metall; und
eine selbstorganisierende Monoschicht (SAM, self - assembling monolayer), gedruckt
auf einem Polymerfilm, der mit Metall gecoated ist, wobei die selbstorganisierende
Monoschicht in einem ersten, nicht beugenden Muster gedruckt ist, so dass, wenn ein
Analyt an die SAM bindet, der Film transmittiertes Licht beugt, um ein zweites Muster
auszubilden, wobei das zweite Muster ein Diffraktionsmuster ist; und
wo des weiteren der Polymerfilm, der mit Metall gecoated ist, optisch transparent
ist.
2. Der optische Sensor von Anspruch 1, worin das Metall ausgewählt ist aus der Gruppe
bestehend aus Gold, Silber, Nickel, Platin, Aluminium, Eisen, Kupfer oder Zirkon.
3. Der optische Sensor von Anspruch 1, worin das Metall Gold ist.
4. Der optische Sensor von Anspruch 3, worin das Gold - coating zwischen 1 Nanometer
und 1000 Nanometer dick ist.
5. Der optische Sensor von Anspruch 1, worin der Polymerfilm Polyethylen - Terephthalat,
Acrylnitril, Butadien - Styrol, Acrylonitril - Methylacrylat - Copolymer, Zellophan,
Zellulosepolymere, wie z. B. Ethylzellulose, Zelluloseacetat, Zelluloseacetatbutyrat,
Zellulosepropionat, Zellulosetriacetat, Polyethylen, Polyethylen - Vinylazetat - Copolymere,
lonomere (Ethylenepolymere), Polyethylen - Nylon - Copolymere, Polypropylen, Methylpentenepolymere,
Polyvinylfluorid oder aromatische Polysulfonsäuren darstellt.
6. Der optische Sensor von Anspruch 5, worin der Polymerfilm Polyethylen - Terephthalat
ist.
7. Der optische Sensor von Anspruch 1, worin der Polymerfilm ein thermoplastischer Film
ist.
8. Der optische Sensor von Anspruch 7, worin der thermoplastische Film mit dem Metall
- Coating darauf einen optischen Transmissionsgrad zwischen 5 % und 95 % aufweist.
9. Der optische Sensor von Anspruch 7, worin der thermoplastische Film mit dem Metall
- Coating darauf einen optischen Transmissionsgrad zwischen 20 % und 80% aufweist.
10. Der optische Sensor von Anspruch 1, worin die selbstorganisierende Monoschicht ausgebildet
ist aus Verbindungen mit der folgenden allgemeinen Formel:
X - R - Y,
worin X reaktiv mit dem Metall oder dem Metalloxid auf dem Polymerfilm ist;
R eine Kohlenwasserstoffkette ist, welche optional von Heteroatomen unterbrochen sein
kann, und welche optional perfluoriniert sein kann, und welche vorzugsweise nicht
- verzweigt ist; oder
R eine Verbindung der Form (CH2)a - Z - (CH2)b ist, wobei a ≥ 0, b ≥ 7 und Z jede chemische funktionelle Gruppe von Interesse ist;
und
Y eine Verbindung mit irgendeiner Eigenschaft von Interesse ist.
11. Der optische Sensor von Anspruch 10, worin
X ein asymmetrisches oder symmetrisches Disulfid (- R'SSR, - RSSR), Sulfid ( - R'SR,
- RSR), Diselenid ( - RSeSeR), Selenid ( - R'SeR, RSeR), Thiol ( - SH), Nitril ( -
CN), Isonitril, Nitro ( - NO2), Senenol ( - SeH), trivalente Phosphorverbindungen, Isothicyanat, Xanthat, Thiocarbamat,
Phosphine, eine Thiocarbonsäure oder eine Dithiocarbonsäure, Carbonsäuren, Hydroxylsäuren
oder Hydroxamsäuren darstellt; und
R und R' in der Definition von X Kohlenwasserstoffketten sind, die optional von Heteroatomen
unterbrochen sein können, und welche optional perfluoriniert sein können, und welche
vorzugsweise nicht verzweigt sind; und
Y ausgewählt aus der Gruppe bestehend aus Hydroxyl - , Carboxyl - , Amino - , Aldehyd
- , Hydrazid - , Carbonyl - , Epoxy - oder Vinylgruppen ist.
12. Der optische Sensor von Anspruch 10, worin R eine Kette von mehr als 7 Kohlenstoffatomen
Länge aufweist.
13. Der optische Sensor von Anspruch 10, worin R eine Verbindung der Form (CH2)a - Z - CH2)b ist, worin a ≥ 0, b ≥ 7 und Z jegliche chemische funktionelle Gruppe von Interesse
ist.
14. Der optische Sensor von Anspruch 13, worin Z ausgewählt ist aus der Gruppe bestehend
aus Sulfonen, Lactamen und Harnstoff.
15. Der optische Sensor von Anspruch 1, worin zwei oder mehr selbstorganisierende Monoschichten
mit verschiedenen chemischen Eigenschaften vorliegen.
16. Der optische Sensor von Anspruch 1, worin eine erste selbstorganisierende Monoschicht
hydrophob ist und eine zweite selbstorganisierende Monoschicht hydrophil ist.
17. Ein Verfahren zum Herstellen eines optischen Sensors, umfassend einen Film mit zumindest
einer musterbildenden selbstorganisierenden Monoschicht darauf, umfassend das Stempeln
von zumindest einem Muster von selbstorganisierenden Monoschichten auf einen Polymerfilm
gecoated mit Metall;
worin die selbstorganisierende Monoschicht (SAM) in einem ersten nicht - beugendes
Muster gestempelt wird, so dass, wenn die SAM einen Analyten bildet, der Film transmittiertes
Licht beugt, um ein zweites Muster auszubilden, wobei das zweite Muster ein Diffraktionsmuster
ist; und
worin darüber hinaus der Polymerfilm, der mit Metall gecoated ist, optisch transparent
ist.
18. Das Verfahren von Anspruch 17, worin das Metall ausgewählt ist aus der Gruppe bestehend
aus Gold, Silber, Nickel, Platin, Aluminium, Eisen, Kupfer oder Zirkon.
19. Das Verfahren von Anspruch 17, worin das Metall Gold ist.
20. Das Verfahren von Anspruch 19, worin das Gold - Coating zwischen 1 Nanometer und 1000
Nanometer dick ist.
21. Das Verfahren von Anspruch 17, worin der Polymerfilm Polyethylen - Terephthalat, Acrylonitril,
Butadien - Styrol, Acrylonitril - Methylacrylatp - Copolymer, Zellophan, Zellulosepolymere,
wie z. B. Ethylzellulose, Zelluloseacetat, Zelluloseacetatbutyrat, Zellulosepropionat,
Zellulosetriacetat, Polyethylen, Polyethylen - Vinylacetat - Copolymere, lonomere
(Ethylenepolymere), Polyethylen - Nylon - Copolymere, Polypropylen, Methylpentenepolymere,
Polyvinylfluorid oder aromatische Polysulfonsäuren darstellt.
22. Das Verfahren von Anspruch 21, worin der Polymerfilm Polyethylen - Terephthalat ist.
23. Das Verfahren von Anspruch 17, worin der thermoplastische Film mit dem Metall - Coating
darauf einen optischen Transmissionsgrad zwischen 5 % und 95 % aufweist.
24. Das Verfahren von Anspruch 17, worin der thermoplastische Film mit dem Metall - Coating
darauf einen optischen Transmissionsgrad zwischen 20 % und 80% aufweist.
25. Das Verfahren von Anspruch 17, worin die selbstorganisierende Monoschicht ausgebildet
ist aus Verbindungen mit der folgenden allgemeinen Formel:
X - R - Y,
worin X reaktiv mit dem Metall oder dem Metalloxyd auf dem Polymerfilm ist;
R eine Kohlenwasserstoffkette ist, welche optional von Heteroatomen unterbrochen sein
kann, und welche optional perfluoriniert sein kann, und welche vorzugsweise nicht
- verzweigt ist; oder
R eine Verbindung der Form (CH2)a - Z - (CH2)b ist, wobei a ≥ 0, b ≥ 7 und Z jede chemische funktionelle Gruppe von Interesse ist;
und
Y eine Verbindung mit irgendeiner Eigenschaft von Interesse ist.
26. Das Verfahren von Anspruch 25, worin X ein asymmetrisches Disulfid ( - R'SSR, - RSSR),
Sulfid ( - R'SR, - RSR), Diselenid ( - RSeSeR), Selenid ( - R'SeR, RSeR), Thiol (
- SH), Nitril ( - CN), Isonitril, Nitro ( - NO2), Senenol ( - SeH), trivalente Phosphorverbindungen, Isothicyanat, Xanthat, Thiocarbamat,
Phosphine, Thiocarbonsäure oder Dithiocarvbonsäure, Carbonsäuren, Hydroxylsäuren oder
Hydroxamsäuren darstellt; und
R und R' in der Definition von X Kohlenwasserstoffketten sind, die optional von Heteroatomen
unterbrochen sein können, und welche optional perfluoriniert sein können, und welche
vorzugsweise nicht verzweigt sind; und
Y, ausgebildet aus der Gruppe bestehend aus Hydroxyl - , Carboxyl - , Amino - , Aldehyd
- , Hydrazid - , Carbonyl - , Epoxy - oder Vinylgruppen ist.
27. Das Verfahren von Anspruch 25, worin R eine Kette von mehr als 7 Kohlenstoffatomlängen
darstellt.
28. Das Verfahren von Anspruch 25, worin R eine Verbindung der Form (CH2)a - Z - CH2)b ist, worin a ≥ 0, b ≥ 7 und Z jegliche chemische funktionelle Gruppe von Interesse
ist.
29. Das Verfahren von Anspruch 28, worin Z ausgewählt ist aus der Gruppe bestehend aus
Sulfonen, Lactamen und Harnstoff.
30. Das Verfahren von Anspruch 17, worin zwei oder mehr selbstorganisierende Monoschichten
mit verschiedenen chemischen Eigenschaften vorliegen.
31. Das Verfahren von Anspruch 17, worin eine erste selbstorganisierende Monoschicht hydrophob
und eine zweite selbstorganisierende Monoschicht hydrophil ist.
1. Capteur optique comprenant un film ayant, sur lui, au moins une monocouche auto-assemblante
à motif, comprenant :
un film polymère à revêtement métallique ; et
une monocouche auto-assemblante (ci-après SAM) imprimée sur le film polymère à revêtement
métallique, où la monocouche auto-assemblante est imprimée selon un premier motif
non-diffractant, tel que, lorsqu'un analyte se lie à la SAM, le film diffracte la
lumière transmise pour former un second motif, le second motif étant un motif de diffraction
; et
le film polymère à revêtement métallique est, en outre, optiquement transparent.
2. Capteur optique selon la revendication 1, dans lequel le métal est choisi dans le
groupe consistant en l'or, l'argent, le nickel, le platine, l'aluminium, le fer, le
cuivre ou le zirconium.
3. Capteur optique selon la revendication 1, dans lequel le métal est l'or.
4. Capteur optique selon la revendication 3, dans lequel l'épaisseur du revêtement d'or
est comprise entre 1 nanomètre et 1 000 nanomètres.
5. Capteur optique selon la revendication 1, dans lequel le film polymère est en poly(téréphtalate
d'éthylène), acrylonitrile-butadiène-styrène, copolymère acrylonitrile-acrylate de
méthyle, cellophane, polymères cellulosiques, tels que éthylcellulose, acétate de
cellulose, acéto-butyrate de cellulose, propionate de cellulose, triacétate de cellulose,
en polyéthylène, copolymères polyéthylène-acétate de vinyle, ionomères (polymères
d'éthylène), copolymères polyéthylène-nylon, polypropylène, polymères de méthylpentène,
poly(fluorure de vinyle) et polysulfones aromatiques.
6. Capteur optique selon la revendication 5, dans lequel le film de polymère est en poly(téréphtalate
d'éthylène).
7. Capteur optique selon la revendication 1, dans lequel le film polymère est un film
thermoplastique.
8. Capteur optique selon la revendication 7, dans lequel le film thermoplastique ayant
sur lui le revêtement métallique a une transparence optique comprise entre 5 % et
95 %.
9. Capteur optique selon la revendication 7, dans lequel le film thermoplastique ayant
sur lui le revêtement métallique a une transparence optique comprise entre 20 % et
80 %.
10. Capteur optique selon la revendication 1, dans lequel la monocouche auto-assemblante
est formée à partir de composés ayant la formule générale suivante :
X-R-Y
dans laquelle :
X est réactif avec le métal ou l'oxyde métallique présent sur le film polymère ;
R est une chaîne hydrocarbonée qui peut être facultativement interrompue par des hétéroatomes,
qui peut facultativement être perfluorée, et qui est de préférence non-ramifiée, ou
R est un composé de la forme (CH2) a-Z- (CH2) b, où a ≥ 0, b ≥ 7, et Z est toute fonctionnalité chimique présentant un intérêt, et
Y est un composé ayant toute propriété présentant un intérêt.
11. Capteur optique selon la revendication 10, dans lequel :
X est un radical disulfure asymétrique ou symétrique (-R'SSR, -RSSR), sulfure (-R'SR,
-RSR), diséléniure (-R'SeSeR), séléniure (-R'SeR, -RSeR), thiol (-SH), nitrile (-CN),
isonitrile, nitro (-NO2), sélénol (-SeH), des composés phosphoreux trivalents, des radicaux isothiocyanate,
xanthate, thiocarbamate, phosphine, thioacide ou dithioacide, des acides carboxyliques,
des acides hydroxyliques et des acides hydroxamiques ;
R et R', dans la définition de X, sont des chaînes hydrocarbonées qui peuvent être
facultativement interrompues par des hétéroatomes, qui peuvent être facultativement
perfluorées, et qui sont de préférence non-ramifiées ; et
Y est sélectionné dans le groupe consistant en les groupes hydroxy, carboxyle, amino,
aldéhyde, hydrazide, carbonyle, époxy et vinyle.
12. Capteur optique selon la revendication 10, dans lequel R est une chaîne d'une longueur
de plus de 7 atomes de carbone.
13. Capteur optique selon la revendication 10, dans lequel R est un composé de la forme
(CH2) a-Z- (CH2) b, où a ≥ 0, b ≥ 7, et Z est toute fonctionnalité chimique présentant un intérêt.
14. Capteur optique selon la revendication 13, dans lequel Z est sélectionné dans le groupe
consistant en les sulfones, les lactames et l'urée.
15. Capteur optique selon la revendication 1, dans lequel il y a deux monocouches auto-assemblantes,
ou davantage, ayant des propriétés chimiques différentes.
16. Capteur optique selon la revendication 1, dans lequel une première monocouche auto-assemblante
est hydrophobe, et une seconde monocouche auto-assemblante est hydrophile.
17. Procédé de fabrication d'un capteur optique comprenant un film ayant, sur lui, au
moins une monocouche auto-assemblante à motif, comprenant l'estampage d'au moins un
motif de monocouches auto-assemblantes sur un film polymère à revêtement métallique
;
procédé dans lequel la monocouche auto-assemblante (SAM) est estampée selon un
premier motif non-diffractant de telle sorte que, lorsque la SAM lie un analyte, le
film diffracte de la lumière transmise pour former un second motif, le second motif
étant un motif de diffraction ; et
le film polymère à revêtement métallique est, en outre, optiquement transparent.
18. Procédé selon la revendication 17, dans lequel le métal est choisi dans le groupe
consistant en l'or, l'argent, le nickel, le platine, l'aluminium, le fer, le cuivre
ou le zirconium.
19. Procédé selon la revendication 17, dans lequel le métal est l'or.
20. Procédé selon la revendication 19, dans lequel l'épaisseur du revêtement d'or est
comprise entre 1 nanomètre et 1 000 nanomètres.
21. Procédé selon la revendication 17, dans lequel le film polymère est en poly(téréphtalate
d'éthylène), acrylonitrile-butadiène-styrène, copolymère acrylonitrile-acrylate de
méthyle, cellophane, polymères cellulosiques, tels que éthylcellulose, acétate de
cellulose, acéto-butyrate de cellulose, propionate de cellulose, triacétate de cellulose,
en polyéthylène, copolymères polyéthylène-acétate de vinyle, ionomères (polymères
d'éthylène), copolymères polyéthylène-nylon, polypropylène, polymères de méthylpentène,
poly(fluorure de vinyle) et polysulfones aromatiques.
22. Procédé selon la revendication 21, dans lequel le film de polymère est en poly(téréphtalate
d'éthylène).
23. Procédé selon la revendication 17, dans lequel le film polymère ayant sur lui le revêtement
métallique a une transparence optique comprise entre 5 % et 95 %.
24. Procédé selon la revendication 17, dans lequel le film polymère ayant sur lui le revêtement
métallique a une transparence optique comprise entre 20 % et 80 %.
25. Procédé selon la revendication 17, dans lequel la monocouche auto-assemblante est
formée à partir de composés ayant la formule générale suivante :
X-R-Y
dans laquelle :
X est réactif avec le métal ou l'oxyde métallique présent sur le film polymère ;
R est une chaîne hydrocarbonée qui peut être facultativement interrompue par des hétéroatomes,
qui peut facultativement être perfluorée, et qui est de préférence non-ramifiée, ou
R est un composé de la forme (CH2)a-Z-(CH2)b, où a ≥ 0, b ≥ 7, et Z est toute fonctionnalité chimique présentant un intérêt, et
Y est un composé ayant toute propriété présentant un intérêt.
26. Procédé selon la revendication 25, dans lequel :
X est un radical disulfure asymétrique ou symétrique (-R'SSR, -RSSR), sulfure (-R'SR,
-RSR), diséléniure (-R'SeSeR), séléniure (-R'SeR, -RSeR), thiol (-SH), nitrile (-CN),
isonitrile, nitro (-NO2), sélénol (-SeH), des composés phosphoreux trivalents, des radicaux isothiocyanate,
xanthate, thiocarbamate, phosphine, thioacide ou dithioacide, des acides carboxyliques,
des acides hydroxyliques et des acides hydroxamiques ;
R et R', dans la définition de X, sont des chaînes hydrocarbonées qui peuvent être
facultativement interrompues par des hétéroatomes, qui peuvent être facultativement
perfluorées, et qui sont de préférence non-ramifiées ; et
Y est sélectionné dans le groupe consistant en les groupes hydroxy, carboxyle, amino,
aldéhyde, hydrazide, carbonyle, époxy et vinyle.
27. Procédé selon la revendication 25, dans lequel R est une chaîne d'une longueur de
plus de 7 atomes de carbone.
28. Procédé selon la revendication 25, dans lequel R est un composé de la forme (CH2) a-Z- (CH2) b, où a ≥ 0, b ≥ 7, et Z est toute fonctionnalité chimique présentant un intérêt.
29. Procédé selon la revendication 28, dans lequel Z est sélectionné dans le groupe consistant
en les sulfones, les lactames et l'urée.
30. Procédé selon la revendication 17, dans lequel il y a deux monocouches auto-assemblantes,
ou davantage, ayant des propriétés chimiques différentes.
31. Procédé selon la revendication 17, dans lequel une première monocouche auto-assemblante
est hydrophobe, et une seconde monocouche auto-assemblante est hydrophile.