| (19) |
 |
|
(11) |
EP 0 958 397 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
29.01.2003 Bulletin 2003/05 |
| (22) |
Date of filing: 17.11.1998 |
|
| (51) |
International Patent Classification (IPC)7: C23C 8/22 |
| (86) |
International application number: |
|
PCT/US9824/444 |
| (87) |
International publication number: |
|
WO 9902/7148 (03.06.1999 Gazette 1999/22) |
|
| (54) |
STEEL ARTICLE HAVING HIGH HARDNESS AND IMPROVED TOUGHNESS AND PROCESS FOR FORMING
THE ARTICLE
GEGENSTAND AUS STAHL MIT HOHER HÄRTE UND ZÄHIGKEIT UND VERFAHREN ZU SEINER HERSTELLUNG
ARTICLE D'ACIER PRESENTANT UNE DURETE ELEVEE ET UNE TENACITE AMELIOREE ET PROCEDE
PERMETTANT DE FORMER CET ARTICLE
|
| (84) |
Designated Contracting States: |
|
BE DE FR GB IT |
| (30) |
Priority: |
25.11.1997 US 978326
|
| (43) |
Date of publication of application: |
|
24.11.1999 Bulletin 1999/47 |
| (73) |
Proprietor: CATERPILLAR INC. |
|
Peoria
Illinois 61629-6490 (US) |
|
| (72) |
Inventors: |
|
- TIPTON, Sheryl, A.
East Peoria, IL 61611 (US)
- KEIL, Gary, D.
Elmwood, IL 61529 (US)
|
| (74) |
Representative: Murnane, Graham John |
|
Murgitroyd & Company
165-169 Scotland Street Glasgow G5 8PL Glasgow G5 8PL (GB) |
| (56) |
References cited: :
US-A- 4 202 710 US-A- 5 536 335
|
US-A- 4 921 025
|
|
| |
|
|
- PATENT ABSTRACTS OF JAPAN vol. 014, no. 284 (C-0730), 20 June 1990 & JP 02 088760
A (MAZDA MOTOR CORP), 28 March 1990
- PATENT ABSTRACTS OF JAPAN vol. 097, no. 008, 29 August 1997 & JP 09 099306 A (HITACHI
METALS LTD), 15 April 1997
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
Technical Field
[0001] This invention relates generally to a steel article having both high particle hardness
and improved toughness characteristics and to a method performing such an article,
and more particularly to a steel article and method by which a plurality of carbides
are dispersed in a lower bainitic matrix on selected surfaces of the article.
Background Art
[0002] Carburized components typically exhibit high hardness and low to moderate toughness.
It is well known that one method of increasing the contact fatigue and scoring resistance
of a conventionally carburized component is to utilize processes which form hard particles
such as carbides in the surface microstructure, such as the process disclosed in U.S.
Patent 4,921,025 by Tipton et al. and assigned to the assignee of the present invention.
[0003] It is also well known that one method to increase toughness is to carburize and then
austemper to produce a tougher case microstructure consisting primarily of lower bainite.
This process of carburizing and austempering is commonly referred to as Carbo-Austempering,
and is known to increase the toughness of carburized components because at an equivalent
hardness, a bainitic microstructure is tougher than a conventional martensitic microstructure.
However, the accompanying hardness reduction results in undesirable lowering of wear,
contact fatigue, and scoring resistance.
[0004] Carbo-Austempering of low and medium carbon steels is described in an article by
W.R. Keough, titled Carbo-Austempering, published in 1995, (Carburizing and Nitriding
with Atmospheres, Proceedings of the second International Conference on Carburizing
and Nitriding with Atmospheres, December, 1995, ASM International). However, it is
commonly known by those skilled in the art that austempering of low and medium carbon
steels, such as SAE 8615, SAE4211, and SAE4150, effectively increases toughness, but
result in lower surface hardness.
[0005] Steel articles produced by the process described in the above-references U.S. Patent
4,921,025 have a plurality of carbides formed on the surface which provide high surface
hardness. However, the articles, even though formed of lower to medium carbon steel,
have relatively low toughness properties because the carbides are distributed in primarily
a martensitic case microstructure.
[0006] It is therefore desirable to have a steel article, and a method of forming the article,
that has both high surface hardness and higher toughness, without having a high core
carbon content or the addition of relatively expensive carbide forming elements.
[0007] US-A-4,202,710 discloses a method carbonising low alloy steel as a carbon content
of no more than 0.5%.
[0008] Various aspects of this invention are defined in the independent claims. Some preferred
features are defined in the dependent claims.
[0009] A more complete understanding of the article and method of the present invention
may be had by reference to the following detailed description when taken in conjunction
with the accompanying single drawing which is a graphical representation of the time
and temperature relationship of the carburizing and hardening process embodying the
present invention.
[0010] The present invention is specifically directed to a method of forming steel articles
containing higher hardness carbide particles and having higher toughness from low
medium carbon, i.e., from 0.08% to 0.35% carbon, steel. In the following described
examples, test samples were formed of a modified version of SAE 4122 steel, a steel
hardenable by carburizing, and having a composition as listed in Table 1.
TABLE I
| COMPOSITION BY WEIGHT PERCENT |
| Element |
SAE 4122 |
| Carbon |
0.21 |
| Manganese |
0.95 |
| Silicon |
0.02 |
| Phosphorus |
0.01 |
| Sulfur |
0.025 |
| Chromium |
0.97 |
| Nickel |
0.06 |
| Molybdenum |
0.42 |
| Aluminum |
0.28 |
| Copper |
0.06 |
| Titanium |
0.001 |
[0011] Four samples of a steel material having the above composition were prepared for testing.
The first test sample was subjected to a conventional carburizing and hardening treatment.
A second sample was conventionally carburized and then austempered. A third sample
was treated, in accordance with the process described in U.S. Patent 4,921,025, to
form a plurality of surface carbides on the exposed surfaces of the sample. The referenced
process is specifically directed to forming a surface having a high density of carbides
in a predominately martensitic matrix. The fourth sample, embodying the article and
method of the present invention, was carburized in accordance with the process outlined
in U.S. Patent 4,921,025 to form a plurality of carbides on the exposed surfaces of
the article, and then austempered.
[0012] The four test samples were prepared in accordance with ASTM Standard E 23 for impact
testing. More specifically, each sample was about 55 millimeters long and had a 10
millimeter square cross section. In accordance with accepted procedure for impact
testing of surface or case hardened materials, the samples were not notched. When
tested on a Charpy Impact tester at room temperature (about 25° C) the respective
impact values were recorded and listed below in Table II. For sample Nos. 1 and 2,
the maximum particle hardness was measured on a microhardness tester. For sample Nos.
3 and 4, the carbide hardness was measured directly using a nanoindentor. The measured
hardness and toughness values for the respective test samples are listed in Table
II:
TABLE II
Sample No.
(Composition Shown in Table I) |
Toughness
Charpy Unnotched @ 25° C; Joules (ft-lbs) |
Hardness
Maximum Particle Hardness (Equiv. Knoop, 500 gram) |
Comment |
| 1. Conventional carburizing and hardening |
28
(21) |
754 |
Problem - low toughness and absence of hard particles results in lower impact strength
and lower wear, contact fatigue and scoring resistance |
| 2. Carburizing and austempering |
100
(74) |
688 |
Problem - improved toughtness but low hardness results in higher impact strength but
still have lower wear, contact fatigue and scoring resistance |
| |
| 3. Carbide producing process per U.S. Patent 4,921,025 issued May 1, 1990 |
20
(15) |
1400 |
Problem - high particle hardness results in higher wear, contact fatigue and scoring
resistance, but low toughness results in low impact strength |
| 4. Carbide producing process per U.S. Patent 4,921,025 and austempering |
87
(64) |
1400 |
Solution - high particle hardness and improved toughness results in higher wear, contact
fatigue. scoring resistance and also higher impact strength |
[0013] As described above, the test samples were all formed of the above-identified modified
SAE 4122 steel, representing a low to medium carbon steel. Samples 1 and 2 were subjected
to a conventional carburizing treatment to form a high carbon case with no surface
carbides. Sample 1 exhibited a low toughness of 28 Joules, typical of conventional
carburizing and hardening. Test sample 2 was austempered to provide a lower bainitic
matrix surface microstructure and exhibited the highest toughness of 100 Joules; however
the corresponding reduction in hardness is undesirable for wear, contact fatigue,
and scoring resistance.
[0014] Test Sample Nos. 3 and 4 were treated in accordance with the process described in
the above-referenced, U.S. Patent 4,921,025. Test Sample Nos. 3 and 4 were carburized
at a temperature, and for a period of time, in an atmosphere having a carbon potential
sufficient to form carbides and austenite on the surface of the sample. More specifically,
as described in greater detail in the aforementioned U.S. Patent 4,921,025, the processing
of SAE 4122 steel Samples 3 and 4 included a first stage carburizing cycle in which
the test pieces were placed in the pre-heated furnace in which the carbon potential
of the gas atmosphere in the furnace was maintained at a level about equal to the
saturation limit of carbon in austenite at the furnace temperature. The test pieces
were held in the furnace, under those conditions, for a period sufficient to form
75% to 95% of the final case depth. Test pieces 3 and 4 were gas quenched, after the
first stage, at a rate sufficient to suppress carbide nucleation on the carburized
surface. The gas quench was continued until the temperature of the test piece was
reduced to a temperature below the Ar
1 temperature to assure the substantially complete transformation to bainite and/or
pearlite. Each of the test Samples 3 and 4 were then further carburized in a second
stage in which the test pieces were placed in a pre-heated furnace in which the carbon
content was maintained at a level greater than the saturation limit of carbon in austenite
at the furnace temperature. Test pieces 3 and 4 were held in the furnace during the
second stage carburizing for a period of time sufficient to form a high density of
surface carbides dispersed in austenite. Test Sample 3 was then quenched to transform
the surface to a microstructure of martensite, retained austenite and carbides, as
taught in U.S. Patent 4,921,025. Test Sample 3 has high particle hardness resulting
in higher wear, contact fatigue and scoring resistance, but the low toughness, as
shown in Table II, results in lower impact strength.
[0015] As illustrated in the sole drawing figure, Test Sample No. 4 was quenched to a temperature
below the Ar
1 temperature and above the M
S temperature (the temperature at which martensite begins to form) and held at that
temperature for a time sufficient to form at least about 70% of the austenite in the
surface microstructure to lower bainite. Desirably, the article is held at a temperature
about 25° C (45° F) above the M
S temperature of the material. In the herein described test, Test Sample No. 4 was
held at about 260° C (500° F) for about two hours and then cooled to room temperature.
The surface area of Test Sample No. 4 was examined and found to contain about 22%
carbides, i.e., carbides comprised about 22% of the surface area of sample. Desirably,
in an article formed in accordance with the present invention, a quantifiable preselected
area of the article will contain at least about 20% carbides dispersed in a predominately
lower bainitic matrix.
[0016] Importantly, as shown in Table II, Test Sample No. 4, having a plurality of surface
carbides disbursed in a predominantly lower bainitic matrix exhibited both high hardness
and surprising high toughness for a sample with a plurality of embrittling carbides.
[0017] Based on the above tests, it is now believed that low to medium carbon steels, containing
from 0.8% to 0.35% carbon, and preferably having silicon content less than about 0.10%
and a chromium content less than about 1.1% are suitable materials for use in the
above-described process whereby a plurality carbides are dispersed within a predominantly
lower bainitic matrix. In particular, the steel material specifically defined in
[0018] U.S. Patent 4,921,025 in which the steel material comprises, by weight percent, of
from about 0.08 to about 0.35 carbon, from about 0.3 to about 1.7 manganese, less
than about 0.10 silicon, less than about 1.1 chromium, from about the 0.2 to about
2.5 carbide forming elements including chromium, less that than 6.0 additional hardenability
agents, less than 1.0 grain refining elements, and not more than about 0.15 copper,
with the balance being iron and trace impurities, is particularly suitable for forming
steel articles having high toughness and high particle hardness in accordance with
the method embodying the present invention.
[0019] Also, as is demonstrated herein, articles of a steel material represented by modified
SAE 4122 steels having a composition, by weight percent, of from about 0.19 to about
0.23 carbon, from about 0.80 to about 1.10 manganese, no more than about 0.02 phosphorus,
from about 0.015 to about 0.025 sulphur, no more than about 0.10 silicon, from about
0.45 to about 1.00 chromium, from about 0.18 to about 0.45 molybdenum, no more than
about 0.10 nickel, no more than about 0.10 copper, no more than about 0.02 titanium,
when carburized and austempered in accordance with the present invention to provide
a plurality of surface carbides dispersed in a predominately lower bainitic matrix,
exhibits unexpectedly higher toughness.
[0020] Although the present invention is described in terms of a preferred exemplary embodiment,
with specific reference to SAE 4122 steel, those skilled in the art will recognize
that other low to medium carbon steels which can be carburized to form a plurality
of carbides on all or pre-selected surfaces of the article, may be made without departing
from the invention.
1. A method of forming a steel article from a steel material that is hardenable by carburizing
and containing, by weight percent, from 0.08 to 0.35 carbon, the method comprising:
carburizing said article at a temperature and for a period of time in an atmosphere
having a carbon potential sufficient to form at least one preselected surface area
on said article comprising carbides and austenite;
quenching said carburized article; and the step of quenching involving quenching the
article to a temperature below the Ar1 temperature and above the Ms temperature of the steel material; and
holding the article at a temperature below the Ar1 temperature and above the Ms temperature for a time sufficient to transform at least about 70% of said austenite
in the preselected surface area microstructure to lower bainite.
2. A method of forming a steel article as claimed in claim 1, wherein said step of quenching
includes forming at least about 20% carbides on the preselected surface having a matrix
microstructure consisting of at least about 70% lower bainite.
3. A method as claimed in claim 1 or claim 2, wherein the step of carburizing involves:
carburizing the article in a first stage;
cooling the article to below the Ar1 temperature; and
carburizing the article again in an atmosphere with a carbon content at a level greater
than the saturation limit of carbon in austenite.
4. A method as claimed in claim 3 in which the step of cooling involves gas quenching
the article.
5. A method as claimed in claim 4, wherein the gas quenching is done at a rate sufficient
to suppress carbide nucleation on the carburized surface.
6. A method as claimed in any one of the preceding claims, wherein in the step of holding
the temperature of the article, the temperature is held at substantially 25C above
the Ms temperature.
7. A carburized steel article made from a steel material that is hardenable by carburizing
and contains, by weight percent, from 0.08 to 0.35 carbon and no more than 0.10 percent
silicon, the article having a microstructure that is characterised by a plurality of surface carbides on at least one preselected surface of the article,
the surface carbides being dispersed in a lower bainitic matrix.
8. An article as claimed in Claim 7, wherein said steel material contains less than about
1.1 percent chromium.
9. An article as claimed in Claim 7 or Claim 8, wherein said steel material comprises,
by weight percent, from 0.08% to 0.35% carbon, from 0.3% to 1.7% manganese, less than
about 0.10% silicon, less than about 1.1% chromium, from 0.2% to about 2.5% carbide
forming elements including said chromium, less than 6% additional hardenability agents,
less than about 1% grain refining elements, not more than about 0.15% copper, and
the balance iron and trace impurities.
10. An article as claimed in any one of Claims 7 to 9, wherein said surface carbides have
an equivalent Knoop 500 gram maximum particle hardness of at least about 900, and
an unnotched sample of said article prepared in accordance with ASTM Standard E23
has a toughness of at least 50 Joules as measured on a Charpy impact tester at 25°C.
11. An article as claimed in any one of claims 7 to 10, wherein the pre-selected surface
area contains at least about 20% carbides dispersed in a matrix that comprises at
least 70% lower bainite.
1. Ein Verfahren zum Formen eines Stahlgegenstands aus einem Stahlmaterial, das durch
Karburierung härtbar ist und zwischen 0,08 und 0,35 Gewichtsprozent Kohlenstoff enthält,
wobei das Verfahren aus Folgendem besteht:
Karburieren des Gegenstands bei einer gewissen Temperatur und über einen gewissen
Zeitraum hinweg bei einer Atmosphäre mit einem Kohlenstoffpotential, das ausreicht,
um mindestens einen vorgewählten Oberflächenbereich auf dem Gegenstand, bestehend
aus Carbiden und Austenit, zu formen;
Abschrecken des karburierten Gegenstands; und wobei der Schritt des Abschreckens das
Abschrecken des Gegenstands auf eine Temperatur, die unter der Ar1-Temperatur und über der Ms-Temperatur des Stahlmaterials liegt, einschließt; und
Halten des Gegenstands bei einer Temperatur unter der Ar1-Temperatur und über der Ms-Temperatur für eine Zeitdauer, die ausreicht, um mindestens ungefähr 70 % des Austenits
in der vorgewählten Oberflächenbereich-Mikrostruktur in unteren Bainit umzuwandeln.
2. Verfahren zum Formen eines Stahlgegenstands gemäß Anspruch 1, wobei der Schritt des
Abschreckens das Formen von mindestens ungefähr 20 % Carbiden auf dem vorgewählten
Oberflächenbereich mit einer Matrix-Mikrostruktur, die aus mindestens ungefähr 70
% unterem Bainit besteht, beinhaltet.
3. Verfahren gemäß Anspruch 1 oder Anspruch 2, wobei der Schritt des Karburierens Folgendes
einschließt:
Karburieren des Gegenstands in einer ersten Stufe;
Auskühlen des Gegenstands auf unter die Ar1-Temperatur; und
nochmaliges Karburieren des Gegenstands bei einer Atmosphäre mit einem höheren Grad
an Kohlenstoffgehalt als die Sättigungsgrenze von Kohlenstoff in Austenit.
4. Verfahren gemäß Anspruch 3, wobei der Schritt des Auskühlens das Abschrecken des Gegenstands
mit Gas einschließt.
5. Verfahren gemäß Anspruch 4, wobei das Abschrecken mit Gas bei einer Geschwindigkeit
durchgeführt wird, die ausreicht, um die Kristallisationskeimbildung von Carbid auf
der karburierten Fläche zu unterdrücken.
6. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei in dem Schritt des Haltens
der Gegenstand-Temperatur die Temperatur bei im Wesentlichen 25 °C über der Ms-Temperatur gehalten wird.
7. Ein karburierter Stahlgegenstand, der aus einem Stahlmaterial hergestellt ist, das
durch Karburierung härtbar ist und zwischen 0,08 und 0,35 Gewichtsprozent Kohlenstoff
und nicht mehr als 0,10 Prozent Silizium enthält, wobei der Gegenstand eine Mikrostruktur
aufweist, die durch eine Vielzahl von Oberflächen-Carbiden auf mindestens einer vorgewählten
Oberfläche des Gegenstands gekennzeichnet ist, wobei die Oberflächen-Carbide in einer
unteren Bainit-Matrix dispergiert sind.
8. Gegenstand gemäß Anspruch 7, wobei das Stahlmaterial weniger als ungefähr 1,1 Prozent
Chrom enthält.
9. Gegenstand gemäß Anspruch 7 oder Anspruch 8, wobei das Stahlmaterial aus zwischen
0,08 Gew.-% und 0,35 Gew.-% Kohlenstoff, zwischen 0,3 Gew.-% und 1,7 Gew.-% Mangan,
weniger als ungefähr 0,10 Gew.-% Silizium, weniger als ungefähr 1,1 Gew.-% Chrom,
zwischen 0,2 Gew.-% und 2,5 Gew.-% Carbid formenden Elementen, einschließlich Chrom,
weniger als 6 Gew.-% zusätzlichen Härtbarkeits-Agenzien, weniger als ungefähr 1 Gew.-%
Kornverfeinerungs-Elementen, nicht mehr als ungefähr 0,15 Gew.-% Kupfer und den restlichen
Eisen- und Spurenunreinheiten besteht.
10. Gegenstand gemäß einem der Ansprüche 7 bis 9, wobei die Oberflächen-Carbide eine entsprechende
maximale 500 g Knoop-Partikelhärte von mindestens 900 aufweisen und wobei eine gemäß
dem ASTM-Standard E23 zubereitete ungekerbte Probe des Gegenstands eine wie im Kerbschlagbiegeversuch
nach Charpy bei 25 °C gemessene Härte von mindestens 50 Joule aufweist.
11. Gegenstand gemäß einem der Ansprüche 7 bis 10, wobei der vorgewählte Oberflächenbereich
mindestens ungefähr 20 % Carbide, die in einer Matrix, bestehend aus mindestens 70
% unterem Bainit, dispergiert sind, enthält.
1. Un procédé pour former un article en acier à partir d'un matériau en acier qui est
durcissable par cémentation et contenant, en pourcentage en poids, de 0,08 à 0,35
de carbone, le procédé comprenant :
la cémentation dudit article à une certaine température et pendant une certaine durée
dans une atmosphère ayant un potentiel carbone suffisant pour former au moins une
aire présélectionnée sur ledit article comprenant des carbures et de l'austénite ;
la trempe dudit article cémenté ; et l'étape de trempe faisant intervenir la trempe
de l'article à une température en dessous de la température de Ar1 et au-dessus de la température de Ms du matériau en acier ; et
le maintien de l'article à une température en dessous de la température de Ar1 et au-dessus de la température de Ms pendant une période suffisante pour transformer en bainite inférieure au moins 70
% environ de ladite austénite dans la microstructure d'aire présélectionnée.
2. Un procédé pour former un article en acier tel que revendiqué dans la revendication
1, dans lequel ladite étape de trempe consiste à former au moins 20 % environ de carbures
sur la surface présélectionnée ayant une microstructure de matrice constituée d'au
moins 70 % environ de bainite inférieure.
3. Un procédé tel que revendiqué dans la revendication 1 ou la revendication 2, dans
lequel l'étape de cémentation fait intervenir :
la cémentation de l'article dans un premier stade ;
le refroidissement de l'article jusqu'à une température en dessous de la température
de Ar1 ; et,
de nouveau, la cémentation de l'article dans une atmosphère présentant une teneur
en carbone à un niveau supérieur à la limite de saturation du carbone dans l'austénite.
4. Un procédé tel que revendiqué dans la revendication 3 dans lequel l'étape de refroidissement
fait intervenir la trempe de l'article sous atmosphère gazeuse.
5. Un procédé tel que revendiqué dans la revendication 4, dans lequel la trempe sous
atmosphère gazeuse est effectuée à une vitesse suffisante pour supprimer la nucléation
de carbures sur la surface cémentée.
6. Un procédé tel que revendiqué dans n'importe laquelle des revendications précédentes,
dans lequel, lors de l'étape de maintien de la température de l'article, la température
est maintenue à sensiblement 25 °C au-dessus de la température de Ms.
7. Un article en acier cémenté réalisé à partir d'un matériau en acier qui est durcissable
par cémentation et qui contient, en pourcentage en poids, de 0,08 à 0,35 de carbone
et pas plus de 0,10 pourcent de silicium, l'article ayant une microstructure qui est
caractérisée par une pluralité de carbures superficiels sur au moins une surface présélectionnée de
l'article, les carbures superficiels étant dispersés dans une matrice de bainite inférieure.
8. Un article tel que revendiqué dans la revendication 7, dans lequel ledit matériau
en acier contient moins de 1,1 pourcent environ de chrome.
9. Un article tel que revendiqué dans la revendication 7 ou la revendication 8, dans
lequel ledit matériau en acier comprend, en pourcentage en poids, de 0,08 % à 0,35
% de carbone, de 0,3 % à 1,7 % de manganèse, moins de 0,10 % environ de silicium,
moins de 1,1 % environ de chrome, de 0,2 % à 2,5 % environ d'éléments carburigènes,
y compris ledit chrome, moins de 6 % d'agents de durcissabilité supplémentaires, moins
de 1 % environ d'éléments d'affinage de grain et pas plus de 0,15 % environ de cuivre,
le reste consistant en du fer et des impuretés à l'état de traces.
10. Un article tel que revendiqué dans n'importe laquelle des revendications 7 à 9, dans
lequel lesdits carbures superficiels présentent une dureté de particule maximum d'environ
900 au moins équivalent à 500 gram Knoop, et un échantillon non entaillé dudit article
préparé conformément à la norme ASTM E23 a une résistance d'au moins 50 joules, telle
que mesurée sur un appareil de test d'impact Charpy à 25 °C.
11. Un article tel que revendiqué dans n'importe laquelle des revendications 7 à 10, dans
lequel l'aire présélectionnée contient au moins 20 % environ de carbures, dispersés
dans une matrice qui comprend au moins 70 % de bainite inférieure.
