EP 0 955 619 A1

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication:

10.11.1999 Bulletin 1999/45

(51) Int Cl.6: G08G 1/097

(11)

(21) Numéro de dépôt: 99401083.3

(22) Date de dépôt: 04.05.1999

(84) Etats contractants désignés:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Etats d'extension désignés:

AL LT LV MK RO SI

(30) Priorité: 05.05.1998 FR 9805661

(71) Demandeur: SAGEM SA 75116 Paris (FR)

(72) Inventeurs:

 Chanal, Cyrille 75020 Paris (FR)

Manac'h, Stéphane
 78510 Triel sur Seine (FR)

(74) Mandataire: Bloch, Robert2, square de l'Avenue du Bois75116 Paris (FR)

(54) Procédé de gestion d'une source de lumière de signalisation routière

(57) Selon le procédé de gestion d'une source de lumière comportant des éléments lumineux (11 - 18) reliés selon une pluralité de branches alimentées en courant en parallèle et formées chacune de plusieurs éléments lumineux (11 - 18) en série, le bon fonctionnement de chaque élément (11 - 18) est contrôlé individuellement, en accèdant à un ensemble de bornes homologues (51 - 58) des éléments lumineux (11 - 18) et en comparant la tension de chaque borne à celle d'une borne d'un élément lumineux électriquement adjacente pour localiser un élément lumineux (11-18) défectueux, et l'alimentation en courant (3, 4) est commandée pour maintenir constant le flux lumineux de la source.

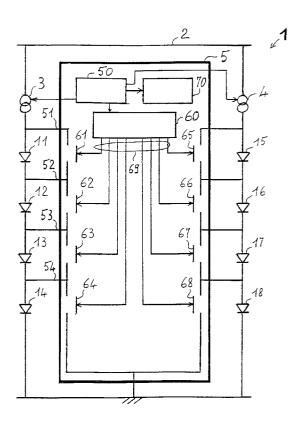


FIGURE UNIQUE

EP 0 955 619 A1

20

35

Description

[0001] La signalisation routière fait appel à des équipements lumineux de signalisation lorsqu'il s'agit de pouvoir modifier les signalisations ou encore lorsqu'elles risquent d'être invisibles la nuit. C'est le cas des feux de signalisation ou encore des panneaux indicateurs en forme de caisson comportant une plaque avant transparente portant une indication et éclairée par une source logée dans le caisson.

[0002] Comme source, on peut utiliser une ampoule à incandescence ou à halogène, qui présentent l'intérêt d'avoir une puissance optique élevée. Afin d'éviter une défaillance totale, inacceptable dans l'application à un feu rouge de régulation de circulation, on monte deux ampoules en parallèle. Comme la défaillance d'une ampoule se traduit par sa coupure, il n'y a donc pas de court-circuit et l'autre ampoule reste alimentée.

[0003] Cependant, la source lumineuse a alors perdu la moitié de sa puissance et est alors hors des spécifications fixées. En outre, toute nouvelle panne serait fatale.

[0004] Lorsque la puissance lumineuse nécessaire est relativement limitée, pour un tableau d'affichage de signalisation ou pour le répéteur, de taille réduite, de feux tricolores situé à mi-hauteur d'une potence de feux de signalisation, on utilise une pluralité de sources lumineuses basse tension, constituées chacune d'une diode électroluminescente. Le grand nombre de telles diodes vise à pallier toute défaillance totale de la source lumineuse.

[0005] Chaque diode, fonctionnant sous une très basse tension, de quelques volts, nécessite une énergie électrique déterminée, c'est-à-dire en pratique un courant déterminé.

[0006] On ne peut cependant pas brancher toutes les diodes en série et les alimenter, sous tension moyenne, par un même courant car toute coupure de l'une interromprait le courant commun.

[0007] Une solution connue consiste à monter en parallèle plusieurs branches constituées de diodes en série. De cette façon, toute défaillance, par coupure d'une diode dans une branche, ne se traduit que par une baisse de puissance d'autant plus limitée qu'est élevé le nombre de branches, ou taux de redondance. Cependant, la multiplication des diodes augmente d'autant les probabilités de défaillances dans cette pluralité de diodes et de mise hors service d'autant de branches.

[0008] Il faut donc pouvoir localiser dans chaque branche toute diode défectueuse devenue inefficace qui, en outre va perturber les autres diodes de la branche : coupée elle les met hors service, tandis que, en court-circuit, elle risque d'accroître excessivement le courant.

[0009] Dans le cas de la coupure, une simple mesure du courant des branches, ou de la puissance optique totale, permet de détecter un défaut, mais sans localisation de la diode défectueuse. Dans le cas du court-

circuit. le défaut est difficilement détectable.

[0010] Pour assurer un compromis entre la fréquence des opérations de maintenance et le risque de baisse excessive de puissance optique, il faut donc, d'une part, localiser automatiquement les diodes défectueuses et masquer l'effet de cette défaillance et, d'autre part, détecter qu'il s'est produit un certain nombre de défaillances et que le risque de ne plus pouvoir masquer de nouvelles défaillances devient important.

10 **[0011]** La présente invention vise à résoudre le problème de localisation des diodes défectueuses.

[0012] A cet effet, l'invention concerne un procédé de gestion d'une source de lumière comportant des éléments lumineux reliés selon une pluralité de branches alimentées en courant en parallèle et formées chacune de plusieurs éléments lumineux en série, caractérisé par le fait que le bon fonctionnement de chaque élément est contrôlé individuellement et que l'alimentation en courant est commandée pour maintenir constant le flux lumineux de la source.

[0013] L'invention sera mieux comprise à l'aide de la description suivante d'un mode préféré de mise en oeuvre du procédé de l'invention, en référence à la figure unique, qui représente schématiquement une carte à diodes électroluminescentes d'un répéteur de feu de signalisation routière.

[0014] Il est représenté une carte 1 de circuit imprimé, intégrée, dans cet exemple, à un feu répéteur de signalisation routière monté sur le poteau d'une potence de feux. La carte 1 présente en pratique une forme circulaire de la taille du répéteur et porte une pluralité d'éléments lumineux basse tension, ici des diodes électroluminescentes 11 à 18, sensiblement équiréparties sur la carte 1 et éclairant dans une direction perpendiculaire à celle-ci. La représentation qui est faite ici de la carte 1 n'illustre que le schéma électrique. De même, pour la clarté du dessin, on n'a représenté qu'un nombre très limité de diodes électroluminescentes, qui peuvent en fait dépasser la centaine.

[0015] La pluralité de diodes électroluminescentes est ordonnée en B branches de S diodes en série, avec ici B = 2 et S = 4. S pourrait cependant être variable d'une branche à l'autre. Comme évoqué ci-dessus, B et S peuvent atteindre une ou plusieurs dizaines.

[0016] Les branches sont alimentées par une alimentation continue 2 et, dans cet exemple, chacune est alimentée à travers un générateur, réglable, 3, 4 de courant constant, commandé par un circuit intégré 5 à microprocesseur, relié à la masse tout comme les cathodes des diodes aval 14 et 18 des deux branches.

[0017] Le circuit intégré 5 est alimenté en tension continue par une autre source ou par la source 2 à travers éventuellement un réducteur de niveau.

[0018] Le circuit intégré 5 comporte en particulier des broches d'interface de test 51 à 58, en nombre correspondant au nombre de diodes 11 à 18. Chaque broche 51 à 58 est reliée à une diode 11 à 18 qui lui est spécifique et, plus précisément, les broches 51 à 58 sont tou-

30

tes reliées à des bornes d'électrodes homologues, ici les anodes, des diodes 11 à 18.

[0019] Un circuit 50 de test à microprocesseur du circuit 5 est relié en entrée, de façon non représentée, aux broches 51 à 58 et il commande l'écriture d'une mémoire 60 comportant des données d'une carte électronique représentant et identifiant les diodes 11 à 18 et indiquant leur défaillance éventuelle, par court-circuit ou coupure. [0020] La carte de la mémoire 60 commande elle-même, par un faisceau de liaisons 69, B branches de S dipôles 61 à 68, donc ayant une disposition électrique qui est l'image de celle des diodes 11 à 18.

[0021] Chaque dipôle 61 à 68 relie deux broches 51 à 58, voisines dans une branche, qui lui sont propres. Chaque dipôle 61 à 68 peut avoir deux états de conduction électrique : un état bloqué, dans lequel aucun courant ne le traverse, et un état conducteur, dans lequel il laisse passer au moins un courant d'alimentation des diodes 11 à 18. Il s'agit ici d'un interrupteur tout ou rien.

[0022] Un circuit 70 est ici prévu pour émettre une alarme, sous la commande du circuit 50.

[0023] Le fonctionnement des composants ci-dessus va maintenant être expliqué plus en détails.

[0024] Le circuit à microprocesseur 50 contrôle individuellement le bon fonctionnement de chaque diode 11-18 et la perte de puissance optique, ou flux lumineux, due à une diode 11-18 défectueuse est compensée, au moins partiellement, par le circuit 50 ou, automatiquement et de façon autonome, par une des sources 3, 4.

[0025] Ici, le circuit à microprocesseur 50 effectue une scrutation des tensions des diverses broches 51 à 58 pour comparer la tension de chaque borne de diode 11 à 18 à celle d'une borne d'une diode adjacente, afin de localiser une diode 11 à 18 défectueuse.

[0026] Plus précisément, dans cet exemple, il s'agit d'une scrutation cyclique de paires de bornes adjacentes. Ainsi, les tensions des broches 51 et 52 sont comparées pour vérifier qu'elles diffèrent d'une valeur comprise dans une plage déterminée, par exemple allant de deux à quatre volts.

[0027] En cas de coupure d'une diode, comme 12, d'une branche, cette diode 12 forme interrupteur et présente, entre ses bornes, une tension dépassant les valeurs de la plage prévue, tandis que toutes les autres diodes de la branche présentant une tension nulle, faute de courant d'alimentation. Un court-circuit interne à celles-ci ne peut donc être détecté dans ce cycle.

[0028] Le circuit 50, après balayage de toute la branche défectueuse, détermine que la diode 12 est coupée (tension supérieure à la limite haute de la plage) et il inscrit cette information dans la carte 60. L'interrupteur 62, en parallèle sur la diode 12, est alors fermé pour court-circuiter cette dernière et ainsi assurer la continuité électrique de la branche considérée.

[0029] Si l'une des autres diodes 11, 13, 14 de la branche était ou devient défectueuse par court-circuit, l'absence de tension à ses bornes va, au cycle suivant de test de la branche, être détectée et considérée comme

un défaut puisque la branche est maintenant alimentée. La carte 60 est mise à jour par l'information correspondante, sans toutefois qu'il soit utile de fermer l'interrupteur correspondant.

[0030] La détection d'une autre diode coupée est de même possible, comme expliqué pour le cycle précédent

[0031] Les informations de type de défaut des diodes 11 - 18 accumulées dans la carte 60 permettent au circuit 50, d'après les diverses positions électriques des diodes 11 à 18 défectueuses dans les branches, de compenser les variations de puissance optique, ou flux lumineux, dues à une ou plusieurs diodes défectueuses. En effet, une diode 11 à 18 coupée et court-circuitée par l'interrupteur associé 61 à 68 entraîne une perte de la puissance optique totale puisqu'il est ici prévu une alimentation à courant constant 3, 4.

[0032] Le circuit 50 commande en pareil cas une augmentation du courant dans l'une au moins des branches et, par exemple, celle comportant la diode 11 à 18 coupée et extérieurement court-circuitée (61 à 68). Dans ce dernier cas, on peut avoir une correction automatique au niveau des générateurs de courant 3, 4 en prévoyant qu'ils aient une impédance de sortie limitée et réglée, afin que tout court-circuit interne ou externe à une diode 11 à 14 ou 15 à 18 provoque un léger accroissement de courant augmentant la puissance optique des autres diodes 11 à 14 ou 15 à 18 de la branche, dans une mesure telle que soit compensée la perte de puissance optique de la diode 11 à 18 défectueuse. Dans ce cas, c'est donc la branche, représentant la charge électrique du générateur 3, 4, qui, de par la tension qu'elle présente, commande le courant fourni par le générateur 3, 4.

[0033] En outre, le circuit 50 estime, d'après la carte 60, les conséquences, en puissance optique, de la survenance éventuelle d'une nouvelle défaillance de diode 11 à 18 et il engendre une alarme si un seuil de risque inacceptable est alors dépassé.

[0034] L'alarme peut être un signal émis, par le circuit 70, vers un récepteur de télésurveillance, par fil ou par radio. Il peut encore être prévu un bref clignotement cyclique des diodes, dans la mesure où il ne risque pas d'induire les usagers en erreur.

[0035] Dans une variante, on compare les tensions de bornes de diodes 11 - 18 adjacentes électriquement, comme par exemple les anodes des diodes 13 et 17, c'est-à-dire situées au même niveau de potentiel, aux dispersions près des caractéristiques de chute de tension des diverses diodes 11 - 18.

[0036] Bref, deux diodes 11 - 18 peuvent être électriquement adjacentes "verticalement", dans une branche, ou, comme ici, "horizontalement" d'une branche à l'autre

[0037] Si la diode 13 est coupée, son potentiel d'anode et celui des diodes 11 et 12 en amont est trop élevé et atteint la tension d'alimentation tandis que la diode aval 14 présente une tension d'anode nulle, donc trop basse.

10

[0038] Si la diode 13 est en court-circuit interne, les tensions d'anode dans la branche sont trop basses par rapport à celles de l'autre branche. Dans le cas d'une alimentation à courant non fixé, par exemple à tension constante, les diodes 11, 12, 14 présentant entre leurs bornes une tension accrue : l'anode de la diode 12 est alors à trop basse tension et celle de la diode 14 est à trop haute tension.

[0039] Comme, en pratique, le nombre B de branches dépasse nettement la valeur 2, les branches sans diode défectueuse fournissent, par vote majoritaire sur toutes les branches, une valeur de référence de tension pour chaque "plan de tension" des anodes homologues, de même niveau, des diverses branches.

[0040] Dans l'une et l'autre des variantes, la détection de la défaillance d'une diode 11 - 18 peut aussi être effectuée d'une autre façon que celle indiquée plus haut. [0041] Par exemple, une coupure de diode 11 - 18 va provoquer un passage de la sortie du générateur 3 ou 4 l'alimentant à une tension maximale, tendant à maintenir le courant prévu. Une détection de cette tension maximale indique donc une coupure dans la branche considérée. Inversement, un court-circuit interne de diode 11 - 18 provoque une baisse de tension du générateur 3, 4, que l'on peut détecter. On peut ainsi n'entamer un cycle de contrôle que sur détection de défaut. Un détecteur de courant, ou d'absence de courant, peut de même être prévu. En cas de coupure, une activation des interrupteurs 61 - 64 ou 65 - 68 associés à la branche permet de court-circuiter les diodes 11 - 18, une par une pour détecter la position de l'interrupteur 61 - 68 qui rétablit un courant. En cas d'insuccès, si plusieurs diodes sont coupées (11 et 13 par exemple) on ferme successivement les interrupteurs 61, 62 et on les maintient fermés jusqu'au rétablissement du courant, qui intervient lors de la fermeture d'un dernier interrupteur (63). On teste ensuite le maintien du courant lors des ouvertures des autres interrupteurs 61 et 62 et détermine ainsi que l'interrupteur 61 doit aussi rester fermé.

[0042] L'ordre d'actionnement des interrupteurs 61 - 64 d'une branche peut être quelconque.

[0043] Le contrôle individuel des diodes 11 - 18 peut encore être effectué par une pluralité de B x S capteurs optiques associés chacun à une diode 11 - 18 particulière. On obtient ainsi directement l'indication de la défaillance de la diode 11 - 18 considérée, défaillance dont la nature, court-circuit interne ou coupure, est déterminée par l'état, de fonctionnement ou de défaillance apparente, des autres diodes de la branche. La fermeture de l'interrupteur 61 - 68 approprié rétablit en pareil cas le fonctionnement de celles-ci.

Revendications

 Procédé de gestion d'une source de lumière comportant des éléments lumineux (11 - 18) reliés selon une pluralité de branches alimentées en courant en parallèle et formées chacune de plusieurs éléments lumineux (11 - 18) en série, caractérisé par le fait que le bon fonctionnement de chaque élément (11 - 18) est contrôlé individuellement et que l'alimentation en courant (3, 4) est commandée pour maintenir constant le flux lumineux de la source.

- 2. Procédé selon la revendication 1, dans lequel on accède à un ensemble de bornes homologues (51 58) des éléments lumineux (11 18) et on compare la tension de chaque borne à celle d'une borne d'un élément lumineux électriquement adjacente pour localiser un élément lumineux (11 18) défectueux.
- 75 3. Procédé selon la revendication 2, dans lequel on compare les tensions de bornes des éléments lumineux (11 - 18) de branches différentes pour localiser l'élément lumineux (11-18) défectueux.
- 20 4. Procédé selon l'une des revendications 1 à 3, dans lequel on détermine si l'élément lumineux localisée (11 18) est défectueux par coupure et on le court-circuite alors par un élément conducteur (61 68).
- 25 5. Procédé selon l'une des revendications 1 à 4, dans lequel on compense un manque de puissance optique dû à un élément lumineux (11 18) défectueux par une augmentation de courant dans l'une au moins des branches.
 - **6.** Procédé selon la revendication 5, dans lequel on augmente le courant dans la branche comportant l'élément lumineux (11 18) défectueux.
- 7. Procédé selon l'une des revendications 1 à 6, dans lequel on mémorise une carte électronique (60) des positions des éléments lumineux défectueux (11 -18).
- 40 8. Procédé selon la revendication 7, dans lequel on estime, d'après la carte (60), les conséquences, en puissance optique, d'une éventuelle nouvelle défaillance d'élément lumineux (11 18) et on engendre une alarme si un seuil de risque inacceptable est alors dépassé.
 - Procédé selon la revendication 8, dans lequel on émet l'alarme (70) vers un récepteur de télésurveillance.

55

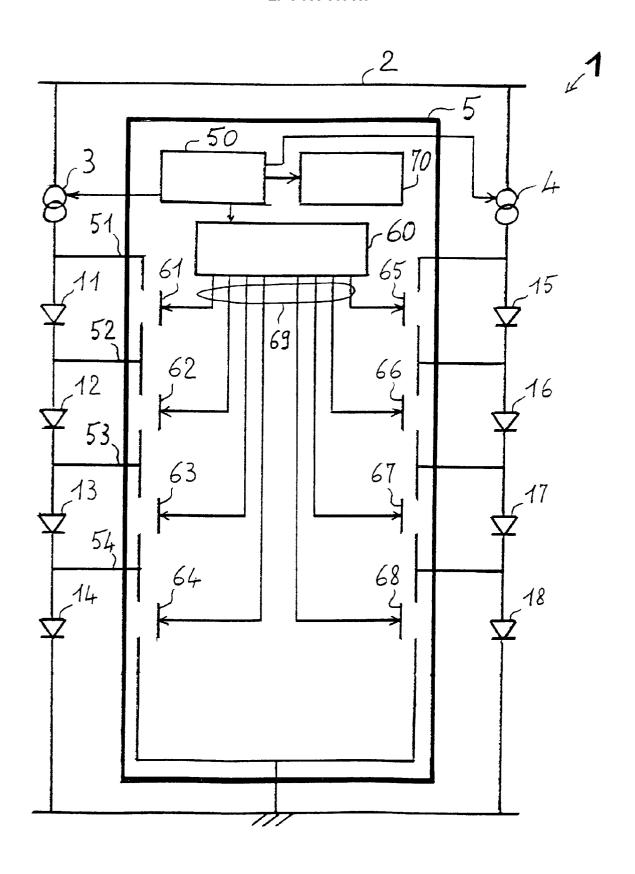


FIGURE UNIQUE

Office européen RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande EP 99 40 1083

atégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes				ndication cemée	CLASSEMENT DE LA DEMANDE (Int.Cl.6)
A	US 5 457 450 A (LEW 10 octobre 1995 (19		AL)			G08G1/097
A	US 5 430 354 A (GAR 4 juillet 1995 (199	BOWICZ GLENN D 5-07-04)	ET A	L)		
A	FR 2 577 061 A (CHA 8 août 1986 (1986-0					
						DOMAINES TECHNIQUES RECHERCHES (Int.Cl.6)
						G08G H05B
Le pr	ésent rapport a été établi pour to	utes les revendications				
	Lieu de la recherche	Date d'achèvement de	la recherch	e		Examinateur
	LA HAYE	1 septe	mbre 1	.999	Cre	chet, P
X : par Y : par auti	ATEGORIE DES DOCUMENTS CITE ticulièrement pertinent à lui seul ticulièrement pertinent en combinaisor e document de la même catégorie ère-plan technologique	ES T:	théorie ou document date de de cité dans	principe à la de brevet ar épôt ou après la demande d'autres raiso	base de l'i térieur, ma cette date	nvention is publié à la

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

EP 99 40 1083

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche européenne visé ci-dessus.

Lesdits members sont contenus au fichier informatique de l'Officeeuropéen des brevets à la date du

Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

01-09-1999

Document brev au rapport de re		Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
US 545745	0 A	10-10-1995	US 5663719 A	02-09-1997
US 543035	4 A	04-07-1995	US 5256946 A CA 2109679 A US 5453666 A US 5608296 A	26-10-1993 25-05-1994 26-09-1995 04-03-1997
FR 257706	1 A	08-08-1986	AUCUN	

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82