[0001] This invention relates to papermaking and more specifically to a process for the
production of paper in which a cationic organic polymer having an aromatic group is
added to a high conductivity papermaking stock. The process provides improved drainage
and retention.
Background
[0002] In the papermaking art, an aqueous suspension containing cellulosic fibres, and optional
fillers and additives, referred to as stock, is fed into a headbox which ejects the
stock onto a forming wire. Water is drained from the stock through the forming wire
so that a wet web of paper is formed on the wire, and the web is further dewatered
and dried in the drying section of the paper machine. Water obtained by dewatering
the stock, referred to as white water, which usually contains fine particles, e.g.
fine fibres, fillers and additives, is normally recirculated in the papermaking process.
Drainage and retention aids are conventionally introduced into the stock in order
to facilitate drainage and increase adsorption of fine particles onto the cellulosic
fibres so that they are retained with the fibres on the wire. Cationic organic polymers
like cationic starch and cationic acrylamide-based polymers are widely used as drainage
and retention aids. These polymers can be used alone but more frequently they are
used in combination with other polymers and/or with anionic microparticulate materials
such as, for example, anionic inorganic particles like colloidal silica, colloidal
aluminium-modified silica and bentonite.
[0003] U.S. Pat. Nos. 4,980,025; 5,368,833; 5,603,805; and 5,607,552; European Pat. Appl.
No. 752,496; and Internat. Pat. Appl. Publ. No. WO 97/18351 disclose the use of cationic
and amphoteric acrylamide-based polymers and anionic inorganic particles as stock
additives in papermaking. These additives are among the most efficient drainage and
retention aids now in use. Similar systems are disclosed in European Pat. App. No.
805,234.
[0004] It has, however, been observed that the performance of drainage and retention aids
comprising cationic organic polymers is deteriorated when used in stocks with high
levels of salts, i.e. high conductivity, and dissolved and colloidal substances. Higher
dosages of cationic polymer are normally required in such stocks hut usually the drainage
and retention effect obtained is still not entirely satisfactory. These problems are
even more pronounced in paper mills where white water is extensively recirculated
with the introduction of only low amounts of fresh water into the process, thereby
further increasing the accumulation of salts and colloidal materials in the white
water and the stock to be dewatered.
The Invention
[0005] According to the present invention it has been found that improved drainage and retention
can be obtained in stocks containing high levels of salt (high conductivity) and colloidal
materials when using drainage and retention aids comprising a cationic organic polymer
having an aromatic group. More specifically, the present invention relates to a process
for the production of paper from a suspension containing cellulosic fibres, and optional
fillers, which comprises adding to the suspension a cationic organic polymer, forming
and dewatering the suspension on a wire, wherein the cationic organic polymer has
an aromatic group and the suspension being dewatered on the wire has a conductivity
of at least 2.0 mS/cm. In a preferred aspect of the invention, the process further
comprises forming and dewatering the suspension on a wire to obtain a wet web containing
cellulosic fibres, or paper, and white water, recirculating the white water and optionally
introducing fresh water to form a suspension containing cellulosic fibres, and optional
fillers, to be dewatered, wherein the amount of fresh water introduced is less than
30 tons per ton of dry paper produced. The invention thus relates to a process as
further defined in the claims.
[0006] The process of this invention results in improved drainage and/or retention when
using stocks having high contents of salt, and thus having high conductivity levels,
and colloidal materials. Hereby the present invention makes it possible to increase
the speed of the paper machine and to use lower dosages of additives to give a corresponding
drainage and/or retention effect, thereby leading to an improved papermaking process
and economic benefits. The invention is suitably applied to papermaking processes
using wood-containing fibre stocks and so-called dirty or difficult stocks, for example
those prepared from certain grades of recycled fibres, and/or processes with extensive
white water recirculation and limited fresh water supply and/or processes using fresh
water having high salt contents, in particular salts of di- and multivalent cations
like calcium.
[0007] The cationic organic polymer having an aromatic group according to this invention,
herein also referred to as "main polymer", is capable of functioning as a drainage
and/or retention aid. The term "drainage and/or retention aid", as used herein, refers
to one or more component which, when being added to a stock, give better drainage
and/or retention than is obtained when not adding the said one or more components.
Accordingly, the main polymer provides improved drainage and/or retention, either
when used alone or when used in conjunction with one or more additional stock additives.
The main polymer can be linear, branched or cross-linked, e.g. in the form of a microparticulate
material. Preferably the main polymer is water-soluble or water-dispersable, and it
can be derived from natural or synthetic sources. The aromatic group of the main polymer
can be present in the polymer backbone or be a pendent group or be present in a pendent
group. Suitable aromatic (aryl) groups include those comprising a phenyl group, optionally
substituted, a phenylene group, optionally substituted, and a naphthyl group, optionally
substituted, for example groups having the general formulae ―C
6H
5, ―C
6H
4―, ―C
6H
3―, and -C
6H
2-, e.g. in the form of phenylene (-C
6CH
4-), xylylene (―CH
2―C
6H
4―CH
2―), phenyl (―C
6H
5), benzyl (―CH
2―C
6H
5), phenethyl (―CH
2CH
2―C
6H
5), and substituted phenyl (for example ―C
6H
4―Y, ―C
6H
3Y
2, and ―C
6H
2Y
3) where one or more substituents (Y) attached to the phenyl ring can be selected from
hydroxyl, halides, e.g. chloride, nitro, and hydrocarbon groups having from 1 to 4
carbon atoms.
[0008] In a preferred embodiment of the invention, the main polymer is a synthetic polymer.
Synthetic main pOlymers can be selected from homopolymers and copolymers prepared
from one or more monomers comprising at least one monomer having an aromatic group.
Suitable main polymers include cationic vinyl addition polymers obtained by polymerzing
a cationic monomer or a monomer mixture comprising a cationic monomer represented
by the general formula (I):

wherein R
1 is H or CH
3; R
2 and R
3 are each an alkyl group having from 1 to 3 carbon atoms, usually 1 to 2 carbon atoms;
A
1 is O or NH; B
1 is an alkylene group having from 2 to 4 carbon atoms or a hydroxy propylene group;
Q is a substituent containing an aromatic group, suitably a phenyl or substituted
phenyl group, which can be attached to the nitrogen by means of an alkylene group
usually having from 1 to 3 carbon atoms, suitably 1 to 2 carbon atoms, and preferably
Q is a benzyl group (―CH
2―C
6H
5); and X
- is an anionic counterion, usually a halide like chloride. Examples of suitable monomers
represented by the general formula (I) include quaternary monomers obtained by treating
dialkylaminoalkyl (meth)acrylates, e.g. dimethylaminoethyl acrylate, dimethylaminoethyl
methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate and dimethylaminohydroxypropyl
acrylate, and dialkylaminoalkyl (meth)acrylamides, e.g. dimethylaminoethyl acrylamide,
dimethylaminoethyl methacrylamide, diethylaminoethyl acrylamide, diethylaminoethyl
methacrylamide, dimethylaminopropyl acrylamide, dimethylaminopropyl methacrylamide,
diethylaminopropyl acrylamide and diethylaminopropyl methacrylamide, with benzyl chloride.
Preferred cationic monomers of the general formula (I) include dimethylaminoethylacrylate
benzyl chloride quaternary salt and dimethylaminoethylmethacrylate benzyl chloride
quaternary salt.
[0009] The main polymer can be a homopolymer prepared from the cationic monomer represented
by the general formula (I) or a copolymer prepared from a monomer mixture comprising
the cationic monomer represented by the general formula (I) and one or more copolymerizable
monomers of other type. Copolymers can be prepared from a monomer mixture comprising
from 1 to 99 mole%, suitably from 2 to 50 mole% and preferably from 5 to 20 mole%
of the cationic monomer represented by the general formula (I), and from 99 to 1 mole%,,
suitably from 98 to 50 mole%, and preferably from 95 to 80 mole% of other copolymerizable
monomers.
[0010] Suitable copolymerizable nonionic monomers include acrylamide, methacrylamide, vinylamides
and monomers represented by the general formula (II):

wherein R
4 is H or CH
3; R
5 and R
6 are each an alkyl group having from 1 to 3 carbon atoms, usually 1 to 2 carbon atoms;
A
2 is O or NH; B
2 is an alkylene group of from 2 to 4 carbon atoms or a hydroxy propylene group. Examples
of suitable copolymerizable monomers of this type include acrylate-based monomers
like dialkylaminoalkyl (meth)acrylates, e.g. dimethylaminoethyl acrylate, dimethylaminoethyl
methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, and dimethylaminohydroxypropyl
acrylate, as well as acrylamide-based monomers like diallrylaminoalkyl (meth)acrylamides,
e.g. dimethylaminoethyl acrylamide, dimethylaminoethyl methacrylamide, diethylaminoethyl
acrylamide, diethylaminoethyl methacrylamide, dimethylaminopropyl acrylamide, dimethylaminopropyl
methacrylamide, diethylaminopropyl acrylamide, and diethylaminopropyl methacrylamide.
Preferred copolymerizable nonionic monomers include acrylamide and methacrylamide.
The main polymer is preferably an acrylamide-based polymer.
[0011] Suitable copolymerizable cationic monomers include the monomers represented by the
general formula (III):

wherein R
7 is H or CH
3; R
8, R
9 and R
10 are each an alkyl group having from 1 to 3 carbon atoms, usually 1 to 2 carbon atoms;
A
3 is O or NH; B
3 is an alkylene group of from 2 to 4 carbon atoms or a hydroxy propylene group, and
X
- is an anionic counterion, usually methylsulphate or a halide like chloride. Examples
of suitable cationic copolymerizable monomers include acid addition salts and quaternary
ammonium salts of the dialkyl-aminoalkyl (meth)acrylates and dialkylaminoalkyl (meth)acrylamides
mentioned above, usually prepared using acids like HCl, H
2SO
4, etc., or quaternizing agents like methyl chloride, dimethyl sulphate, etc.; and
diallyldimethylammonium chloride. Preferred copolymerizable cationic monomers include
include dimethylaminoethylacrylate methyl chloride quaternary salt, dimethylaminoethylmethacrylate
methyl chloride quaternary salt and diallyldimethylammonium chloride. Copolymerzable
anionic monomers like acrylic acid, methacrylic acid, various sulfonated vinyl addition
monomers, etc. can also be employed and, preferably, in minor amounts.
[0012] The main polymer can also be selected from polymers prepared by condensation reaction
of one or more monomers containing an aromatic group. Examples of such monomers include
toluene diisocyanates, bisphenol A, phthalic acid, phthalic anhydride, etc., which
can be used in the preparation of cationic polyurethanes, cationic polyamide-amines,
etc.
[0013] Alternatively, or additionally, the main polymer can be a polymer subjected to aromatic
modification using an agent containing an aromatic group. Suitable modifying agents
of this type include benzyl chloride and benzyl bromide. If the polymer contains a
tertiary nitrogen which can be quaternized by the modifying agent, the use of such
agents usually results in that the polymer is rendered cationic. Alternatively, the
polymer to be subjected to aromatic modification can be cationic. In a preferred embodiment,
polymers subjected to aromatic modification are derived from natural sources. Examples
of suitable main polymers of this type include aromatically-modified cationic polysaccharides
such as, for example, cationic starches and cationic guar gums.
[0014] Usually the charge density of the main polymer is within the range of from 0.1 to
6.0 meqv/g of dry polymer, suitably from 0.2 to 4.0 and preferably from 0.5 to 3.0.
The molecular weight of synthetic main polymers is usually at least 500,000, suitably
above 1,000,000 and preferably above 2,000,000. The upper limit is not critical; it
can be about 50,000,000, usually 30,000,000 and suitably 25,000,000. The molecular
weight of main polymers derived from natural sources may be the same, although deviations
from these values may occur.
[0015] The main polymer of this invention may be in any state of aggregation such as, for
example, in solid form, e.g. powders, in liquid form, e.g. solutions, emulsions, dispersions,
including salt dispersions, etc. Examples of suitable main polymers for use in this
invention include those described in U.S. Pat. Nos. 5,169,540; 5,708,071; and European
Pat. Appl. Nos. 183,466; 525,751 and 805,234; the disclosures of which are hereby
incorporated herein by reference. When being added to the stock, the main polymer
is suitably in liquid form, e.g. in the form of an aqueous solution or dispersion.
[0016] The main polymer can be added into the stock to be dewatered in amounts which can
vary within wide limits depending on, inter alia, type of stock, salt content, type
of salts, filler content, type of filler, point of addition, etc. Generally the main
polymer is added in an amount that give better retention than is obtained when not
adding it. The main polymer is usually added in an amount of at least 0.001%, often
at least 0.005% by weight, based on dry stock substance, whereas the upper limit is
usually 3% and suitably 1.5% by weight.
[0017] In a preferred embodiment of this invention, the main polymer is used in conjunction
with an additional stock additive, thereby forming a drainage and retention aid comprising
two or more components, usually refered to as "drainage and/or retention system".
Examples of suitable stock additives of this type include anionic microparticulate
materials, e.g. anionic organic particles and anionic inorganic particles, water-soluble
anionic vinyl addition polymers, low molecular weight cationic organic polymers, aluminium
compounds, and combinations thereof. In a preferred aspect of this embodiment, the
main polymer is used in conjunction with an anionic microparticulate material, notably
with anionic inorganic particles. In another preferred aspect of this embodiment,
the main polymer is used in conjunction with anionic inorganic particles and a low
molecular weight cationic organic polymer. In yet another preferred aspect of this
embodiment, the main polymer is used in conjunction with anionic inorganic particles
and an aluminium compound.
[0018] Anionic inorganic particles that can be used according to the invention include anionic
silica-based particles and clays of the smectite type. It is preferred that the anionic
inorganic particles are in the colloidal range of particle size. Anionic silica-based
particles, i.e. particles based on SiO
2 or silicic acid, including colloidal silica, different types of polysilicic acid,
colloidal aluminium-modified silica or aluminium silicates, and mixtures thereof,
are preferably used. Anionic silica-based particles are usually supplied in the form
of aqueous colloidal dispersions, so-called sols. Drainage and/or retention aids comprising
suitable anionic silica-based particles are disclosed in U.S. Pat. Nos. 4,388,150;
4,927,498; 4,954,220; 4,961,825; 4,980,025; 5,127,994; 5,176,891; 5,368,833; 5,447,604;
5,470,435; 5,543,014; 5,571,494; 5,573,674; 5,584,966; 5,603,805; 5,688,482; and 5,707,493;
which are all hereby incorporated herein by reference.
[0019] Anionic silica-based particles suitably have an average particle size below about
50 nm, preferably below about 20 nm and more preferably in the range of from about
1 to about 10 nm. As conventional in silica chemistry, the particle size refers to
the average size of the primary particles, which may be aggregated or non-aggregated.
The specific surface area of the silica-based particles is suitably above 50 m
2/g and preferably above 100 m
2/g. Generally, the specific surface area can be up to about 1700 m
2/g and preferably up to 1000 m
2/g. The specific surface area can be measured by means of titration with NaOH in known
manner, e.g. as described by Sears in Analytical Chemistry 28(1956):12, 1981-1983
and in U.S. Pat. No. 5,176,891. The given area thus represents the average specific
surface area of the particles.
[0020] In a preferred embodiment of the invention, the anionic inorganic particles are silica-based
particles, e.g. colloidal silica or aluminium-modified silica, having a specific surface
area within the range of from 50 to 1000 m
2/g and preferably from 100 to 950 m
2/g. Preferably, the anionic inorganic particles are present in a silica sol having
an S-value in the range of from 8 to 45%, preferably from 10 to 30%, containing silica
particles with a specific surface area in the range of from 300 to 1000 m
2/g, suitably from 500 to 950 m
2/g, and preferably from 750 to 950 m
2/g, which particles can be non-aluminum-modified or aluminium-modified, suitably aluminium-modified
and preferably the particles are surface-modified with aluminium to a degree of from
2 to 25% substitution of silicon atoms. The S-value can be measured and calculated
as described by Iler & Dalton in J. Phys. Chem. 60(1956), 955-957. The S-value indicates
the degree of aggregate or microgel formation and a lower S-value is indicative of
a higher degree of aggregation.
[0021] In yet another preferred embodiment of the invention, the anionic inorganic particles
are selected from polysilicic acid and colloidal aluminium-modified silica or aluminium
silicate having a high specific surface area, suitably above about 1000 m
2/g. The specific surface area can be within the range of from 1000 to 1700 m
2/g and preferably from 1050 to 1600 m
2/g. In the art, polysilicic acid is also referred to as polymeric silicic acid, polysilicic
acid microgel, polysilicate and polysilicate microgel, which are all encompassed by
the term polysilicic acid used herein. Aluminium-containing compounds of this type
are commonly also referred to as polyaluminosilicate and polyaluminosilicate microgel,
which are both encompassed by the terms colloidal aluminium-modified silica and aluminium
silicate used herein.
[0022] Clays of the smectite type that can be used in the process of the invention are known
in the art and include naturally occurring, synthetic and chemically treated materials.
Examples of suitable smectite clays include montmorillonite/bentonite, hectorite,
beidelite, nontronite and saponite, preferably bentonite and especially such bentonite
which after swelling preferably has a surface area of from 400 to 800 m
2/g. Suitable clays are disclosed in U.S. Pat. Nos. 4,753,710; 5,071,512; and 5,607,552,
which are hereby incorporated herein by reference, the latter patent disclosing mixtures
of anionic silica-based particles and smectite clays, preferably natural bentonites.
[0023] Anionic organic particles that can be used according to the invention include highly
cross-linked anionic vinyl addition polymers, suitably copolymers comprising an anionic
monomer like acrylic acid, methacrylic acid and sulfonated vinyl addition monomers,
usually copolymerized with nonionic monomers like (meth)acrylamide, alkyl (meth)acrylates,
etc. Useful anionic organic particles also include anionic condensation polymers,
e.g. melamine-sulfonic acid sols. Water-soluble anionic vinyl addition polymers that
can be used according to the invention include copolymers comprising an anionic monomer
like acrylic acid, methacrylic acid and sulfonated vinyl addition monomers, usually
copolymerized with nonionic monomers like acrylamide, alkyl acrylates, etc., for example
those disclosed in U.S. Pat. Nos. 5,098,520 and 5,185,062, the teachings of which
are incorporated herein by reference.
[0024] Low molecular weight (hereinafter LMW) cationic organic polymers that can be used
according to the invention include those commonly referred to and used as anionic
trash catchers (ATC). ATC's are known in the art as neutralizing and/or fixing agents
for detrimental anionic substances present in the stock and the use thereof in combination
with drainage and/or retention aids often provide further improved drainage and/or
retention. The LMW cationic organic polymer can be derived from natural or synthetic
sources, and preferably it is an LMW synthetic polymer. Suitable organic polymers
of this type include LMW highly charged cationic organic polymers such as polyamines,
polyethyleneimines, homo- and copolymers based on diallyldimethyl ammonium chloride,
(meth)acrylamides and (meth)acrylates. In relation to the molecular weight of the
main polymer, the molecular weight of the LMW cationic organic polymer is preferably
lower; it is suitably at least 2,000 and preferably at least 10,000. The upper limit
of the molecular weight is usually about 700,000, suitably about 500,000 and usually
about 200,000.
[0025] Aluminum compounds that can be used according to the invention include alum, aluminates,
aluminium chloride, aluminium nitrate and polyaluminium compounds, such as polyaluminium
chlorides, polyaluminium sulphates, polyaluminium compounds containing both chloride
and sulphate ions, polyaluminium silicate-sulphates, and mixtures thereof. The polyaluminium
compounds may also contain other anions than chloride ions, for example anions from
sulfuric acid, phosphoric acid, organic acids such as citric acid and oxalic acid.
[0026] The components of the drainage and/or retention aids according to the invention can
be added to the stock in conventional manner and in any order. When using drainage
and/or retention aids comprising a main polymer and an anionic microparticulate material,
notably anionic inorganic particles, it is preferred to add the main polymer to the
stock before adding the microparticulate material, even if the opposite order of addition
may be used. It is further preferred to add the main polymer before a shear stage,
which can be selected from pumping, mixing, cleaning, etc., and to add the anionic
particles after that shear stage. When using an LMW cationic organic polymer or an
aluminum compound, such components are preferably introduced into the stock prior
to introducing the main polymer, optionally used in conjunction with an anionic microparticulate
material. Alternatively, the LMW cationic organic polymer and the main polymer can
be introduced into stock essentially simultaneously, either separately or in admixture,
for example as disclosed in Eur. Pat. Appl. No. 752,496, which is hereby incorporated
herein by reference. The LMW cationic organic polymer and the main polymer are preferably
introduced into the stock prior to introducing an anionic microparticulate material.
[0027] The components of the drainage and/or retention aids according to the invention are
added to the stock to be dewatered in amounts which can vary within wide limits depending
on, inter alia, type and number of components, type of stock, salt content, type of
salts, filler content, type of filler, point of addition, etc. Generally the components
are added in amounts that give better retention than is obtained when not adding the
components. The main polymer is usually added in an amount of at least 0.001%, often
at least 0.005% by weight, based on dry stock substance, and the upper limit is usually
3% and suitably 1.5% by weight. Similar amounts are suitable for water-soluble anionic
vinyl addition polymers, if used. When using an anionic microparticulate material
in the process, the total amount added is usually at least 0.001% by weight, often
at least 0.005% by weight, based on dry substance of the stock, and the upper limit
is usually 1.0% and suitably 0.6% by weight. When using anionic silica-based particles,
the total amount added is suitably within the range of from 0.005 to 0.5% by weight,
calculated as SiO
2 and based on dry stock substance, preferably within the range of from 0.01 to 0.2%
by weight. When using an LMW cationic organic polymer in the process, it can be added
in an amount of at least 0.05%, based on dry substance of the stock to be dewatered.
Suitably, the amount is in the range of from 0.07 to 0.5%, preferably in the range
from 0.1 to 0.35%. When using an aluminium compound in the process, the total amount
introduced into the stock to be dewatered depends on the type of aluminium compound
used and on other effects desired from it. It is for instance well-known in the art
to utilize aluminium compounds as precipitants for rosin-based sizing agents. The
total amount added is usually at least 0.05%, calculated as Al
2O
3 and based on dry stock substance. Suitably the amount is in the range of from 0.5
to 3.0%, preferably in the range from 0.1 to 2.0%.
[0028] The process of this invention is preferably used in the manufacture of paper from
a suspension containing cellulosic fibers, and optional fillers, i.e. a stock, which
has a high conductivity. Usually, the conductivity of the stock that is dewatered
on the wire is at least 2.0 mS/cm, suitably at least 3.5 mS/cm, preferably at least
5.0 mS/cm and most preferably at least 7.5 mS/cm. Conductivity can be measured by
standard equipment such as, for example, a WTW LF 539 instrument supplied by Christian
Berner. High conductivity levels mean high contents of salts, where the various salts
can be based on mono-, di- and multivalent cations like alkali metals, e.g. Na
+ and K
+, alkaline earths, e.g. Ca
2+ and Mg
2+, aluminium ions, e.g. Al
3+, Al(OH)
2+ and polyaluminium ions, and mono-, di- and multivalent anions like halides, e.g.,
Cl
-, sulfates, e.g. SO
42- and HSO
4-, carbonates, e.g. CO
32- and HCO
3-, silicates and lower organic acids. The invention is particularly useful in the manufacture
of paper from stocks having high contents of salts of di- and multivalent cations,
and usually the content of di- and multivalent cations is at least 200 ppm, suitably
at least 300 pm and preferably at least 400 ppm. The salts can be derived from the
stock preparation stage, i.e. from the materials used to form the stock, e.g. water,
cellulosic fibres and fillers, in particular in integrated mills where concentrated
aqueous fibre suspension from the pulp mill normally is mixed with water to form a
dilute suspension suitable for paper manufacture in the paper mill. The salt may also
be derived from various additives introduced into the stock, from the fresh water
supplied to the process, etc. Further, the content of salts is usually higher in processes
where white water is extensively recirculated, which may lead to considerable accumulation
of salts in the water circulating in the process. Accordingly, the invention is further
suitably used in papermaking processes where white water is extensively recirculated,
i.e. with a high degree of white water closure, for example where from 0 to 30 tons
of fresh water are used per ton of dry paper produced, usually less than 20, suitably
less than 15, preferably less than 10 and notably less than 5 tons of fresh water
per ton of paper. Recirculation of white water obtained in the process suitably comprises
mixing the white water with cellulosic fibres and/or optional fillers to form a suspension
to be dewatered; preferably it comprises mixing the white water with a suspension
containing cellulosic fibres, and optional fillers, before the suspension enters the
forming wire for dewatering. The white water can be mixed with the suspension before,
between, simultaneous with or after introducing the components of drainage and/or
retention aids, if used; and before, simultaneous with or after introducing the main
polymer. Fresh water can be introduced in the process at any stage; for example, it
can be mixed with cellulosic fibres in order to form a suspension, and it can be mixed
with a suspension containing cellulosic fibres to dilute it so as to form the suspension
to be dewatered, before, simultaneous with or after mixing the stock with white water
and before, between, simultaneous with or after introducing the components of drainage
and/or retention aids, if used; and before, simultaneous with or after introducing
the main polymer.
[0029] Further additives which are conventional in papermaking can of course be used in
combination with the additive(s) according to the invention, such as, for example,
dry strength agents, wet strength agents, optical brightening agents, dyes, sizing
agents like rosin-based sizing agents and cellulose-reactive sizing agents, e.g. alkyl
ketene dimers and alkenyl succinic anhydrides, etc. The cellulosic suspension, or
stock, can also contain mineral fillers of conventional types such as, for example,
kaolin, china clay, titanium dioxide, gypsum, talc and natural and synthetic calcium
carbonates such as chalk, ground marble and precipitated calcium carbonate.
[0030] The process of this invention is used for the production of paper. The term "paper",
as used herein, of course include not only paper and the production thereof, but also
other cellulosic fibre-containing sheet or web-like products, such as for example
board and paperboard, and the production thereof. The process can be used in the production
of paper from different types of suspensions of cellulose-containing fibres and the
suspensions should suitably contain at least 25% by weight and preferably at least
50% by weight of such fibres, based on dry substance. The suspension can be based
on fibres from chemical pulp such as sulphate, sulphite and organosolv pulps, mechanical
pulp such as thermomechanical pulp, chemo-thermomechanical pulp, refiner pulp and
groundwood pulp, from both hardwood and softwood, and can also be based on recycled
fibres, optionally from de-inked pulps, and mixtures thereof.
[0031] The invention is further illustrated in the following Examples which, however, are
not intended to limit the same. Parts and % relate to parts by weight and % by weight,
respectively, unless otherwise stated.
Example 1 (Comparison)
[0032] Drainage performance was evaluated by means of a Dynamic Drainage Analyser (DDA),
available from Akribi, Sweden, which measures the time for draining a set volume of
stock through a wire when removing a plug and applying vacuum to that side of the
wire opposite to the side on which the stock is present.
[0033] The furnish used was based on 70% by weight of pulp of bleached birch/pine sulphate
(60/40) refined to 200°CSF and 30% by weight of ground marble. Stock volume was 800
ml, consistency 0.3% and pH about 8.
[0034] Conductivity of the stock was adjusted to 0.47 mS/cm by addition of sodium sulphate.
The stock was stirred in a baffled jar at a speed of 1500 rpm throughout the test
and chemicals additions were conducted as follows: i) adding cationic polymer to the
stock following by stirring for 30 seconds, ii) adding anionic inorganic particles
to the stock followed by stirring for 15 seconds, iii) draining the stock while automatically
recording the drainage time.
[0035] The polymers used for in the test series were P1) a cationic copolymer prepared by
polymerisation of acrylamide (90 mole%) and acryloxyethyldimethylbenzylammonium chloride
(10 mole%) and having an average molecular weight of about 6,000,000; and P2) a cationic
copolymer prepared by polymerisation of acrylamide (90 mole%) and acryloxyethyltrimethylammonium
chloride (10 mole%) and having an average molecular weight of about 6,000,000. The
polymers P1 and P2 were dissolved in water and used as 0.1% aqueous solutions.
[0036] The anionic inorganic particles used were silica-based particles of the type disclosed
in US 5,368,833. The sol had an S-value of about 25% and contained silica particles
with a specific surface area of about 900 m
2/g which were surface-modified with aluminium to a degree of 5%. The silica-based
particles were added in an amount of 1.0 kg/ton, calculated as SiO
2 and based on dry stock system.
[0037] Table 1 shows the drainage time at various dosages of P1 and P2, calculated as dry
polymer on dry stock system.
Table 1
Test No. |
Polymer dosage [kg/t] |
SiO2 dosage [kg/t] |
Conductivity [mS/cm] |
Dewatering time [s] |
|
|
|
|
P1 |
P2 |
1 |
0 |
0 |
0.47 |
18.4 |
18.4 |
2 |
1 |
1 |
0.47 |
12.5 |
10.6 |
3 |
1.5 |
1 |
0.47 |
6.9 |
5.6 |
4 |
2 |
1 |
0.47 |
4.9 |
4.3 |
Example 2 (Comparison)
[0038] Dewatering and retention effect was evaluated by means of the DDA used in Example
1 in combination with a nephelometer. First pass retention was evaluated by measuring
the turbidity of the filtrate, the white water, obtained by draining the stock.
[0039] The furnish used was based on 56% by weight of peroxide bleached TMP/SGW pulp (80/20),
14% by weight of bleached birch/pine sulphate pulp (60/40) refined to 200° CSF and
30% by weight of china clay. To the stock was added 40 g/l of a colloidal fraction,
bleach water from an SC mill, filtrated through a 5 µm screen and concentrated with
an UF filter, cut off 200,000. Stock volume was 800 ml, consistency 0.14% and pH was
adjusted to 4.0 using dilute sulphuric acid. The conductivity was adjusted by addition
of calcium chloride (60 ppm Ca), magnesium sulphate (18 ppm Mg) and sodium bicarbonate
(134 ppm HCO
3).
[0040] The polymers and anionic inorganic particles according to Example 1 were similarly
used in this test series. Two dosages of polymers were used, 1 kg/t and 2 kg/t, respectively,
calculated as dry polymer on dry stock system. Table 2 shows the dewatering and retention
effect at various dosages of silica-based particles, calculated as SiO
2 and based on dry stock system.
Table 2
Test No. |
Polymer dosage [kg/t] |
SiO2 dosage [kg/t] |
Conductivity [mS/cm] |
Dewatering time [s] |
Turbidity [NTU] |
|
|
|
|
P1 |
P2 |
P1 |
P2 |
1 |
1 |
0 |
1.375 |
21.2 |
18.7 |
63 |
55 |
2 |
1 |
1 |
1.375 |
17.2 |
16.1 |
67 |
60 |
3 |
1 |
2 |
1.375 |
21.2 |
18.6 |
66 |
57 |
4 |
2 |
0 |
1.375 |
15.2 |
14.2 |
47 |
45 |
5 |
2 |
1 |
1.375 |
11 |
9.9 |
47 |
47 |
6 |
2 |
2 |
1.375 |
11.4 |
10.8 |
45 |
50 |
Example 3
[0041] In this test series, the dewatering and retention effect was evaluated according
to the procedure descibed in Example 2.
[0042] The furnish used was the same as used in Example 2. Stock volume was 800 ml and pH
about 7. The conductivity was adjusted by addition of calcium chloride.
[0043] The polymers and anionic inorganic particles according to Example 1 were similarly
used in this test series.
[0044] Table 3 shows the dewatering and retention effect at various dosages of silica-based
particles, calculated as SiO
2 and based on dry stock system.
Table 3
Test No. |
Polymer dosage [kg/t] |
SiO2 dosage [kg/t] |
Conductivity [mS/cm] |
Dewatering time [s] |
Turbidity [NTU] |
|
|
|
|
P1 |
P2 |
P1 |
P2 |
|
|
|
990 ppm Ca |
|
|
|
|
1 |
2 |
0 |
5.5 |
14.2 |
19.2 |
42 |
64 |
2 |
2 |
1 |
5.5 |
10.8 |
13.9 |
41 |
43 |
3 |
2 |
2 |
5.5 |
7.7 |
9.5 |
35 |
36 |
4 |
2 |
3 |
5.5 |
7.3 |
8.9 |
32 |
39 |
|
|
|
1300 ppm Ca |
|
|
|
|
5 |
2 |
0 |
7.0 |
16.2 |
23.0 |
46 |
50 |
6 |
2 |
1 |
7.0 |
10.0 |
17.1 |
40 |
45 |
7 |
2 |
2 |
7.0 |
7.5 |
13.6 |
36 |
44 |
8 |
2 |
3 |
7.0 |
7.7 |
11.7 |
34 |
44 |
|
|
|
1930 ppm Ca |
|
|
|
|
9 |
2 |
0 |
10.0 |
18.7 |
22.0 |
44 |
58 |
10 |
2 |
1 |
10.0 |
11.6 |
23.3 |
39 |
52 |
11 |
2 |
2 |
10.0 |
8.2 |
15.8 |
36 |
53 |
12 |
2 |
3 |
10.0 |
8.0 |
15.4 |
41 |
47 |
Example 4
[0045] In this test series, the dewatering effect was evaluated with a "Canadian Standard
Freeness Tester" which is the conventional method for characterising drainage according
to SCAN-C 21:65. All additions of chemicals were made in a "Britt Dynamic Drainage
Jar" with blocked outlet at a stirring speed of 1000 rpm during 45 seconds according
to the procedure of Example 1 and the stock system was then transferred to the Freeness
apparatus. Here the smallest hole in the bottom of the Freeness tester was blocked
and the time for 400 ml of furnish to filtrate through the screen was measured. The
stock was taken from a closed mill using waste paper. Consistency was 0.14%, conductivity
8.0 mS/cm and pH about 7. Table 4 shows the dewatering effect at various dosages of
silica-based particles, calculated as SiO
2 and based on dry stock system
Table 4
Test No. |
Polymer dosage [kg/t] |
SiO2 dosage [kg/t] |
Conductivity [mS/cm] |
Dewatering time [s] |
|
|
|
|
P1 |
P2 |
1 |
0.6 |
0 |
8.0 |
100.4 |
103.2 |
2 |
0.6 |
0.25 |
8.0 |
66.4 |
92.5 |
3 |
0.6 |
0.5 |
8.0 |
58.3 |
85.8 |
4 |
0.6 |
0.75 |
8.0 |
50.0 |
76.0 |
5 |
0.6 |
1 |
8.0 |
44.6 |
79.2 |
Example 5
[0046] In this test series, the dewatering effect was evaluated as in Example 3, except
that both sodium acetate (550 ppm Na) and calcium chloride (1300 ppm Ca) was used
to adjust the conductivity.
[0047] The polymers and anionic inorganic particles according to Example 1 were similarly
used in this test series.
[0048] Table 5 shows the dewatering effect at various dosages of silica-based particles,
calculated as SiO
2 and based on dry stock system.
Table 5
Test No. |
Polymer dosage [kg/t] |
SiO2 dosage [kg/t] |
Conductivity [mS/cm] |
Dewatering time [s] |
|
|
|
|
P1 |
P2 |
1 |
2 |
1 |
2.5 |
16.1 |
18.2 |
2 |
1 |
3 |
10.0 |
10.7 |
14.7 |
3 |
2 |
3 |
10.0 |
6.8 |
13.5 |
4 |
3 |
3 |
10.0 |
5.3 |
14.0 |
5 |
2 |
1 |
10.0 |
9.7 |
20.4 |
6 |
2 |
2 |
10.0 |
7.9 |
14.8 |
Example 6
[0049] In this test series, the dewatering and retention effect was evaluated as in Example
3, using a combination of sodium acetate (550 ppm Na) and calcium chloride (1300 ppm
Ca) to adjust the conductivity.
[0050] The polymers according to Example 1 were similarly used in this test series. The
anionic microparticulate material used was hydrated suspension of powdered Na-bentonite
in water. The bentonite had a surface charge of about 0.33 meq/g and a swelling ability
of 41 ml (2 g). The bentonite particles were added in an amount of 8.0 kg/ton, calculated
as dry bentonite on dry stock system
[0051] Table 6 shows the dewatering and retention effect at various dosages of P1 and P2,
calculated as dry polymer on dry stock system.
Table 6
Test No. |
Polymer dosage [kg/t] |
Bentonote dosage [kg/t] |
Conductivity [mS/cm] |
Dewatering time [s] |
Turbidity [NTU] |
|
|
|
|
P1 |
P2 |
P1 |
P2 |
1 |
1 |
8 |
10.0 |
13.6 |
18.5 |
41 |
47 |
2 |
2 |
8 |
10.0 |
10.8 |
20.6 |
29 |
41 |
3 |
3 |
8 |
10.0 |
8.48 |
24.8 |
20 |
36 |
4 |
4 |
8 |
10.0 |
7.42 |
26.6 |
18 |
36 |
Example 7
[0052] In this test series, the dewatering effect was evaluated as in Example 6, except
that sodium chloride was used to adjust the conductivity.
[0053] The polymers and bentonite according to Example 6 were similarly used in these tests.
The bentonite particles were added in an amount of 8.0 kg/ton, calculated as dry bentonite
on dry stock system. Table 7 shows the dewatering and retention effect at various
dosages of P1 and P2, calculated as dry polymer on dry stock system.
Table 7
Test No. |
Polymer dosage [kg/t] |
Bentonite dosage [kg/t] |
Conductivity [mS/cm] |
Dewatering time [s] |
|
|
|
|
P1 |
P2 |
|
|
|
550 ppm Na |
|
|
1 |
2 |
8 |
2.5 |
15.3 |
17.5 |
2 |
3 |
8 |
2.5 |
11.9 |
14.1 |
3 |
4 |
8 |
2.5 |
8.6 |
9.8 |
4 |
5 |
8 |
2.5 |
6.8 |
8.2 |
|
|
|
3320 ppm Na |
|
|
5 |
2 |
8 |
10.0 |
12.7 |
15.5 |
6 |
3 |
8 |
10.0 |
9.4 |
12.5 |
7 |
4 |
8 |
10.0 |
6.9 |
10.9 |
8 |
5 |
8 |
10.0 |
5.6 |
10.0 |
Example 8
[0054] In this test series, the dewatering effect was ealuated as in Example 3, except that
zink chloride was used to adjust the conductivity. The polymers and anionic inorganic
particles according to Example 1 were similarly used in these tests.
[0055] Table 8 shows the results of the dewatering tests at various dosages of silica-based
particles, calculated as as SiO
2 and based on dry stock system.
Table 8
Test No. |
Polymer dosage [kg/t] |
SiO2 dosage [kg/t] |
Conductivity [mS/cm] |
Dewatering time [s] |
|
|
|
|
P1 |
P2 |
|
|
|
700 ppm Zn |
|
|
1 |
2 |
0 |
2.4 |
13.6 |
22.7 |
2 |
2 |
1 |
2.4 |
7.9 |
8.5 |
3 |
2 |
2 |
2.4 |
5.5 |
5.6 |
|
|
|
1400 ppm Zn |
|
|
4 |
2 |
0 |
4.5 |
18.0 |
28.0 |
5 |
2 |
2 |
4.5 |
6.3 |
11.4 |