[0001] This is a continuation-in-part of U.S. Patent Application Serial No. 08/802,130,
filed February 19, 1997, the disclosure of which is incorporated in its entirety herein
by reference.
Field of the Invention
[0002] The present invention relates to liquid polythioether polymers that have good low
temperature flexibility and fuel resistance when cured. The invention is also directed
to methods for making the polymers by reacting polythiols with oxygenated dienes (divinyl
ethers) which substantially eliminate malodorous condensed cyclic by-products.
Background of the Invention
[0003] Thiol-terminated sulfur-containing polymers are known to be well-suited for use in
aerospace sealants due to their fuel resistant nature upon cross-linking. Among the
commercially available polymeric materials which have sufficient sulfur content to
exhibit this desirable property are the polysulfide polyformal polymers described,
e.g., in U.S. Patent No. 2,466,963, and the alkyl side chain containing polythioether
polyether polymers described, e.g., in U.S. Patent No. 4,366,307 to Singh et al. Materials
useful in this context also have the desirable properties of low temperature flexibility
(low glass transition temperature T
g) and liquidity at room temperature.
[0004] An additional desirable combination of properties for aerospace sealants which is
much more difficult to obtain is the combination of long application time (i.e., the
time during which the sealant remains usable) and short curing time (the time required
to reach a predetermined strength). Singh et al., U.S. Patent No. 4,366,307, disclose
such materials. Singh et al. teach the acid-catalyzed condensation of hydroxyl-functional
thioethers. The hydroxyl groups are in the β-position with respect to a sulfur atom
for increased condensation reactivity. The Singh et al. patent also teaches the use
of hydroxyl-functional thioethers with pendent methyl groups to afford polymers having
good flexibility and liquidity. However, the disclosed condensation reaction has a
maximum yield of about 75% of the desired condensation product. Furthermore, the acid-catalyzed
reaction of β-hydroxysulfide monomers yields significant quantities (typically not
less than about 25%) of an aqueous solution of thermally stable and highly malodorous
cyclic byproducts, such as 1-thia-4-oxa-cyclohexane. As a result, the commercial viability
of the disclosed polymers is limited.
[0005] Another desirable feature in polymers suitable for use in aerospace sealants is high
temperature resistance. Inclusion of covalently bonded sulfur atoms in organic polymers
has been shown to enhance high temperature performance. However, in the polysulfide
polyformal polymers disclosed in U.S. Patent No. 2,466,963, the multiple -S-S- linkages
in the polymer backbones result in compromised thermal resistance. In the polymers
of Singh et al., U.S. Patent No. 4,366,307, enhanced thermal stability is achieved
through replacement of polysulfide linkages with polythioether (-S-) linkages. In
practice, however, the disclosed materials also have compromised thermal resistance
due to traces of the residual acid condensation catalyst.
[0006] Morris et al., U.S. Patent No. 4,609,762, describes reacting dithiols with secondary
or tertiary alcohols to afford liquid polythioethers having no oxygen in the polymeric
backbone. Cured polymeric materials formed from these polymers have the disadvantage,
however, of reduced fuel resistance due to the large number of pendent methyl groups
that are present. In addition, residual catalyst from the disclosed process generates
undesirable aqueous acidic waste.
[0007] Cameron, U.S. Patent No.5,225,472, discloses production of polythioether polymers
by the acid-catalyzed condensation of dithiols with active carbonyl compounds such
as HCOOH. Again, this process generates undesirable aqueous acidic waste.
[0008] The addition polymerization of aliphatic dithiols with diene monomers has been described
in the literature. See, e.g., Klemm, E. et al., J. Macromol. Sci. - Chem., A28(9),
pp. 875-883 (1991); Nuyken, O. et al., Makromol. Chem., Rapid Commun. 11, 365-373
(1990). However, neither Klemm et al. nor Nuyken suggest selection of particular starting
materials, specifically divinyl ethers and dithiols, such that a polymer is formed
that is liquid at room temperature and, upon curing, has excellent low-temperature
flexibility (low T
g) and high resistance to fuels, i.e., hydrocarbon fluids. Nor do Klemm et al. suggest
production of a polymer that in addition is curable at room or lower temperatures.
Moreover, the reactions disclosed by Klemm et al. also generate undesirable cyclic
byproducts.
Summary of the Preferred Embodiments
[0009] In accordance with one aspect of the present invention, there is provided a polythioether
having the formula I
-R
1-[-S-(CH
2)
2-O-[-R
2-O-]
m-(CH
2)
2-S-R
1-]
n- I
wherein
R
1 denotes a C
2-6 n-alkylene, C
3-6 branched alkylene, C
6-8 cycloalkylene or C
6-10 alkylcycloalkylene group, -[(-CH
2-)
p-X-]
q-(-CH
2-)
r-, or -[(-CH
2-)
p-X-]
q-(-CH
2-)
r- in which at least one -CH
2- unit is substituted with a methyl group,
R
2 denotes C
2-6 n-alkylene, C
2-6 branched alkylene, C
6-8 cycloalkylene or C
6-10 alkylcycloalkylene group, or -[(-CH
2-)
q X-]
q-(-CH
2-)
r-,
X denotes one selected from the group consisting of O, S and -NR
6-,
R
6 denotes H or methyl,
m is a rational number from 0 to 10,
n is an integer from 1 to 60,
p is an integer from 2 to 6,
q is an integer from 1 to 5, and
r is an integer from 2 to 10,
the polythioether being a liquid at room temperature and pressure.
[0010] Preferably the polythioether has a number average molecular weight between about
500 and about 20,000.
[0011] In a first preferred embodiment, the polythioether has the formula II
A-(-[R
3]
y-R
4)
2 II
wherein
A denotes a structure having the formula I,
y is 0 or 1,
R
3 denotes a single bond when y = 0
and -S-(CH
2)
2-[-O-R
2-]
m-O- when y = 1,
R
4 denotes -SH or -S-(-CH
2-)
2+s-O-R
5 when y = 0
and -CH
2 = CH
2 or -(CH
2-)
2-S-R
5 when y = 1,
s is an integer from 0 to 10,
R
5 denotes C
1-6 n-alkyl which is unsubstituted or substituted with at least one -OH or -NHR
7 group, and
R
7 denotes H or a C
1-6 n-alkyl group.
[0012] Polythioethers in which R
4 is -SH are "uncapped," that is, include unreacted terminal thiol groups. Polythioethers
according to the invention also include "capped" polythioethers, that is, polythioethers
including terminal groups other than unreacted thiol groups. These terminal groups
can be groups such as -OH or -NH
2, or groups such as alkyl or terminal ethylenically unsaturated groups.
[0013] In a more particular preferred embodiment, y = 0 in formula II and R
4 denotes -SH. That is, the polythioether is an uncapped polythioether having the structure
HS-R
1-[-S-(CH
2)
2-O-[-R
2-O-]
m-(CH
2)
2-S-R
1-]
n-SH.
[0014] In another more particular preferred embodiment, the inventive polythioether is a
capped polythioether in which y = O in formula II and R
4 denotes -S-(-CH
2-)
2+s-O-R
5. Particularly preferably, R
5 is an unsubstituted or substituted n-alkyl group such as ethyl, 4-hydroxybutyl or
3-aminopropyl.
[0015] In still another particular preferred embodiment, y = 1 in formula II and R
4 denotes -CH = CH
2. That is, the polythioether is an uncapped polythioether having terminal vinyl groups.
[0016] In yet another more particular preferred embodiment, the inventive polythioether
is a capped polythioether in which y = 1 in formula II and R
4 denotes -(CH
2-)
2-S ― R
5.
[0017] In a second preferred embodiment, the polythioether has the formula III
B-(A-[
R3]
y-R
4)
z III
wherein
A denotes a structure having the formula I,
y is 0 or 1,
R
3 denotes a single bond when y = 0
and -S-(CH
2)
2-[-O-R
2-]
m-O- when y = 1,
R
4 denotes -SH or -S-(-CH
2-)
2+s-O-R
5 when y = 0
and -CH
2 = CH
2 or -(CH
2-)
2-S-R
5 when y = 1,,
s is an integer from 0 to 10,
R
5 denotes C
1-6 n-alkyl which is unsubstituted or substituted with at least one -OH or -NHR
7 group,
R
7 denotes H or a C
1-6 n-alkyl group.
z is an integer from 3 to 6, and
B denotes a z-valent residue of a polyfunctionalizing agent.
[0018] That is, the polyfunctionalized embodiments include three or more structures of the
formula I bound to the residue of an appropriate polyfunctionalizing agent.
[0019] In a more specific embodiment, z is 3, and the polyfunctionalizing agent thus is
a trifunctionalizing agent. In another more specific embodiment, the average functionality
of the polythioether ranges between about 2.05 and about 3.00.
[0020] In accordance with another aspect of the present invention, there are provided methods
of producing the foregoing polythioethers.
[0021] According to a first preferred embodiment, a polythioether of the invention is produced
by reacting (n + 1) moles of a compound having the formula IV
HS-R
1-SH IV
or a mixture of at least two different compounds having the formula IV, with In) moles
of a compound having the formula V
CH
2 = CH-O-[-R
2-O-]
m-CH = CH
2 V
or a mixture of at least two different compounds having the formula V, and optionally
about 0.05 to about 2 moles of a compound having the formula VI
CH
2 = CH-(CH
2)
s-O-R
5 VI
or a mixture of two different compounds having the formula VI, in the presence of
a catalyst. The catalyst is selected from the group consisting of free-radical catalysts,
ionic catalysts and ultraviolet light. Preferably the catalyst is a free-radical catalyst
such as an azo compound.
[0022] According to a second preferred embodiment, a polythioether of the invention is produced
by reacting (n) moles of a compound having the formula IV, or a mixture of at least
two different compounds having the formula IV, with (n + 1) moles of a compound having
the formula V, or a mixture of at least two different compounds having the formula
V, optionally together with 0.05 to about 2 moles of a compound having the formula
VII
HS-R
5 VII
or a mixture of two different compounds having the formula VII, in the presence of
a catalyst as described above.
[0023] Analogous methods for producing polyfunctional polythioethers using the foregoing
reactants together with appropriate polyfunctionalizing agents are also provided.
[0024] Polythioethers produced by the foregoing methods are also provided.
[0025] In accordance with yet another aspect of the present invention, there is provided
a polymerizable composition comprising (i) about 30 to about 90 wt% of at least one
polythioether as defined herein, said at least one polythioether having a glass transition
temperature not greater than -55°C, (ii) a curing agent in an amount from about 90
to about 150% of stoichiometric based on the amount of said at least one potythioether,
and (iii) about 5 to about 60 wt% of a filler, with all wt% being based on the total
weight of non-volatile components of the composition. The inventive composition is
curable at a temperature of 0°C or higher, preferably at a temperature of -20°C or
higher.
[0026] In accordance with an additional aspect of the present invention, there is provided
a polymerizable composition comprising (i) about 30 to about 90 wt% of at least one
polythioether as defined herein, said at least one polythioether having a glass transition
temperature not greater than -50°C, (ii) a curing agent in an amount from about 90
to about 150% of stoichiometric based on the amount of said at least one polythioether,
(iii) a plasticizer in an amount from about 1 to about 40 wt%, and (iv) a filler in
an amount from about 5 to about 60 wt%, with all wt% being based on the total weight
of non-volatile components of the composition. The composition is curable at a temperature
of 0°C or higher, preferably at a temperature of -20°C or higher.
[0027] Cured polymeric materials prepared by polymerization of the foregoing compositions
are also provided.
Brief Description of the Drawings
[0028] The invention may be more readily understood by referring to the accompanying drawings
in which
Fig. 1 depicts linear graphs of extrusion rate (E) versus time (T) for sealant compositions
of the invention in comparison to extrusion rate curves for known types of sealant
composition, and
Fig. 2 is a semi-log graph of the extrusion rate curve of a polythioether of the invention
(◆) and a prior art polysulfide (■).
Detailed Description of the Preferred Embodiments
[0029] It has surprisingly been discovered that the combination of certain polythiols with
oxygenated dienes according to the present invention results in polythioether polymers
that are liquids at room temperature and pressure and that have desirable physical
and rheological properties, and that furthermore are substantially free of malodorous
cyclic by-products. The inventive materials are also substantially free of deleterious
catalyst residues, and hence have superior thermal resistance properties.
[0030] According to the present invention, polythioethers are provided that are liquid at
room temperature and pressure and have excellent low temperature flexibility (low
T
g) and fuel resistance. As used herein, the term "room temperature and pressure" denotes
approximately 77°F (25°C), and 1 atmosphere.
[0031] In their most general aspect, the inventive polythioethers include a structure having
the formula I
-R
1-[-S-(CH
2)
2-O-[-R
2-O-]
m-(CH
2)
2-S-R
1-]
n- I
wherein
R
1 denotes a C
2-6 n-alkylene, C
3-6 branched alkylene, C
6-8 cycloalkylene or C
6-10 alkylcycloalkylene group, -[(-CH
2-)
p-X-]
q-(-CH
2-)
r-, or -[(-CH
2-)
p-X-]
q-(-CH
2-)
r- in which at least one -CH
2- unit is substituted with a methyl group,
R
2 denotes a C
2-6 n-alkylene, C
2-6 branched alkylene, C
6-8 cycloalkylene or C
6-10 alkylcycloalkylene group, or -[(-CH
2-)
p-X-]
q-(-CH
2-)
r-,
X denotes one selected from the group consisting of 0, S and -NR
6-,
R
6 denotes H or methyl,
m is a rational number from 0 to 10,
n is an integer from 1 to 60,
p is an integer from 2 to 6,
q is an integer from 1 to 5, and
r is an integer from 2 to 10.
[0032] Preferably, a polythioether polymer according to the invention has a glass transition
temperature T
g that is not higher than -50°C. More preferably, the T
g of the inventive polymer is not higher than -55°C. Very preferably, the T
g of the inventive polymer is not higher than -60°C. Low T
g is indicative of good low temperature flexibility, which can be determined by known
methods, for example, by the methods described in AMS (Aerospace Material Specification)
3267 §4.5.4.7, MIL-S (Military Specification) -8802E §3.3.12 and MIL-S-29574, and
by methods similar to those described in ASTM (American Society for Testing and Materials)
D522-88.
[0033] The polythioethers of the invention exhibit very desirable fuel resistance characteristics
when cured. One measure of the fuel resistance of the inventive polymers is their
percent volume swell after prolonged exposure to a hydrocarbon fuel, which can be
quantitatively determined using methods similar to those described in ASTM D792 or
AMS 3269. Thus, in a preferred embodiment, the inventive polymers have, when cured,
a percent volume swell not greater than 25% after immersion for one week at 140°F
(60°C) and ambient pressure in jet reference fluid (JRF) type 1. Very preferably,
the percent volume swell of the cured polymers is not greater than 20%.
[0034] JRF type 1, as employed herein for determination of fuel resistance, has the following
composition (see AMS 2629, issued July 1, 1989), section 3.1.1 et seq., available
from SAE (Society of Automotive Engineers, Warrendale, PA):
| Toluene |
28 ± 1% by volume |
| Cyclohexane (technical) |
34 ± 1% by volume |
| Isooctane |
38 ± 1 % by volume |
| Tertiary dibutyl disulfide (doctor sweet) |
1 ± 0.005% by volume |
| Tertiary butyl mercaptan |
0.015% ± 0.0015 by weight of the other four components |
[0035] Desirably, the inventive polythioethers have number average molecular weights ranging
from about 500 to 20,000, preferably about 1,000 to 10,000, very preferably about
2,000 to 5,000.
[0036] Liquid polythioether polymers within the scope of the present invention can be difunctional,
that is, linear polymers having two end groups, or polyfunctional, that is, branched
polymers having three or more end groups. Depending on the relative amounts of dithuol(s)
and divinyl ether(s) used to prepare the polymers, the polymers can have terminal
thiol groups (-SH) or terminal vinyl groups (-CH=CH
2). Furthermore, the polymers can be uncapped, that is, include thiol or vinyl terminal
groups that are not further reacted, or capped, that is, include thiol or vinyl groups
that are further reacted with other compounds. Capping the polythioethers of the invention
enables introduction of additional terminal functionalities, for example, hydroxyl
or amine groups, to the inventive polymers, or in the alternative, introduction of
end groups that resist further reaction, such as terminal alkyl groups.
[0037] A first preferred embodiment of the inventive polythioethers has the formula II
A-(-[R
3]
y-R
4)
2 II
wherein
A denotes a structure having the formula I,
y is 0 or 1,
R
3 denotes a single bond when y = 0
and -S-(CH
2)
2-[-O-R
2-]
m-O- when y = 1,
R
4 denotes -SH or -S-(-CH
2-)
2+s-O-R
5 when y = 0
and -CH
2=CH
2 or -(CH
2-)
2-S-R
5 when y = 1,
s is an integer from 0 to 10,
R
5 denotes C
1-6 n-alkyl which is unsubstituted or substituted with at least one -OH or -NHR
7 group, and
R
7 denotes H or a C
1-6 n-alkyl group.
[0038] Thus, polythioethers of the formula II are linear, difunctional polymers which can
be uncapped or capped. When y = O, the polymer includes terminal thiol groups or capped
derivatives thereof. When y = 1, the polymer includes terminal vinyl groups or capped
derivatives thereof.
[0039] According to one preferred embodiment, the inventive polythioether is a difunctional
thiol-terminated (uncapped) polythioether. That is, in formula II, y = O and R
4 is -SH. Thus, the polythioether has the following structure:
HS-R
1-[-S-(CH
2)
2-O-[-R
2-O-]
m-(CH
2)
2-S-R
1-]
n-SH.
[0040] The foregoing polymers are produced, for example, by reacting a divinyl ether or
mixture thereof with an excess of a dithiol or mixture thereof, as discussed in detail
below.
[0041] In a more particular preferred embodiment of the foregoing polythioether, when m
= 1 and R
2 = n-butylene in formula II, R
1 is not ethylene or n-propylene. Also preferably, when m = 1, p = 2, q = 2, r = 2
and R
2 = ethylene, X is not O.
[0042] According to another preferred embodiment, the inventive polythioether is a capped
polymer in which the foregoing terminal -SH groups are replaced by -S-(-CH
2-)
2+s-O-R
5. Such caps are produced by reaction of the terminal thiol group with an alkyl ω-alkenyl
ether, such as a monovinyl ether, for example by including in the reaction mixture
a capping agent or mixture thereof, as discussed in detail below.
[0043] In the foregoing, R
5 denotes an unsubstituted or substituted alkyl group, preferably a C
1-6 n-alkyl group which is unsubstituted or substituted with at least one -OH or -NHR
7 group, with R
7 denoting H or C
1-6 n-alkyl. Exemplary useful R
5 groups include alkyl groups, such as ethyl, propyl and butyl; hydroxyl-substituted
groups such as 4-hydroxybutyl; amine-substituted groups such as 3-aminopropyl; etc.
[0044] Polythioethers according to the invention also include difunctional vinyl-terminated
(uncapped) polythioethers. That is, in formula II, y = 1 and R
4 is -CH = CH
2. These polymers are produced, for example, by reacting a dithiol or mixture thereof
with an excess of a divinyl ether or mixture thereof, as discussed in detail below.
Analogous capped polythioethers include terminal -(CH
2-)
2-S-R
5.
[0045] The foregoing polythioethers are linear polymers having a functionality of 2 (considering
alkyl and other non-reactive caps within this total). Polythioethers having higher
functionality are also within the scope of the present invention. Such polymers are
prepared, as discussed in detail below, by using a polyfunctionalizing agent. The
term "polyfunctionalizing agent" as employed herein denotes a compound having more
than two moieties that are reactive with terminal -SH and/or -CH=CH
2 groups. The polyfunctionalizing agent preferably includes from 3 to 6 such moieties,
and thus is denoted a "z-valent" polyfunctionalizing agent, where z is the number
(preferably from 3 to 6) of such moieties included in the agent, and hence the number
of separate branches which the polyfunctional polythioether comprises. The polyfunctionalizing
agent can be represented by the formula
B-(R
8)
z
where R
8 denotes a moiety that is reactive with terminal -SH or -CH = CH
2 and can be the same or different, and B is the z-valent residue of the polyfunctionalizing
agent, i.e., the portion of the agent other than the reactive moieties R
7.
[0046] Polyfunctional polythioethers according to the present invention thus preferably
have the formula III
B-(A-[R
3]
y-R
4)
z
wherein
A denotes a structure having the formula I,
y is 0 or 1,
R
3 denotes a single bond when y = 0
and -S-(CH
2)
2-[-O-R
2-]
m-O- when y = 1,
R
4 denotes -SH or -S-(-CH
2-)
2+s-O-R
5 when y = 0
and -CH
2 = CH
2 or -(CH
2-)
2-S-R
5 when y = 1,
R
5 denotes C
1-6 n-alkyl which is unsubstituted or substituted with at least one -OH or -NHR
7 group,
R
7 denotes H or a C
1-6 n-alkyl group,
z is an integer from 3 to 6, and
B denotes a z-valent residue of a polyfunctionalizing agent.
[0047] As with the preceding difunctional embodiments, the foregoing polyfunctional polythioethers
of the present invention can include terminal -SH or -CH=CH
2 groups, or can be capped and thus include terminal -S-(-CH
2-)
2+s-O-R
5 or -(CH
2-)
2-S-R
5 groups. Partially capped polyfunctional polymers, i.e., polymers in which some but
not all of the branches are capped, are also within the scope of the present invention.
[0048] Specific polyfunctionalizing agents include trifunctionalizing agents, that is, compounds
with z = 3. Preferred trifunctionalizing agents include triallylcyanurate (TAC), which
is reactive with compounds of the formula II (R
8 = allyl), and 1,2,3-propanetrithiol, which is reactive with compounds of the formula
III (R
8 = -SH). Agents having mixed functionality, i.e., agents that include moieties (typically
separate moieties) that react with both thiol and vinyl groups, can also be employed.
[0049] Other useful polyfunctionalizing agents include trimethylolpropane trivinyl ether,
and the polythiols described in U.S. Patent No. 4,366,307, U.S. Patent No. 4,609,
762 and U.S. Patent No. 5,225,472, the disclosures of each of which are incorporated
in their entireties herein by reference. Mixtures of polyfunctionalizing agents can
also be used.
[0050] Polyfunctionalizing agents having more than three reactive moieties (i.e., z > 3)
afford "star" polythioethers and hyperbranched polythioethers. For example, two moles
of TAC can be reacted with one mole of a dithiol to afford a material having an average
functionality of 4. This material can then be reacted with a divinyl ether and a dithiol
to yield a polymer, which can in turn be mixed with a trifunctionalizing agent to
afford a polymer blend having an average functionality between 3 and 4.
[0051] Polythioethers as described above have a wide range of average functionality. For
example, trifunctionalizing agents afford average functionalities from about 2.05
to 3.0, preferably about 2.1 to 2.6. Wider ranges of average functionality can be
achieved by using tetrafunctional or higher polyfunctionalizing agents. Functionality
will also be affected by factors such as stoichiometry, as is known to those skilled
in the art.
[0052] Methods of making the foregoing polyfunctional polythioethers are discussed in detail
below.
[0053] Polythioethers within the scope of the present invention are prepared by a number
of methods. According to a first preferred method, (n + 1) moles of a compound having
the formula IV
HS-R
1-SH IV
or a mixture of at least two different compounds having the formula IV, are reacted
with n moles of a compound having the formula V
CH
2 = CH-O-[-R
2-O-]
m-CH = CH
2 V
or a mixture of at least two different compounds having the formula V, in the presence
of a catalyst. In formulas IV and V above, R
1, R
2 and all indices are defined as in formula I. This method affords an uncapped, thiol-terminated
difunctional polythioether.
[0054] The compounds of formula IV are dithiol compounds. Preferred dithiols include those
compounds in which R
1 is a C
2-6 n-alkylene group, i.e., 1,2-ethanedithiol, 1,3-propanedithiol, 1,4-butanedithiol,
1,5-pentanedithiol or 1,6-hexanedithiol.
[0055] Additional preferred dithiols include those compounds in which R
1 is a C
3-6 branched alkylene group, having one or more pendent groups which can be, for example,
methyl or ethyl groups. Preferred compounds having branched alkylene R
1 include 1,2-propanedithiol, 1,3-butanedithiol, 2,3-butanedithiol, 1,3-pentanedithiol
and 1,3-dithio-3-methylbutane. Other useful dithiols include those in which R
1 is a C
6-8 cycloalkylene or C
6-10 alkylcycloalkylene group, for example, dipentenedimercaptan and ethylcyclohexyldithiol
(ECHDT).
[0056] Further preferred dithiols include one or more heteroatom substituents in the carbon
backbone, that is, dithiols in which X is a heteroatom such as O, S or another bivalent
heteroatom radical; a secondary or tertiary amine group, i.e., -NR
6-, where R
6 is hydrogen or methyl; or another substituted trivalent heteroatom. In a preferred
embodiment, X is O or S, and thus R
1 is -[(-CH
2-)
p-O-]
q-(-CH
2-)
r- or -[(-CH
2-)
p-S-]
q-(-CH
2-)
r-. Preferably, the indices p and r are equal, and very preferably both have the value
of 2. Particularly preferred exemplary dithiols of this type include dimercaptodiethylsulfide
(DMDS) (p, r = 2, q = 1, X = S); dimercaptodioxaoctane (DMDO) (p, q, r = 2, X = 0);
and 1,5-dithia-3-oxapentane. It is also possible to employ dithiols that include both
heteroatom substituents in the carbon backbone and pendent alkyl, in particular methyl,
groups. Such compounds include methyl-substituted DMDS, such as HS-CH
2CH(CH
3)-S-CH
2CH
2-SH, HS-CH(CH
3)CH
2-S-CH
2CH
2-SH and dimethyl substituted DMDS such as HS-CH
2CH(CH)
3-S-CH(CH)
3CH-
2SH and HS-CH(CH
3)CH
2-S-CH
2CH(CH
3)-SH.
[0057] Two or more different dithiols of formula IV can also be employed if desired in preparing
polythioethers according to the invention.
[0058] The compounds of formula V are divinyl ethers. Divinyl ether itself (m = 0) can be
used. Preferred divinyl ethers include those compounds having at least one oxyalkylene
group, more preferably from 1 to 4 oxyalkylene groups (i.e., those compounds in which
m is an integer from 1 to 4 ). Very preferably, m is an integer from 2 to 4. It is
also possible to employ commercially available divinyl ether mixtures in producing
polythioethers according to the invention. Such mixtures are characterized by a non-integral
average value for the number of alkoxy units per molecule. Thus, m in formula V can
also take on non-integral, rational values between 0 and 10, preferably between 1
and 10, very preferably between 1 and 4, particularly between 2 and 4.
[0059] Exemplary divinyl ethers include those compounds in which R
2 is C
2-6 n-alkylene or C
2-6 branched alkylene. Preferred divinyl ethers of this type include ethylene glycol
divinyl ether (EG-DVE) (R
2 = ethylene, m = 1); butanediol divinyl ether (BD-DVE) (R
2 = butylene, m = 1); hexanediol divinyl ether (HD-DVE) (R
2 = hexylene, m = 1); diethylene glycol divinyl ether (DEG-DVE) (R
2 = ethylene, m = 2); triethylene glycol divinyl ether (R
2 = ethylene, m = 3); and tetraethylene glycol divinyl ether (R
2 = ethylene, m = 4). Useful divinyl ether blends include "PLURIOL®" type blends such
as PLURIOL® E-200 divinyl ether (commercially available from BASF), for which R
2 = ethyl and m = 3.8, as well as "DPE" polymeric blends such as DPE-2 and DPE-3 (commercially
available from International Specialty Products, Wayne, New Jersey). Of these, DEG-DVE
and PLURIOL® E-200 are particularly preferred.
[0060] Useful divinyl ethers in which R
2 is C
2-6 branched alkylene can be prepared by reacting a polyhydroxy compound with acetylene.
Exemplary compounds of this type include compounds in which R
2 is an alkyl-substituted methylene group such as -CH(CH
3)- or an alkyl-substituted ethylene such as -CH
2CH(CH
3)-.
[0061] Other useful divinyl ethers include compounds in which R
2 is polytetrahydrofuryl (poly-THF) or polyoxyalkylene, preferably having an average
of about 3 monomer units.
[0062] Two or more compounds of the formula V can be used in the foregoing method. Thus
in preferred embodiments of the invention, two compounds of formula IV and one compound
of formula V, one compound of formula IV and two compounds of formula V, two compounds
of formula IV and of formula V, and more than two compounds of one or both formulas,
can be used to produce a variety of polythioethers according to the invention, and
all such combinations of compounds are contemplated as being within the scope of the
invention
[0063] Although, as indicated above, compounds of the formulas IV and V which have pendent
alkyl groups, for example pendent methyl groups, are useful according to the invention,
it has surprisingly been discovered that compounds of the formulas IV and V which
are free of pendent methyl or other alkyl groups also afford polythioethers that are
liquid at room temperature and pressure.
[0064] The reaction between the compounds of formulas IV and V is preferably catalyzed by
a free radical catalyst. Preferred free radical catalysts include azo compounds, for
example azobisnitrile compounds such as azo(bis)isobutyronitrile (AIBN); organic peroxides
such as benzoyl peroxide and t-butyl peroxide; and similar free-radical generators.
The reaction can also be effected by irradiation with ultraviolet light either with
or without a cationic photoinitiating moiety. Ionic catalysis methods, using either
inorganic or organic bases, e.g., triethylamine, also yield materials useful in the
context of this invention.
[0065] Capped analogs to the foregoing polythioethers can be prepared by reacting (n + 1)
moles of a compound having the formula IV or a mixture of at least two different compounds
having the formula IV, (n) moles of a compound having the formula V or a mixture of
at least two different compounds having the formula V, and about 0.05 to about 2 moles
of a compound having the formula VI
CH
2 = CH-(CH
2)
s-O-R
5 VI
or a mixture of two different compounds having the formula VI, in the presence of
an appropriate catalyst.
[0066] Compounds of the formula VI are alkyl ω-alkenyl ethers (ethers having a terminal
ethylenically unsaturated group) which react with terminal thiol groups to cap the
polythioether polymer.
[0067] In formula VI, s is an integer from 0 to 10, preferably 0 to 6, more preferably 0
to 4. Specific preferred compounds of the formula VI are monovinyl ethers (s = 0),
including amino- and hydroxyalkyl vinyl ethers, such as 3-aminopropyl vinyl ether
and 4-hydroxybutyl vinyl ether (butanediol monovinyl ether), as well as unsubstituted
alkyl vinyl ethers such as ethyl vinyl ether. Additional preferred compounds of the
formula VI include allyl ethers (s = 1), such as 4-aminobutyl allyl ether, 3-hydroxypropyl
allyl ether, etc. Although compounds in which s is greater than 6 can be used, the
resultant polymers may have less fuel resistance than those in which s is 6 or less.
[0068] Use of 2 moles of compounds of the formula VI affords fully capped polymers, while
use of lesser amounts results in partially capped polymers.
[0069] According to another preferred method, (n) moles of a compound having the formula
IV, or a mixture of at least two different compounds having the formula IV, are reacted
with (n + 1) moles of a compound having the formula V, or a mixture of at least two
different compounds having the formula V, again in the presence of an appropriate
catalyst. This method affords an uncapped, vinyl-terminated difunctional polythioether.
[0070] Capped analogs to the foregoing vinyl-terminated polythioethers can be prepared by
reacting (n + 1) moles of a compound having the formula V or a mixture of at least
two different compounds having the formula V, (n) moles of a compound having the formula
IV or a mixture of at least two different compounds having the formula IV, and about
0.05 to about 2 moles of a compound having the formula VII
HS-R
5 VII
or a mixture of two different compounds having the formula VII, in the presence of
an appropriate catalyst.
[0071] Compounds of the formula VII are monothiols, which can be unsubstituted or substituted
with, e.g., hydroxyl or amino groups. Exemplary capping compounds of the formula VII
include mercaptoalcohols such as 3-mercaptopropanol, and mercaptoamines such as 4-mercaptobutylamine.
[0072] Polyfunctional analogs of the foregoing difunctional polythioethers are similarly
prepared by combining one or more compounds of formula IV and one or more compounds
of formula V, in appropriate amounts, with a polyfunctionalizing agent as described
above, and reacting the mixture. Thus, according to one method for making polyfunctional
polythioethers of the present invention, (n+1) moles a compound or compounds having
the formula IV, (n) moles of a compound or compounds having the formula V, and a z-valent
polyfunctionalizing agent, are combined to form a reaction mixture. The mixture is
then reacted in the presence of a suitable catalyst as described above to afford thiol-terminated
polyfunctional polythioethers. Capped analogs of the foregoing polythioethers are
prepared by inclusion in the starting reaction mixture of about 0.05 to about (z)
moles one or more appropriate capping compounds VI. Use of (z) moles affords fully
capped polyfunctional polymers, while use of lesser amounts again yields partially
capped polymers.
[0073] Similarly, (n) moles of a compound or compounds having the formula IV, (n + 1) moles
of a compound or compounds having the formula V, and a z-valent polyfunctionalizing
agent, are combined to form a reaction mixture and reacted as above to afford vinyl-terminated
polyfunctional polythioethers. Capped analogs of the foregoing polythioethers are
prepared by inclusion in the starting reaction mixture of one or more appropriate
capping compounds VII.
[0074] The inventive polythioethers preferably are prepared by combining at least one compound
of formula IV and at least one compound of formula V, optionally together with one
or capping compounds VI and/or VII as appropriate, and/or a polyfunctionalizing agent,
followed by addition of an appropriate catalyst, and carrying out the reaction at
a temperature from about 30 to about 120°C for a time from about 2 to about 24 hours.
Very preferably the reaction is carried out at a temperature from about 70 to about
90°C for a time from about 2 to about 6 hours.
[0075] Since the inventive reaction is an addition reaction, rather than a condensation
reaction, the reaction typically proceeds substantially to completion, i.e., the inventive
polythioethers are produced in yields of approximately 100%. No or substantially no
undesirable by-products are produced. In particular, the reaction does not produce
appreciable amounts of malodorous cyclic by-products such as are characteristic of
known methods for producing polythioethers. Moreover, the polythioethers prepared
according to the invention are substantially free of deleterious residual catalyst.
As a result, no free catalyst is available to further react with the polythioether,
in particular in the presence of water at room temperature, to degrade the polymer
and produce malodorous cyclic compounds. Thus, the inventive polythioethers are characterized
both by thermal stability and by low odor.
[0076] Polythioethers according to the invention are useful in applications such as coatings
and sealant compositions, and preferably are formulated as polymerizable sealant compositions
in applications where low temperature flexibility and fuel resistance are important.
Such sealant compositions are useful, e.g., as aerospace sealants and linings for
fuel tanks. A first preferred polymerizable composition thus includes at least one
polythioether as described herein; a curing agent or combination of curing agents;
and a filler.
[0077] The polythioether or combination of polythioethers preferably is present in the polymerizable
composition in an amount from about 30 wt% to about 90 wt%, more preferably about
40 to about 80 wt%, very preferably about 45 to about 75 wt%, with the wt% being calculated
based on the weight of all non-volatile components of the composition. Preferably,
the T
g of the polythioether(s) used in the polymerizable composition is not higher than
-55°C, more preferably not higher than -60°C.
[0078] Curing agents useful in polymerizable compositions of the invention include epoxy
resins, for example, hydantoin diepoxide, diglycidyl ether of bisphenol-A, diglycidyl
ether of bisphenol-F, Novolak type epoxides, and any of the epoxidized unsaturated
and phenolic resins. Other useful curing agents include unsaturated compounds such
as acrylic and methacrylic esters of commercially available polyols, unsaturated synthetic
or naturally occurring resin compounds, TAC, and olefinic terminated derivatives of
the compounds of the present invention. In addition, useful cures can be obtained
through oxidative coupling of the thiol groups using organic and inorganic peroxides
(e.g.. MnO
2) known to those skilled in the art. Selection of the particular curing agent may
affect the T
g of the cured composition. For example, curing agents that have a T
g significantly lower than the T
g of the polythioether may lower the T
g of the cured composition.
[0079] Depending on the nature of the polythtoether(s) used in the composition, the composition
will contain about 90% to about 150% of the stoichiometric amount, preferably about
95 to about 125%, of the selected curing agent(s).
[0080] Fillers useful in the polymerizable compositions of the invention include those commonly
used in the art, such as carbon black and calcium carbonate (CaCO
3). Preferably, the compositions include about 5 to about 60 wt% of the selected filler
or combination of fillers, very preferably about 10 to 50 wt%.
[0081] The polythioethers, curing agents and fillers employed in polymerizable compositions
of the invention, as well as optional additives as described below, should be selected
so as to be compatible with each other. Selection of compatible ingredients for the
inventive compositions can readily be performed by those skilled in the art without
recourse to undue experimentation.
[0082] The foregoing polymerizable compositions preferably are curable at a minimum temperature
of about 0°C (i.e., at a temperature of about 0°C or higher), more preferably about
-10°C, very preferably about -20°C, and have a T
g when cured not higher than about -55°C, more preferably not higher than -60°C, very
preferably not higher than -65°C. When cured, the polymerizable compositions preferably
have a % volume swell not greater than 25%, more preferably not greater than 20%,
after immersion for one week at 60°C (140°F) and ambient pressure in jet reference
fluid (JRF) type 1.
[0083] In addition to the foregoing ingredients, polymerizable compositions of the invention
can optionally include one or more of the following: pigments; thixotropes; accelerators;
retardants; adhesion promoters; and masking agents.
[0084] Useful pigments include those conventional in the art, such as carbon black and metal
oxides. Pigments preferably are present in an amount from about 0.1 to about 10 wt%.
[0085] Thixotropes, for example silica, are preferably used in an amount from about 0.1
to about 5 wt%.
[0086] Accelerators known to the art, such as amines, preferably are present in an amount
from about 0.1 to about 5 wt%. Two such useful accelerators are 1,4-diaza-bicyclo[2.2.2]octane
(DABCO®, commercially available from Air Products, Chemical Additives Division, Allentown,
Pennsylvania) and DMP-30® (an accelerant composition including 2,4,6-tri(dimethylaminomethyl)phenol,
commercially available from Rohm and Haas. Philadelphia, Pennsylvania).
[0087] Retardants, such as stearic acid, likewise preferably are used in an amount from
about 0.1 to about 5 wt%. Adhesion promoters, which can be, for example, conventional
phenolics or silanes, if employed are preferably present in amount from about 0.1
to about 5 wt%. Masking agents, such as pine fragrance or other scents, which are
useful in covering any low level odor of the composition, are preferably present in
an amount from about 0.1 to about 1 wt%.
[0088] An additional advantage of sealant compositions according to the invention is their
improved curing behavior. The extent of cure of a sealant composition as a function
of time is often difficult to measure directly, but can be estimated by determining
the extrusion rate of the composition as a function of time. The extrusion rate is
the rate at which a mixed sealant composition, i.e., a sealant composition together
with an accelerator system, is extruded from an applicator device. Since the sealant
composition is mixed with the accelerator system, curing begins, and the extrusion
rate changes with time. The extrusion rate thus is inversely related to the extent
of cure. That is, when the extent of cure is low, the viscosity of the mixed sealant
composition is low and thus the extrusion rate is high. When the reaction approaches
completion, the viscosity becomes very high, and the extrusion rate thus becomes low.
[0089] With reference to Fig.1, the viscosity of some known types sealant compositions remains
low for an extended time, because the compositions are slow to cure. Such compositions
have extrusion curves qualitatively similar to curve A. Other known types of sealant
composition cure very quickly, and thus their viscosity rapidly increases. Consequently,
the extrusion rate rapidly decreases, as shown in curve B. Desirably, a mixed sealant
composition should have a low viscosity, and thus a high extrusion rate, for a length
of time sufficient to allow even application of the sealant composition to the area
requiring sealing, but then should cure rapidly after application, i.e., their extrusion
rate should quickly decrease. Sealant compositions according to the present invention
are characterized by this desirable extrusion curve, as illustrated qualitatively
in curve C.
[0090] Sealant compositions according to the present invention can have, depending on the
particular formulation, initial extrusion rates as high as 500 g/min or higher, together
with low extrusion rates on the order of about 5 to 10 g/min or less after curing
times on the order of one hour.
[0091] As shown in Fig. 2, the initial extrusion rate of a polymer of the present invention
(Example 1, below, cured with an epoxy curing agent as described below) is about 550
g/min, then falls rapidly to about 20 g/min after 70 minutes. In comparison, a known
polysulfide (cured with MnO
2) has an initial extrusion rate of about 90 g/min, which slowly falls to about 20
g/min after 70 minutes.
[0092] A second preferred polymerizable composition combines one or more plasticizers with
the polythioether(s), curing agent(s) and filler(s) described above. Use of a plasticizer
allows the polymerizable composition to include polythioethers which have higher T
g than would ordinarily be useful in an aerospace sealant. That is, use of a plasticizer
effectively reduces the T
g of the composition, and thus increases the low-temperature flexibility of the cured
polymerizable composition beyond that which would be expected on the basis of the
T
g of the polythioethers alone.
[0093] Plasticizers that are useful in polymerizable compositions of the invention include
phthalate esters, chlorinated paraffins, hydrogenated terphenyls, etc. The plasticizer
or combination of plasticizers preferably constitute 1 to about 40 wt%, more preferably
1 to about 10 wt% of the composition.
[0094] Depending on the nature and amount of the plasticizer(s) used in the composition,
polythioethers of the invention which have T
g values up to about -50°C, preferably up to about -55°C, can be used.
[0095] The foregoing polymerizable compositions also preferably are curable at a minimum
temperature of about 0°C, more preferably about -10°C, very preferably about -20°C.
[0096] The present invention is illustrated in more detail by means of the following non-limiting
examples.
[0097] In examples 1-8, liquid polythioethers were prepared by stirring together one or
more dithiols with one or more divinyl ethers and a trifunctionalizing agent. The
reaction mixture was then heated and a free radical catalyst was added. All reactions
proceeded substantially to completion (approximately 100% yield).
Example 1
[0098] In a 2 L flask, 524.8 g (3.32 mol) of diethylene glycol divinyl ether (DEG-DVE) and
706.7 g (3.87 mol) of dimercaptodioxaoctane (DMDO) were mixed with 19.7 g (0.08 mol)
of triallylcyanurate (TAC) and heated to 77°C. To the heated reaction mixture was
added 4.6 g (0.024 mol) of an azobisnitrile free radical catalyst (VAZO® 67 [2,2'-azobis(2-methylbutyronitrile),
commercially available from DuPont.). The reaction proceeded substantially to completion
after 2 hours to afford 1250 g (0.39 m: yield 100%) of a liquid polythioether resin
having a T
g of -68°C and a viscosity of 65 poise. The resin was faintly yellow and had low odor.
Example 2
[0099] In a 1 L flask, 404.4 g (1.60 mol) of PLURIOL® E-200 divinyl ether and 355.88 g (1.94
mol) of DMDO were mixed with 12.1 g (0.049 mol) of TAC and reacted as in Example 1.
The reaction proceeded substantially to completion after 5 hours to afford 772 g (0.024
mol, yield 100%) of a resin having a T
g of -66°C and a viscosity of 48 poise. The resin was yellow and had low odor.
Examples 3
[0100] In a 100 mL flask, 33.2 g (0.21 mol) of DEG-DVE and 26.48 g (0.244 mol) of 1,2-propanedithiol
were mixed with 0.75 g (0.003 mol) of TAC and heated to 71 °C. To the heated reaction
mixture was added 0.15 g (0.8 mmol) of VAZO® 67. The reaction proceeded substantially
to completion after 7 hours to afford 60 g (0.03 mol, yield 100%) of a resin having
a T
g of -61 °C and a viscosity of 22 poise. The resin had a noticeable PDT odor.
Example 4
[0101] In a 100 mL flask, 33.3 g (0.136 mol) of tripropylene glycol divinyl ether (DPE-3)
and 27.0 g (0.170 mol) of dimercaptodiethylsulfide (DMDS) were mixed with 0.69 g (0.003
mol) of TAC and heated to 77°C. To the heated reaction mixture was added 0.15 g (0.8
mmol) of VAZO® 67. The reaction proceeded substantially to completion after 6 hours
to afford 61 g (0.028 mol, yield 100%) of a resin having a T
g of -63°C and a viscosity of 26 poise.
Example 5
[0102] In a 250 mL flask, 113.01 g (0.447 mol) of PLURIOL® E-200 divinyl ether and 91.43
g (0.498 mol) of DMDO were mixed with 1.83 g (0.013 mol) of 1,2,3-propanetrithiol
(PTT) and allowed to react exothermically for 72 hours. The mixture was then heated
to 80°C. To the heated reaction mixture was added 0.2 g (1 mmol) of VAZO® 67. The
reaction mixture was maintained at 80°C, and the reaction proceeded substantially
to completion after 3 hours to afford 200 g (0.06 mol, yield 100%) of a resin having
a T
g of -66°C and a viscosity of 55 poise.
Example 6
[0103] In a small jar, 14.0 g (0.055 mol) of PLURIOL® E-200 divinyl ether, 6.16 g (0.336
mol) of DMDO and 5.38 g (0.336 mol) of DMDS were mixed with 0.42 g ( 0.017 mol) of
TAC (briefly heated to melt the TAC) and heated to 82°C. To the heated reaction mixture
was added 0.2 g (0.001 mol) of VAZO® 67. The reaction proceeded substantially to completion
after 18 hours to afford 26 g (8.4 mmol, yield 100%) of a resin having a T
g of -63°C and a viscosity of 80 poise.
Example 7
[0104] In a small jar, 13.55 g (0.054 mol) of PLURIOL® E-200 divinyl ether, 10.44 g (0.057
mol) of DMDO and 1.44 g (8.1 mmol) of ethylcyclohexanedithiol (ECHDT) were mixed with
0.40 g (1.6 mmol) of TAC (heated briefly to melt the TAC) and heated to 82°C. To the
heated reaction mixture was added 0.2 g (0.001 mol) of VAZO® 67. The reaction proceeded
substantially to completion after 5 hours to afford 26 g (8.1 mmol, yield 100%) of
a resin having a T
g of -66°C and a viscosity of 58 poise.
Example 8
[0105] In a small glass jar, 9.11 g (0.036 mol) of PLURIOL®E-200 divinyl ether, 5.71 g (0.031
mol) of DMDO, 1.52 g (7.8 mmol) of ECHDT, 5.08 g (0.031 mol) of DMDS and 4.11 g (0.024
mol) of hexanediol divinyl ether (HD-DVE) were mixed with 0.39 g (1.6 mmol) of TAC
(heated briefly to dissolve the TAC) and heated to 82°C. To the heated reaction mixture
was added 0.6 g (3.1 mmol) of VAZO® 67. The reaction proceeded substantially to completion
after about 45 hours to afford 26 g (7.8 mmol, yield 100%) of a resin having a T
g of -66°C and a viscosity of 304 poise. The resin had a cloudy appearance.
[0106] Each of the foregoing resins was evaluated for odor. The following scale was employed:
3: strong, offensive odor; 2: moderate odor; 1: slight odor; 0: substantially odorless.
[0107] The polymer described in Example 3 of U.S. Patent No. 4,366,307 was used as a control.
This polymer (the "control polymer") had an odor of 3.
[0108] Results were as follows:
| Polymer |
Odor |
Polymer |
Odor |
| 1 |
1 |
5 |
1 |
| 2 |
1 |
6 |
1 |
| 3 |
3 |
7 |
1 |
| 4 |
1 |
8 |
2 |
[0109] All of the liquid polythioethers thus had little or moderate odor except polymer
3, which had a strong odor.
[0110] The resins prepared in Examples 1-8 were then cured. Curing was carried out using
the uncompounded resins with a curing agent and DABCO accelerator. The curing agent
had the following composition:
| epoxy novolak (equivalent weight 175.5) |
22 wt% |
| hydantoin epoxy (equivalent weight 132) |
34 wt% |
| calcium carbonate |
34 wt% |
| carbon black |
5 wt% |
| silane adhesive promoter |
5 wt% |
[0111] The cured resins were evaluated for odor according to the procedure set forth above.
The T
g and the percent weight gain after immersion in JRF type 1 for one week at room temperature
and pressure were also measured for each of the cured resins. The volume swell and
weight gain percentages were determined for each cured material as follows:
w1 = initial weight in air
w2 = initial weight in H2O
w3 = final weight in air
w4 = final weight in H2O


[0112] The results are given in Table 1:
TABLE 1
| Cured Resin |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
| Odor |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
| Tg (°C) |
-59 |
-61 |
-61 |
-63 |
-62 |
-56 |
-59 |
-58 |
| % fuel swell |
19 |
22 |
-- |
-- |
23 |
19 |
24 |
27 |
| % wt gain |
14 |
15 |
15 |
23 |
15 |
15 |
19 |
20 |
[0113] In comparison, the control polymer had an odor of 1-2 when cured.
Example 9
[0114] Polythioethers having a number average molecular weight of 2100 and an average functionality
F of 2.1 were prepared by combining a divinyl ether with a dithiol as shown in Table
2 and reacting the materials as described herein. The uncompounded polythioethers
were then cured using 15 g of the curing agent described above and 0.30 g of DABCO.
For each polythioether so prepared, the following quantities were measured: viscosity
(uncured material, poise p); Shore A hardness (cured material, Rex durometer value);
% weight gain (cured material) after one week at 140°F (60°C) and atmospheric pressure
in JRF type 1; and T
g (uncured material, °C). Results were as follows:

[0115] From the foregoing table it is apparent that the following combinations of divinyl
ether and dithiol afford liquid polythioethers having unexpectedly superior fuel resistance
and low temperature flexibility when cured: PLURIOL® E-200/DMDO; and DEG-DVE/DMDO.
Other potentially useful combinations include DEG-DVE/ECHDT; DEG-DVE/HDT; PLURIOL®
E-200/ECHDT; PLURIOL® E-200/HDT; and poly-THF/DMDO. PLURIOL® E-200/DMDS also has excellent
fuel resistance and low temperature flexibility when cured, but the uncompounded material
does not remain in a liquid state for an extended period of time.
Example 10 Addition of DMDS to PLURIOL®/DMDO Polymers
[0116] Four liquid polythiols were prepared as described herein. The polymers had the following
compositions (listed values are molar equivalents):
| |
1 |
2 |
3 |
4 |
| PLURIOL® E-200 |
6.6 |
6.6 |
6.6 |
6.6 |
| DMDO |
8 |
6 |
4.5 |
4 |
| DMDS |
0 |
2 |
3.5 |
4 |
[0117] Each uncompounded polymer was cured as in Example 9 (15 g of the curing agent composition
and 0.30 g of DABCO), with the addition of 0.2 molar equivalents of TAC to afford
polymers having a number average molecular weight of about 3000 and a functionality
F of 2.2. For each polymer, the following properties were measured: T
g (resin, °C); T
g (cured, °C); viscosity (p); % swell in JRF type 1; % weight gain in JRF type 1; and
% weight gain in water. Results are given in Table 3.
TABLE 3
| |
1 |
2 |
3 |
4 |
| Tg (resin) |
-67 |
-66 |
-64 |
-63 |
| (cured) |
-59 |
-58 |
-56 |
-56 |
| Viscosity |
59 |
53 |
62 |
80 |
| JRF |
|
|
|
|
| % Swell |
24 |
21 |
21 |
20 |
| % Wt Gain |
18 |
15 |
16 |
16 |
| H2O |
|
|
|
|
| % Wt Gain |
11.8 |
11.5 |
7.4 |
7.5 |
[0118] All of the foregoing polymers displayed excellent fuel resistance. Polymers 1 and
2 in particular also displayed excellent low temperature flexibility.
Example 11 Addition of ECHDT to PLURIOL®/DMDO Polymers
[0119] Four liquid polythiols were prepared as described herein. The polymers had the following
compositions (listed values are molar equivalents):
| |
1 |
2 |
3 |
4 |
PLURIOL®
E-200 |
6.6 |
6.6 |
6.6 |
6.6 |
| DMDO |
8 |
7 |
6 |
5 |
| ECHDT |
0 |
1 |
2 |
3 |
[0120] Each uncompounded polymer was cured as in Example 10 to afford polymers having a
number average molecular weight of about 3000 and a functionality F of 2.2. For each
polymer, the following properties were measured: T
g (resin, °C); T
g (cured, °C); viscosity (p); % swell in JRF type 1; % weight gain in JRF type 1; and
% weight gain in water. Results are given in Table 4.
TABLE 4
| |
1 |
2 |
3 |
4 |
| Tg (resin) |
-67 |
-66 |
-65 |
-64 |
| (cured) |
-59 |
-59 |
-58 |
-56 |
| Viscosity |
59 |
36 |
44 |
50 |
| JRF type 1 |
|
|
|
|
| % Swell |
24 |
25 |
28 |
29 |
| % Wt Gain |
18 |
18 |
19 |
19 |
| H2O |
|
|
|
|
| % Wt Gain |
11.8 |
10.8 |
8.3 |
7.8 |
[0121] All of the foregoing polymers displayed good fuel resistance and low temperature
flexibility.
Example 12
[0122] In a 250 mL 3-neck flask equipped with a stirrer, thermometer and condenser, 87.7
g (0.554 mol) of DEG-DVE and 112.3 g (0.616 mol) of DMDO are mixed and heated to 77°C
(about 170°F). To the mixture is added 0.8 g (4.2 mmol) of VAZO® 67 catalyst. The
reaction mixture is reacted at 82°C (about 180°F) for about 6 hours to afford 200
g (0.06 mol, yield 100%) of a low viscosity liquid polythioether resin having a thiol
equivalent of 1625 and a functionality F of 2.0.
Example 13
[0123] In a 250 mL 3-neck flask equipped with a stirrer, thermometer and condenser, 26.7
g (0.107 mol) of TAC, 56.4 g (0.357 mol) of DEG-DVE and 117.0 g (0.642 mol) of DMDO
are mixed and heated to 77°C (about 170°F). To the mixture is added 0.8 g (4.2 mmol)
of VAZO 67 catalyst. The reaction mixture is reacted at 82°C (about 180°F) for about
6 hours to afford 200.g (0.07 mol, yield 100%) of a high viscosity liquid polythioether
resin having an equivalent of 800 and a functionality F of about 3.5.
Example 14 Sealant Composition
[0124] A sealant composition including the DMDO/DEG-DVE polythioether polymer of Example
1 was compounded as follows (amounts in parts by weight):
| DMDO/DEG-DVE Polythioether |
100 |
| Calcium carbonate |
60 |
| Magnesium oxide |
1 |
| Phenolic resin |
1 |
| DMP-30 |
1 |
| Isopropyl alcohol |
3 |
[0125] The compounded polymer was mixed intimately with the epoxy resin curing agent of
Examples 9-11 above, in the weight ratio of 10:1 and cured at ambient temperature
and humidity. The following physical properties were obtained for the cured composition:
| Cure hardness at 25°C |
60 Shore A |
| Tensile strength at break |
550 psi |
| Elongation at break |
600% |
| Notched tear strength |
100 p/i |
Low-temperature flexibility
(AMS 3267 §4.5.4.7) |
passed |
Example 15 Sealant Composition
[0126] A sealant composition including the ECHDT/DEG-DVE polythioether polymer of Example
9 was compounded as follows (amounts in parts by weight):
| ECHDT/DEG-DVE Polythioether |
100 |
| Calcium carbonate |
54 |
| Hydrated aluminum oxide |
20 |
| Magnesium oxide |
1 |
| Phenolic resin |
1 |
| Hydrogenated terphenyl plasticizer |
6 |
| DMP-30 |
1 |
| Isopropyl alcohol |
3 |
[0127] The compounded polymer was mixed intimately with an epoxy resin curing agent in the
weight ratio of 10:1 and cured at ambient temperature and humidity. The following
physical properties were obtained for the cured composition:
| Cure hardness at 25°C |
72 Shore A |
| Tensile strength at break |
550 psi |
| Elongation at break |
450% |
| Notched tear strength |
85 p/i |
| Low-temperature flexibility |
passed |
Example 16 OH-Terminated Capped Polythioether
[0128] In a 500 ml flask, 275.9 g (1.09 mol) PLURIOL® E-200 divinyl ether, 174.7 g (0.95
mol) DMDO, 28.7 g (0.30 mol) 3-mercaptopropanol and 1.83 g (7.3 mmol) TAC were mixed.
The mixture was heated to 70°C, and 2.3 g (12 mmol) VAZO® 67 were added slowly. The
reaction mixture was stirred and heated at 85-90°C for 4 hours to afford 480 g (0.15
mol, yield 100%) of a polymer having an equivalent weight of 1670 (number average
molecular weight = 3200, functionality F = 2.05).
Example 17 OH-Terminated Capped Polythioether
[0129] In a 250 ml flask, 104.72 g (0.57 mol) DMDO, 80.73 g (0.51 mol) DEG-DVE and 14.96
g (0.13 mol) butanediol monovinyl ether were mixed and heated to 75°C. To the heated
mixture 0.60 g (3 mmol) VAZO® 67 were added slowly. The reaction mixture was stirred
and heated at 75-85°C for 6 hours to afford 200 g (0.064 mol, yield 100%) of a clear,
nearly colorless polymer with very low odor and a viscosity of 79 poise at 20°C. The
equivalent weight was 1570 (number average molecular weight = 3200, functionality
F = 2.00).
Example 18 Vinyl-Terminated Polythioether
[0130] in a 250 ml flask, 97.63 g (0.53 mol) DMDO, 97.66 g (0.62 mol) DEG-DVE and 5.31 g
(0.21 mol) TAC were mixed and heated to 70°C. To the heated mixture 0.80 g (4 mmol)
VAZO® 67 were added slowly. The reaction mixture was stirred and heated at 85-90°C
for 4 hours to afford 200 g (0.11 mol, yield 100%) of a low-odor polymer having a
T
g of -68°C and a viscosity of 25 poise at 20°C. The equivalent weight was 1570 (number
average molecular weight = 3454, functionality F = 2.2).
Example 19 Ethyl Vinyl Ether-Terminated Polythioether
[0131] In a 100 ml flask, 43.05 g (0.24 mol) DMDO, 34.22 g (0.22 mol) DEG-DVE and 2.84 g
(0.04 mol) ethyl vinyl ether were mixed and heated to 80°C. To the heated mixture
0.28 g (1.5 mmol) VAZO® 67 were added slowly. The reaction mixture was stirred and
heated at 85°C for 6 hours to afford 80 g (0.02 mol, yield 100%) of a polymer having
a T
g of -67°C and a viscosity of 64 poise at 20°C (number average molecular weight = 4100,
functionality F = 2.0).
1. A polythioether comprising a structure having the formula I
-R1-[-S-(CH2)2-O-[-R2-O-]m-(CH2)2-S-R1-]n- I
wherein
R1 denotes a C2-6 n-alkylene, C3-6 branched alkylene, C6-8 cycloalkylene or C6-10 alkylcycloalkylene group, -[(-CH2-)p-X-]q-(-CH2-)r-, or -[(-CH2-)p-X-]q-(-CH2-)r- in which at least one -CH2- unit is substituted with a methyl group,
R2 denotes a C2-6 n-alkylene, C2-6 branched alkylene, C6-8 cycloalkylene or C6-10 alkylcycloalkylene group, or -[(-CH2-)p-X-]q-(-CH2-)r-,
X is one selected from the group consisting of O, S and -NR6-,
R6 denotes H or methyl,
m is a rational number from 0 to 10,
n is an integer from 1 to 60,
p is an integer from 2 to 6,
q is an integer from 1 to 5, and
r is an integer from 2 to 10,
said polythioether being a liquid at room temperature and pressure.
2. The polythioether of claim 1 which has a glass transition temperature to not higher
than -50°C.
3. The polythioether of claim 1 which, when cured, has a % volume swell not greater than
25% after immersion for one week in JRF type 1 at 60°C and ambient pressure.
4. The polythloether of claim 1 which has a number average molecular weight between about
500 and 20,000.
5. The polythioether of claim 1 having the formula II
A-(-[R3]y-R4)2 II
wherein
A denotes a structure having the formula I,
y is 0 or 1,
R3 denotes a single bond when Y = O
and -S-(CH2)2-[-O-R2-]m-O- when y = 1,
R4 denotes -SH or -S-(-CH2-)2+s-O-R5 when y = O
and -CH2 = CH2 or -(CH2-)2-S-R5 when y = 1.
s is an integer from 0 to 10,
R5 denotes C1-6 n-alkyl which is unsubstituted or substituted with at least one -OH or -NHR7 group, and
R7 denotes H or a C1-6 n-alkyl group.
6. The polythioether of claim 5 wherein y = 0.
7. The polythioether of claim 6 wherein R4 is -SH.
8. The polythioether of claim 7 wherein (i) when m = 1 and R2 = n-butyl, R1 is not ethyl or n-propyl, and (ii) when m = 1, p = 2, q = 2, r = 2 and R2 = ethyl, X is not O.
9. The polythioether of claim 6 wherein R4 is -S-(-CH2-)2-O-R5.
10. The polythloether of claim 9 wherein R5 is n-C2H5, n-C4H8 -OH or n-C3H6-NH2.
11. The polythioether of claim 5 wherein y = 1.
12. The polythioether of claim 11 Wherein R4 is -CH = CH2.
13. The polythioether of claim 11 wherein R4 is -(CH2-)2-S-R5.
14. The polythioether of claim 13 wherein R5 is n-C3H6-OH.
15. The polythioether of claim 1 having the formula III
B-(A-[R3]y-R4)z III
wherein
A denotes a structure having the formula I,
y is 0 or 1,
R3 denotes a single bond when y = 0
and -S-(CH2)2-[-O-R2-]m-O- when y = 1,
R4 denotes -SH or -S-(-CH2-)2+s-O-R5 when y = 0
and -CH2 = CH2 or -(CH2-)2-S-R5 when y = 1,
s is an integer from O to 10,
R5 denotes C1-6 n-alkyl which is unsubstituted or substituted with at least one -OH or -NHR7 group,
R7 denotes H or a C1-6 n-alkyl group,
z is an integer from 3 to 6, and
B denotes a z-valent residue of a polyfunctionalizing agent.
16. The polythioether of claim 15 wherein z = 3.
17. The polythioether of claim 16 which has an average functionality from about 2.05 to
3.00.
18. The polythioether of claim 15 wherein y = 0.
19. The polythioether of claim 18 wherein R4 is -SH.
20. The polythioether of claim 18 wherein R4 is -S-(-CH2-)2+s-O-R5.
21. The polythioether of claim 15 wherein y = 1.
22. The polythioether of claim 21 wherein R4 is -CH = CH2.
23. The polythioether of claim 21 wherein R4 is -(CH2-)2-S-R5.
24. A method of producing the polythioether of claim 7 which comprises the step of reacting
(n + 1) moles of a compound having the formula IV
HS-R1-SH IV
or a mixture of at least two different compounds having the formula IV, with (n) moles
of a compound having the formula V
CH2 = CH-O-[-R2-O-]m-CH = CH2 V
or a mixture of at least two different compounds having the formula V, in the presence
of a catalyst selected from the group consisting of free-radical catalysts, ionic
catalysts and ultraviolet light.
25. The method of claim 24 wherein said catalyst is a free-radical catalyst.
26. The method of claim 24 wherein (i) when m = 1 and R2 = n-butyl, R1 is not ethyl or n-propyl, and (ii) when m = 1, p = 2, q = 2, r = 2 and R2 = ethyl, X is not O.
27. A method of producing the polythioether of claim 9 which comprises the step of reacting
(n + 1) moles of a compound having the formula IV
HS-R1-SH IV
or a mixture of at least two different compounds having the formula IV, In) moles
of a compound having the formula V
CH2 = CH-O-[-R2-O-]m-CH = CH2 V
or a mixture of at least two different compounds having the formula V, and about 0.05
to about 2 moles of a compound having the formula VI
CH2 = CH-(CH2)s-O-R5 VI
or a mixture of two different compounds having the formula VI, in the presence of
a catalyst selected from the group consisting of free-radical catalysts, ionic catalysts
and ultraviolet light.
28. A method of producing the polythioether of claim 12 which comprises the step of reacting
(n) moles of a compound having the formula IV
HS-R1-SH IV
or a mixture of at least two different compounds having the formula IV, with (n +
1) moles of a compound having the formula V
CH2 = CH-O-[-R2-O-]m-CH = CH2 V
or a mixture of at least two different compounds having the formula V, in the presence
of a catalyst selected from the group consisting of free-radical catalysts, ionic
catalysts and ultraviolet light.
29. A method of producing the polythioether of claim 13 which comprises the step of reacting
(n) moles of a compound having the formula IV
HS-R1-SH IV
or a mixture of at least two different compounds having the formula IV, (n + 1) moles
of a compound having the formula V
CH2 = CH-O-[-R2-O-]m-CH = CH2 V
or a mixture of at least two different compounds having the formula V, and about 0.05
to about 2 moles of a compound having the formula VII
HS-R5 VII
or a mixture of two different compounds having the formula VII, in the presence of
a catalyst selected from the group consisting of free-radical catalysts, ionic catalysts
and ultraviolet light.
30. A method of producing the polythioether of claim 19 which comprises the steps of
(i) combining
(a) (n + 1) moles a compound having the formula IV
HS-R1-SH IV
or a mixture of at least two different compounds having the formula IV,
(b) (n) moles of a compound having the formula V
CH2 = CH-O-[-R2-O-]m-CH = CH2 V
or a mixture of at least two different compounds having the formula V, and
(c) a z-valent polyfunctionalizing agent, wherein z is an integer from 3 to 6, to
form a reaction mixture, and
(ii) reacting said reaction mixture in the presence of a catalyst selected from the
group consisting of free-radical catalysts, ionic catalysts and ultraviolet light.
31. The method of claim 30 wherein said catalyst is a free-radical catalyst.
32. The method of claim 30 wherein said z-valent polyfunctionalizing agent is a trifunctionalizing
agent.
33. The method of claim 32 wherein said trifunctionalizing agent is selected from the
group consisting of triallylcyanurate, trimethylolpropane trivinyl ether, and 1,2,3-propanetrithiol.
34. A method of producing the polythioether of claim 20 which comprises the steps of
(i) combining
(a) (n + 1) moles of a compound having the formula IV
HS-R1-SH IV
or a mixture of at least two different compounds having the formula IV,
(b) (n) moles of a compound having the formula V
CH2 = CH-O-[-R2-O-]m-CH = CH2 V
or a mixture of at least two different compounds having the formula V,
(c) about 0.05 to about (z) moles of a compound having the formula VI
CH2 = CH-(CH2)s-O-R5 VI
or a mixture of two different compounds having the formula VI, and
(d) a z-valent polyfunctionalizing agent, wherein z is an integer from 3 to 6, to
form a reaction mixture, and
(ii) reacting said reaction mixture in the presence of a catalyst selected from the
group consisting of free-radical catalysts, ionic catalysts and ultraviolet light.
35. A method of producing the polythioether of claim 22 which comprises the steps of
(i) combining
(a) (n) moles a compound having the formula IV
HS-R1-SH IV
or a mixture of at least two different compounds having the formula IV,
(b) (n + 1) moles of a compound having the formula V
CH2 = CH-O-[-R2-O-]m-CH = CH2 V
or a mixture of at least two different compounds having the formula V, and
(c) a z-valent polyfunctionalizing agent, wherein z is an integer from 3 to 6, to
form a reaction mixture, and
(ii) reacting said reaction mixture in the presence of a catalyst selected from the
group consisting of free-radical catalysts, ionic catalysts and ultraviolet light.
36. A method of producing the polythioether of claim 23 which comprises the steps of
(i) combining
(a) (n) moles of a compound having the formula IV
HS-R1-SH IV
or a mixture of at least two different compounds having the formula IV,
(b) (n + 1) moles of a compound having the formula V
CH2 = CH-O-[-R2-O-]m-CH = CH2 V
or a mixture of at least two different compounds having the formula V,
(c) about 0.05 to about (z) moles of a compound having the formula VII
HS-R5 VII
or a mixture of two different compounds having the formula VII, and
(d) a z-valent polyfunctionalizing agent, wherein z is an integer from 3 to 6, to
form a reaction mixture, and
(ii) reacting said reaction mixture in the presence of a catalyst selected from the
group consisting of free-radical catalysts, ionic catalysts and ultraviolet light.
37. A polymerizable composition comprising
(i) about 30 to about 90 wt% of at least one polythioether of claim 1, said at least
one polythioether having a glass transition temperature not higher than -55°C,
(ii) a curing agent in an amount from about 90 to about 150% of stoichiometric based
on the amount of said at least one polythioether, and
(iii) about 5 to about 60 wt% of a filler,
with all wt% being based on the total weight of non-volatile components of the composition,
wherein said composition is curable at a minimum temperature of 0°C.
38. The polymerizable composition of claim 37 which has a glass transition temperature
Tg not higher than -60°C.
39. The polymerizable composition of claim 37 which, when cured, has a percent volume
swell not greater than 25 % after immersion in JRF type 1 for one week at 60°C and
ambient pressure.
40. The polymerizable composition of claim 37 further comprising an additive selected
from the group consisting of a pigment in an amount from about 0.1 to about 10 wt%,
a thixotrope in an amount from about 0.1 to about 5 wt%, an accelerator in an amount
from about 0.1 to about 5 wt%, a retardant in an amount from about 0.1 to about 5
wt%, an adhesion promoter in an amount from about 0.1 to about 5 wt%, and a masking
agent in an amount from about 0.1 to about 1 wt%.
41. The polymerizable composition of claim 37 which comprises a mixture of at least two
different polythioethers (i).
42. A polymerizable composition comprising
(i) about 30 to about 90 wt% of at least one polythioether of claim 1, said at least
one polythioether having a glass transition temperature not greater than -50°C,
(ii) a curing agent in an amount from about 90 to about 150% of stoichiometric based
on the amount of said at least one polythioether,
(iii) a plasticizer in an amount from about 1 to about 40 wt%, and
(iv) about 5 to about 60 wt% of a filler,
with all wt% being based on the total weight of non-volatile components of the composition,
wherein said composition is curable at a minimum temperature of 0°C.
43. The polymerizable composition of claim 42 which has a glass transition temperature
Tg not greater than -55°C.
44. The polymerizable composition of claim 42 which, when cured, has a percent volume
swell not greater than 25% after immersion for one week at room temperature and pressure.
45. The polymerizable composition of claim 42 wherein said plasticizer is selected from
the group consisting of phthalate esters, chlorinated paraffins and hydrogenated terphenyls.
46. The polymerizable composition of claim 42 further comprising an additive selected
from the group consisting of a pigment in an amount from about 0.1 to about 10 wt%,
a thixotrope in an amount from about 0.1 to about 5 wt%, an accelerator in an amount
from about 0.1 to about 5 wt%, a retardant in an amount from about 0.1 to about 5
wt%, an adhesion promoter in an amount from about 0.1 to about 5 wt%, and a masking
agent in an amount from about 0.1 to about 1 wt%.
47. The polymerizable composition of claim 42 which comprises a mixture of at least two
different polythioethers (i).
1. Polythioether, enthaltend eine Struktur mit der Formel I
-R1-[-S-(CH2)2-O-[-R2-O-]m-(CH2)2-S-R1-]n-, I
worin
R1 für eine C2-C6-n-Alkylen-, verzweigte C3-C6-Alkylen-, C6-C8-Cycloalkylen- oder C6-C10-Alkylcycloalkylengruppe, -[(-CH2-)p-X-]q-(-CH2-)r- oder -[(-CH2-)p-X-]q-(-CH2-)r-, in der wenigstens eine -CH2-Einheit mit einer Methylgruppe substituiert ist, steht,
R2 für eine C2-C6-n-Alkylen-, verzweigte C2-C6-Alkylen-, C6-C8-Cycloalkylen- oder C6-C10-Alkylcycloalkylengruppe oder -[(-CH2-)p-X-]q-(-CH2-)r- steht,
X ausgewählt ist aus der Gruppe bestehend aus 0, S und -NR6-,
R6 für H oder Methyl steht,
m eine rationale Zahl von 0 bis 10 ist,
n eine ganze Zahl von 1 bis 60 ist,
p eine ganze Zahl von 2 bis 6 ist,
q eine ganze Zahl von 1 bis 5 ist und
r eine ganze Zahl von 2 bis 10 ist,
wobei der Polythioether bei Raumtemperatur und -druck eine Flüssigkeit ist.
2. Polythioether nach Anspruch 1, der eine Glasübergangstemperatur Tg von nicht höher als -50°C aufweist.
3. Polythioether nach Anspruch 1, der, wenn gehärtet, eine prozentuale Volumenquellung
von nicht mehr als 25% nach Eintauchen für eine Woche in JRF Typ 1 bei 60°C und Umgebungsdruck
aufweist.
4. Polythioether nach Anspruch 1, der ein zahlenmittleres Molekulargewicht zwischen ungefähr
500 und 20.000 aufweist.
5. Polythioether nach Anspruch 1 mit der Formel II
A-(-[R3]y-R4)2, II
worin
A für eine Struktur mit der Formel I steht,
y gleich 0 oder 1 ist,
R3 für eine Einfachbindung steht, wenn y gleich 0 ist, und für -S-(CH2)2-[-O-R2-]m-O- steht, wenn y gleich 1 ist,
R4 für -SH oder -S-(-CH2-)2+s-O-R5 steht, wenn y gleich 0 ist, und für -CH2=-CH2 oder -(CH2-)2-S-R5 steht, wenn y gleich 1 ist,
s eine ganze Zahl von 0 bis 10 ist,
R5 für C1-C6-n-Alkyl steht, das unsubstituiert oder mit wenigstens einer -OH oder -NHR7-Gruppe substituiert ist, und
R7 für H oder eine C1-C6-n-Alkylgruppe steht.
6. Polythioether nach Anspruch 5, wobei y gleich 0 ist.
7. Polythioether nach Anspruch 6, wobei R4 gleich -SH ist.
8. Polythioether nach Anspruch 7, worin (i), wenn m gleich 1 und R2 gleich n-Butyl ist, R1 nicht Ethyl oder n-Propyl ist und (ii), wenn m gleich 1, p gleich 2, q gleich 2,
r gleich 2 und R2 gleich Ethyl ist, X nicht 0 ist.
9. Polythioether nach Anspruch 6. worin R4 gleich -S-(-CH2-)2-O-R5 ist.
10. Polythioether nach Anspruch 9, worin R5 gleich n-C2H5, n-C4H8-OH oder n-C3H6-NH2 ist.
11. Polythioether nach Anspruch 5, worin y gleich 1 ist.
12. Polythioether nach Anspruch 11, worin R4 gleich -CH=CH2 ist.
13. Polythioether nach Anspruch 11, worin R4 gleich -(CH2-)2-S-R5 ist.
14. Polythioether nach Anspruch 13, worin R5 gleich -n-C3H6-OH ist.
15. Polythioether nach Anspruch 1 mit der Formel III
B-(A-[R3]y-R4)z, III
worin
A für eine Struktur mit der Formel I steht,
y gleich 0 oder 1 ist.
R3 für eine Einfachbindung steht, wenn y gleich 0 ist, und für -S-(CH2)2-[-O-R2-]m-O- steht, wenn y gleich 1 ist,
R4 für -SH oder -S-(-CH2-)2+s-O-R5 steht, wenn y gleich 0 ist, und für -CH2=CH2 oder -(CH2-)2-S-R5 steht, wenn y gleich 1 ist,
s eine ganze Zahl von 0 bis 10 ist,
R5 für ein C1-C6-n-Alkyl steht, das unsubstituiert oder .mit wenigstens einer -OH oder -NHR7-Gruppe substituiert ist,
R7 für H oder eine C1-C6-n-Alkylgruppe steht,
z eine ganze Zahl von 3 bis 6 ist und
B für einen z-valenten Rest eines Polyfunktionalisierungsmittels steht.
16. Polythioether nach Anspruch 15, worin z gleich 3 ist.
17. Polythioether nach Anspruch 16, der eine mittlere Funktionalität von ungefähr 2.05
bis 3,00 aufweist.
18. Polythioether nach Anspruch 15, worin y gleich 0 ist.
19. Polythioether nach Anspruch 18, worin R4 gleich -SH ist.
20. Polythioether nach Anspruch 18, worin R4 gleich -S-(-CH2-)2+s-O-R5 ist.
21. Polythioether nach Anspruch 15, worin y gleich 1 ist.
22. Polythioether nach Anspruch 21, worin R4 gleich -CH=CH2 ist.
23. Polythioether nach Anspruch 21, worin R4 gleich -(CH2-)2-S-R5 ist.
24. Verfahren zur Herstellung des Polyethers nach Anspruch 7, das den Schritt des Reagierenlassens
von (n+1) mol einer Verbindung mit der Formel IV.
HS-R1-SH IV
oder einer Mischung von wenigstens zwei unterschiedlichen Verbindungen mit der Formel
IV mit (n) mol einer Verbindung mit der Formel V
CH2=CH-O-[-R2-O-]m-CH=CH2 V
oder einer Mischung von wenigstens zwei unterschiedlichen Verbindungen mit der Formel
V in Gegenwart eines Katalysators umfasst, der ausgewählt ist aus der Gruppe bestehend
aus Radikalkatalysatoren, ionischen Katalysatoren und ultraviolettem Licht.
25. Verfahren nach Anspruch 24, wobei der Katalysator ein Radikalkatalysator ist.
26. Verfahren nach Anspruch 24, worin (1), wenn m gleich 1 und R2 gleich n-Butyl ist, R1 nicht Ethyl oder n-Propyl ist und (ii), wenn m gleich 1, p gleich 2, q gleich 2,
r gleich 2 und R2 Ethyl ist, X nicht 0 ist.
27. Verfahren zur Herstellung des Polythioethers nach Anspruch 9; das den Schritt des
Reagierenlassens von (n+1) mol einer Verbindung mit der Formel IV
HS-R1-SH IV
oder einer Mischung von wenigstens zwei unterschiedlichen Verbindungen mit der Formel
IV, (n) mol einer Verbindung mit der Formel V
CH2=CH-O-[-R2-O-]m-CH=CH2 V
oder einer Mischung von wenigstens zwei unterschiedlichen Verbindungen mit der Formel
V und ungefähr 0,05 bis ungefähr 2 mol einer Verbindung mit der Formel VI
CH2=CH-(CH2)s-O-R5 VI
oder einer Mischung von zwei unterschiedlichen Verbindungen mit der Formel VI in Gegenwart
eines Katalysators umfasst, der ausgewählt ist aus der Gruppe bestehend aus Radikalkatalysatoren,
ionischen Katalysatoren und ultraviolettem Licht.
28. Verfahren zur Herstellung des Polythioethers nach Anspruch 12, das den Schritt des
Reagierenlassens von (n) mol einer Verbindung mit der Formel IV
HS-R1-SH IV
oder einer Mischung von wenigstens zwei unterschiedlichen Verbindungen mit der Formel
IV mit (n+1) mol einer Verbindung mit der Formel V
CH2=CH-O-[-R2-O-]m-CH=CH2 V
oder einer Mischung von wenigstens zwei unterschiedlichen Verbindungen mit der Formel
V in Gegenwart eines Katalysators umfasst, der ausgewählt ist aus der Gruppe bestehend
aus Radikalkatalysatoren, ionischen Katalysatoren und ultraviolettem Licht.
29. Verfahren zur Herstellung des Polythioethers nach Anspruch 13, das den Schritt des
Reagierenlassens von (n) mol einer Verbindung mit der Formel IV
HS-R1-SH IV
oder einer Mischung von wenigstens zwei unterschiedlichen Verbindungen mit der Formel
IV, (n+1) mol einer Verbindung mit der Formel V
CH2=CH-O-[-R2-O-]m-CH=CH2 V
oder einer Mischung von wenigstens zwei unterschiedlichen Verbindungen mit der Formel
V und ungefähr 0,05 bis ungefähr 2 mol einer Verbindung mit der Formel VII
HS-R5 VII
oder einer Mischung von zwei unterschiedlichen Verbindungen mit der Formel VII in
Gegenwart eines Katalysators umfasst, der ausgewählt ist aus der Gruppe bestehend
aus Radikalkatalysatoren, ionischen Katalysatoren und ultraviolettem Licht.
30. Verfahren zur Herstellung des Polythioethers nach Anspruch 19, das die Schritte umfasst:
(i) Vereinigen von
(a) (n+1) mol einer Verbindung mit der Formel IV
HS-R1-SH IV
oder einer Mischung von wenigstens zwei unterschiedlichen Verbindungen mit der Formel
IV.
(b) (n) mol einer Verbindung mit der Formel V
CH2=CH-O-[-R2-O-]m-CH=CH2 V
oder einer Mischung von wenigstens zwei unterschiedlichen Verbindungen mit der Formel
V und
(c) einem z-valenten Polyfunktionalisierungsmittel, worin z eine ganze Zahl von 3
bis 6 ist, um eine Reaktionsmischung auszubilden, und
(ii) Reagierenlassen dieser Reaktionsmischung in Gegenwart eines Katalysators, ausgewählt
aus der Gruppe bestehend aus Radikalkatalysatoren, ionischen Katalysatoren und ultraviolettem
Licht.
31. Verfahren nach Anspruch 30, wobei dieser Katalysator ein Radikalkatalysator ist.
32. Verfahren nach Anspruch 30, wobei dieses z-valente Polyfunktionalisierungsmittel ein
Trifunktionalisierungsmittel ist.
33. Verfahren nach Anspruch 32, wobei dieses Trifunktionalisierungsmittel ausgewählt ist
aus der Gruppe bestehend aus Triallylcyanurat, Trimethylolpropantrivinylether und
1,2,3-Propantrithiol.
34. Verfahren zur Herstellung des Polythioethers nach Anspruch 20, das die Schritte umfasst:
(i) Vereinigen von
(a) (n+1) mol einer Verbindung mit der Formel IV
HS-R1-SH IV
oder einer Mischung von wenigstens zwei unterschiedlichen Verbindungen mit der Formel
IV,
(b) (n) mol einer Verbindung mit der Formel V
CH2=CH-O-[-R2-O-]m-CH=CH2 V
oder einer Mischung von wenigstens zwei unterschiedlichen Verbindungen mit der Formel
V,
(c) ungefähr 0,05 bis ungefähr (z) mol einer Verbindung mit der Formel VI
CH2=CH-(CH2)s-O-R5 VI
oder einer Mischung von zwei unterschiedlichen Verbindungen mit der Formel VI und
(d) einem z-valenten Polyfunktionalisierungsmittel, worin z eine ganze Zahl von 3
bis 6 ist, um eine Reaktionsmischung auszubilden, und
(ii) Reagierenlassen dieser Reaktionsmischung in Gegenwart eines Katalysators, ausgewählt
aus der Gruppe bestehend aus Radikalkatalysatoren, ionischen Katalysatoren und ultraviolettem
Licht.
35. Verfahren zur Herstellung des Polythioethers nach Anspruch 22, das die Schritte umfasst:
(i) Vereinigen von
(a) (n) mol einer Verbindung mit der Formel IV
HS-R1-SH IV
oder einer Mischung von wenigstens zwei unterschiedlichen Verbindungen mit der Formel
IV,
(b) (n+1) mol einer Verbindung mit der Formel V
CH2=CH-O-[-R2-O-]m-CH=CH2 V
oder einer Mischung von wenigstens zwei unterschiedlichen Verbindungen mit der Formel
V und
(c) einem z-valenten Polyfunktionalisierungsmittel, worin z eine ganze Zahl von 3
bis 6 ist, um eine Reaktionsmischung auszubilden, und
(ii) Reagierenlassen dieser Reaktionsmischung in Gegenwart eines Katalysators, ausgewählt
aus der Gruppe bestehend aus Radikalkatalysatoren, ionischen Katalysatoren und ultraviolettem
Licht.
36. Verfahren zur Herstellung des Polythioethers nach Anspruch 23, das die Schritte umfasst:
(i) Vereinigen von
(a) (n) mol einer Verbindung mit der Formel IV
HS-R1-SH IV
oder einer Mischung von wenigstens zwei unterschiedlichen Verbindungen mit der Formel
IV,
(b) (n+1) mol einer Verbindung mit der Formel V
CH2=CH-O-[-R2-O-]m-CH=CH2 V
oder einer Mischung von wenigstens zwei unterschiedlichen Verbindungen mit der Formel
V.
(c) ungefähr 0,05 bis ungefähr (z) mol einer Verbindung mit der Formel VII
HS-R5 VII
oder einer Mischung von zwei unterschiedlichen Verbindungen mit der Formel VII und
(d) einem z-valenten Polyfunktionalisierungsmittel, worin z eine ganze Zahl von 3
bis 6 ist, um eine Reaktionsmischung auszubilden, und
(ii) Reagierenlassen dieser Reaktionsmischung in Gegenwart eines Katalysators, ausgewählt
aus der Gruppe bestehend aus Radikalkatalysatoren, ionischen Katalysatoren und ultraviolettem
Licht.
37. Polymerisierbare Zusammensetzung, enthaltend
(i) ungefähr 30 bis ungefähr 90 Gew.-% wenigstens eines Polythioethers nach Anspruch
1, wobei dieser eine Polythioether eine Glasübergangstemperatur von nicht höher als
-55°C aufweist,
(ii) ein Härtungsmittel in einer Menge von ungefähr 90 bis ungefähr 150%, stoichiometrisch
bezogen auf die Menge dieses wenigstens einen Polythioethers, und
(iii) ungefähr 5 bis ungefähr 60 Gew.-% eines Füllstoffs,
wobei alle Gewichtsprozentangaben sich auf das Gesamtgewicht der nichtflüchtigen
Komponenten der Zusammensetzung beziehen, und diese Zusammensetzung bei einer Mindesttemperatur
von 0°C härtbar ist.
38. Polymerisierbare Zusammensetzung nach Anspruch 37, die eine Glasübergangstemperatur
Tg von nicht höher als -60°C aufweist.
39. Polymerisierbare Zusammensetzung nach Anspruch 37, die, wenn gehärtet, eine prozentuale
Volumenquellung von nicht mehr als 25% nach Eintauchen in JRF Typ 1 für eine Woche
bei 60°C und Umgebungsdruck aufweist.
40. Die polymerisierbare Zusammensetzung nach Anspruch 37, die zusätzlich ein Additiv,
ausgewählt aus der Gruppe bestehend aus einem Pigment in einer Menge von ungefähr
0,1 bis ungefähr 10 Gew.-%, einem Thixotropiermittel in einer Menge von ungefähr 0,1
bis ungefähr 5 Gew.-%, einem Beschleuniger in einer Menge von ungefähr 0,1 bis ungefähr
5 Gew.-%, einem Retardierungsmittel in einer Menge von ungefähr 0,1 bis ungefähr 5
Gew.-%, einem Haftvermittler in einer Menge von ungefähr 0,1 bis ungefähr 5 Gew.-%
und einem Maskierungsmittel in einer Menge von ungefähr 0,1 bis ungefähr 1 Gew.-%,
enthält.
41. Die polymerisierbare Zusammensetzung nach Anspruch 37, die eine Mischung von wenigstens
zwei unterschiedlichen Polythioethern (i) enthält.
42. Polymerisierbare Zusammensetzung, enthaltend
(i) ungefähr 30 bis ungefähr 90 Gew.-% wenigstens eines Polythioethers nach Anspruch
1, wobei dieser wenigstens eine Polythioether eine Glasübergangstemperatur von nicht
höher als -50°C aufweist,
(ii) ein Härtungsmittel in einer Menge von ungefähr 90 bis ungefähr 150%, stoichiometrisch
bezogen auf die Menge dieses wenigstens einen Polythioethers,
(iii) einen Weichmacher in einer Menge von ungefähr 1 bis ungefähr 40 Gew.-% und
(iv) ungefähr 5 bis ungefähr 60 Gew.-% eines Füllstoffs,
wobei alle Gewichtsprozentangaben auf das Gesamtgewicht der nichtflüchtigen Komponenten
der Zusammensetzung bezogen sind und diese Zusammensetzung bei einer Mindesttemperatur
von 0°C härtbar ist.
43. Die polymerisierbare Zusammensetzung nach Anspruch 42, die eine Glasübergangstemperatur
Tg von nicht höher als -55°C aufweist.
44. Die polymerisierbare Zusammensetzung nach Anspruch 42, die, wenn gehärtet, eine prozentuale
Volumenquellung von nicht mehr als 25% nach Eintauchen für eine Woche bei Raumtemperatur
und -druck aufweist.
45. Die polymerisierbare Zusammensetzung nach Anspruch 42, wobei dieser Weichmacher ausgewählt
ist aus der Gruppe bestehend aus Phthalatestern, chlorierten Paraffinen und hydrierten
Terphenylen.
46. Die polymerisierbare Zusammensetzung nach Anspruch 42, die zusätzlich ein Additiv,
ausgewählt aus der Gruppe bestehend aus einem Pigment in einer Menge von ungefähr
0,1 bis ungefähr 10 Gew.-%, einem Thixotropiermittel in einer Menge von ungefähr 0,1
bis ungefähr 5 Gew.-%, einem Beschleuniger in einer Menge von ungefähr 0.1 bis ungefähr
5 Gew.-%, einem Retardierungsmittel in einer Menge von ungefähr 0,1 bis ungefähr 5
Gew.-%, einem Haftvermittler in einer Menge von ungefähr 0,1 bis ungefähr 5 Gew.-%
und einem Maskierungsmittel in einer Menge von ungefähr 0,1 bis ungefähr 1 Gew.-%
enthält.
47. Die polymerisierbare Zusammensetzung nach Anspruch 42, die eine Mischung von wenigstens
zwei unterschiedlichen Polythioethern (i) enthält.
1. Polythioether comprenant une structure répondant à la formule I
-R
1-[-S-(CH
2)
2-O-[-R
2-O-]
m-(CH
2)
2-S-R
1-]
n- I
dans laquelle :
R1 représente un groupe n-alkylène en C2-6, alkylène ramifié en C3-6, cycloalkylène en C6-8 ou alkylcycloalkylène en C6-10, -[(-CH2-)p-X-]q-(-CH2-)r-, ou -[(-CH2-)p-X-]q-(-CH2-)r- dans lesquelles au moins une unité -CH2- est substituée par un groupe méthyle,
R2 représente un groupe n-alkylène en C2-6, alkylène ramifié en C2-6, cycloalkylène en C6-8 ou alkylcycloalkylène en C6-10, ou -[(-CH2-)p-X-]q-(-CH2-)r-,
X désigne un élément choisi dans le groupe constitué de O, S et -NR6-,
R6 représente H ou méthyle,
m est un nombre rationnel de 0 à 10,
n est un nombre entier de 1 à 60,
p est un nombre entier de 2 à 6,
q est un nombre entier de 1 à 5, et
r est un nombre entier de 2 à 10,
ledit polythioéther étant un liquide à température et pression ambiantes.
2. Polythioéther de la revendication 1 qui présente une température de transition vitreuse
Tg non supérieure à -50°C.
3. Polythioéther de la revendication 1 qui, lorsqu'il est durci, présente un % de gonflement
en volume non supérieur à 25% après immersion pendant une semaine dans du JRF type
1 à 60°C et à pression ambiante.
4. Polythioéther de la revendication 1 qui présente un poids moléculaire moyen en nombre
entre environ 500 et 20000.
5. Polythioéther de la revendication 1, répondant à la formule II
(A-(-[R3]y-R4)2 II
dans laquelle
A représente une structure répondant à la formule I,
y est 0 ou 1,
R3 représente une liaison simple lorsque y = 0
et -S-(CH2)2-[-O-R2-]m-O- lorsque y = 1,
R4 représente -SH ou -S-(-CH2-)2+s-O-R5 lorsque y = 0
et -CH2=CH2 ou -(CH2-)2-S-R5 lorsque y = 1,
s est un nombre entier de 0 à 10,
R5 représente un groupe n-alkyle en C1-6 qui est non substitué ou substitué par au moins un groupe -OH ou -NHR7, et
R7 représente H ou un groupe n-alkyle en C1-6.
6. Polythioéther de la revendication 5, dans lequel y = 0.
7. Polythioéther de la revendication 6, dans lequel R4 est -SH.
8. Polythioéther de la revendication 7, dans lequel (i) lorsque m = 1 et R2 = n-butyle, R1 n'est pas éthyle ou n-propyle, et (ii) lorsque m = 1, p = 2, q = 2, r = 2 et R2 = éthyle, X n'est pas O.
9. Polythioéther de la revendication 6, dans lequel R4 est -S-(-CH2-)2-O-R5.
10. Polythioéther de la revendication 9, dans lequel R5 est n-C2H5, n-C4H8-OH ou n-C3H6-NH2.
11. Polythioéther de la revendication 5, dans lequel y = 1.
12. Polythioéther de la revendication 11, dans lequel R4 est -CH=CH2.
13. Polythioéther de la revendication 11 dans lequel R4 est -(CH2-)2-S-R5.
14. Polythioéther de la revendication 13 dans lequel R5 est n-C3H6-OH.
15. Polythioéther de la revendication 1 répondant à la formule III
B- (A-[-R3]y-R4)z III
dans laquelle
A représente une structure répondant à la formule I,
y est 0 ou 1,
R3 représente une liaison simple lorsque y = 0
et -S-(CH2)2-[-O-R2-]m-O- lorsque y = 1,
R4 représente -SH ou -S-(-CH2-)2+s-O-R5 lorsque y = 0
et -CH2=CH2 ou -(CH2-)2-S-R5 lorsque y = 1,
s est un nombre entier de 0 à 10,
R5 représente un groupe n-alkyle en C1-6, qui est non substitué ou substitué par au moins un groupe -OH ou -NHR7, et
R7 représente H ou un groupe n-alkyle en C1-6,
z est un nombre entier de 3 à 6, et
B représente un résidu z-valent d'un agent polyfonctionnalisant.
16. Polythioéther de la revendication 15, dans lequel z = 3.
17. Polythioéther de la revendication 16 qui présente une fonctionnalité moyenne d'environ
2,05 à 3,00.
18. Polythioéther de la revendication 15, dans lequel y = 0.
19. Polythioéther de la revendication 18, dans lequel R4 est -SH.
20. Polythioéther de la revendication 18, dans lequel R4 est -S-(-CH2-)2+s-O-R5.
21. Polythioéther de la revendication 15, dans lequel y = 1.
22. Polythioéther de la revendication 21, dans lequel R4 est -CH=CH2.
23. Polythioéther de la revendication 21 dans lequel R4 est -(CH2-)2-S-R5.
24. Procédé de production du polythioéther de la revendication 7, qui comprend l'étape
consistant à faire réagir (n+1) moles d'un composé répondant à la formule IV
HS-R1-SH IV
ou d'un mélange d'au moins deux composés différents répondant à la formule IV,
avec (n) moles d'un
composé répondant à la formule V
CH2=CH-O-[-R2-O-]m-CH=CH2 V
ou d'un mélange d'au moins deux composés différents répondant à la formule V, en
présence d'un catalyseur choisi dans le groupe constitué de catalyseurs à radicaux
libres, catalyseurs ioniques et lumière ultraviolette.
25. Procédé de la revendication 24, dans lequel ledit catalyseur est un catalyseur à radicaux
libres.
26. Procédé de la revendication 24, dans lequel (i) lorsque m = 1 et R2 = n-butyle, R1 n'est pas éthyle ou n-propyle, et (ii) lorsque m = 1, p = 2, q = 2, r = 2 et R2 = éthyle, X n'est pas O.
27. Procédé de production du polythioéther de la revendication 9, qui comprend l'étape
consistant à faire réagir (n+1) moles d'un composé répondant à la formule IV
HS-R1-SH IV
ou d'un mélange d'au moins deux composés différents répondant à la formule IV,
(n) moles d'un composé répondant à la formule V
CH2=CH-O-[-R2-O-]m-CH=CH2 V
ou d'un mélange d'au moins deux composés différents répondant à la formule V, et
environ 0,05 à environ 2 mole(s) d'un composé répondant à la formule VI
CH2=CH-(CH2)s-O-R5 VI
ou d'un mélange de deux composés différents répondant à la formule VI, en présence
d'un catalyseur choisi dans le groupe constitué de catalyseurs à radicaux libres,
catalyseurs ioniques et lumière ultraviolette.
28. Procédé de production du polythioéther de la revendication 12, qui comprend l'étape
consistant à faire réagir (n) moles d'un composé répondant à la formule IV
HS-R1 SH IV
ou d'un mélange d'au moins deux composés différents répondant à la formule IV,
avec (n+1) moles d'un composé répondant à la formule V
CH2=CH-O-[-R2-O-]m-CH=CH2 V
ou d'un mélange d'au moins deux composés différents répondant à la formule V, en
présence d'un catalyseur choisi dans le groupe constitué de catalyseurs à radicaux
libres, catalyseurs ioniques et lumière ultraviolette.
29. Procédé de production du polythioéther de la revendication 13, qui comprend l'étape
consistant à faire réagir (n) moles d'un composé répondant à la formule IV
HS-R1-SH IV
ou d'un mélange d'au moins deux composés différents répondant à la formule IV,
(n+1) moles d'un composé répondant à la formule V
CH2=CH-O-[-R2-O-]m-CH=CH2 V
ou d'un mélange d'au moins deux composés différents répondant à la formule V, et
environ 0,05 à environ 2 moles d'un composé répondant à la formule VII
HS-R5 VII
ou d'un mélange de deux composés différents répondant à la formule VII, en présence
d'un catalyseur choisi dans le groupe constitué de catalyseurs à radicaux libres,
catalyseurs ioniques et lumière ultraviolette.
30. Procédé de production du polythioéther de la revendication 19, qui comprend les étapes
de
(i) combinaison de
(a) (n+1) moles d'un composé répondant à la formule IV
HS-R1-SH IV
ou d'un mélange d'au moins deux composés différents répondant à la formule IV,
(b) (n) moles d'un composé répondant à la formule V
CH2=CH-O-[-R2-O-]m-CH=CH2 V
ou d'un mélange d'au moins deux composés différents répondant à la formule V, et
(c) un agent polyfonctionnalisant z-valent, dans lequel z est un nombre entier de
3 à 6 pour former un mélange réactionnel, et
(ii) de mise en réaction dudit mélange réactionnel en présence d'un catalyseur choisi
dans le groupe constitué de catalyseurs à radicaux libres, catalyseurs ioniques et
lumière ultraviolette.
31. Procédé de la revendication 30, dans lequel ledit catalyseur est un catalyseur à radicaux
libres.
32. Procédé de la revendication 30, dans lequel ledit agent polyfonctionnalisant z-valent
est un agent trifonctionnalisant.
33. Procédé de la revendication 32 dans lequel ledit agent trifonctionnalisant est choisi
dans le groupe constitué de cyanurate de triallyle, trivinyléther de triméthylolpropane,
et 1,2,3-propanetrithiol.
34. Procédé de production du polythioéther de la revendication 20, qui comprend les étapes
de
(i) combinaison de
(a) (n+1) moles d'un composé répondant à la formule IV
HS-R1-SH IV
ou d'un mélange d'au moins deux composés différents répondant à la formule IV,
(b) (h) moles d'un composé répondant à la formule V
CH2=CH-O-[-R2-O-]m-CH=CH2 V
ou d'un mélange d'au moins deux composés différents répondant à la formule V,
(c) environ 0,05 à environ (z) mole(s) d'un composé répondant à la formule VI
CH2=CH-(CH2)s-O-R5 VI
ou d'un mélange de deux composés différents répondant à la formule VI, et
(d) un agent polyfonctionnalisant z-valent, dans lequel z est un nombre entier de
3 à 6, pour former un mélange réactionnel, et
(ii) de mise en réaction dudit mélange réactionnel en présence d'un catalyseur choisi
dans le groupe constitué de catalyseurs à radicaux libres, catalyseurs ioniques et
lumière ultraviolette.
35. Procédé de production du polythioéther de la revendication 22, qui comprend les étapes
de
(i) combinaison de
(a) (n) moles d'un composé répondant à la formule IV
HS-R1-SH IV
ou d'un mélange d'au moins deux composés différents répondant à la formule IV,
(b) (n+1) moles d'un composé répondant à la formule V
CH2=CH-O-[-R2-O-]m-CH=CH2 V
ou d'un mélange d'au moins deux composés différents répondant à la formule V, et
(c) un agent polyfonctionnalisant z-valent, dans lequel z est un nombre entier de
3 à 6 pour former un mélange réactionnel, et
(ii) de. mise en réaction dudit mélange réactionnel en présence d'un catalyseur choisi
dans le groupe constitué de catalyseurs à radicaux libres, catalyseurs ioniques et
lumière ultraviolette.
36. Procédé de production du polythioéther de la revendication 23, qui comprend les étapes
de
(i) combinaison de
(a) (n) moles d'un composé répondant à la formule IV
HS-R1-SH IV
ou d'un mélange d'au moins deux composés différents répondant à la formule IV,
b) (n+1) moles d'un composé répondant à la formule V
CH2=CH-O-[-R2-O-]m-CH=CH2 V
ou d'un mélange d'au moins deux composés différents répondant à la formule V,
(c) environ 0,05 à environ (z) moles d'un composé répondant à la formule VII
HS-R5 VII
ou d'un mélange d'au moins deux composés différents répondant à la formule VII,
et
d) un agent polyfonctionnalisant z-valent,
dans lequel z est un nombre entier de 3 à 6 pour former un mélange réactionnel, et
(ii) de mise en réaction dudit mélange réactionnel en présence d'un catalyseur choisi
dans le groupe constitué de catalyseurs à radicaux libres, catalyseurs ioniques et
lumière ultraviolette.
37. Composition polymérisable comprenant :
(i) environ 30 à environ 90 % en poids d'au moins un polythioéther de la revendication
1, ledit au moins un polythioéther présentant une température de transition vitreuse
non supérieure à -55°C,
(ii) un agent de durcissement dans une proportion d'environ 90 à environ 150 % de
la quantité stoechiométrique sur la base de la quantité dudit au moins un polythioéther,
et
(iii) environ 5 à environ 60 % en poids d'une charge,
tous les pourcentages en poids étant basés sur le poids total des composants non
volatils de la composition, ladite composition étant durcissable à une température
minimum de 0°C.
38. Composition polymérisable de la revendication 37 qui présente une température de transition
vitreuse Tg non supérieure à -60°C.
39. Composition polymérisable de la revendication 37, qui, lorsqu'elle est durcie, présente
un pourcentage de gonflement en volume non supérieur à 25 % après immersion dans du
JRF de type 1, pendant une semaine à 60°C et à pression ambiante.
40. Composition polymérisable de la revendication 37 comprenant en outre un additif choisi
dans le groupe constitué d'un pigment en une proportion d'environ 0,1 à environ 10%
en poids, d'un thixotrope en une proportion d'environ 0,1 à environ 5 % en poids,
d'un accélérateur en une proportion d'environ 0,1 à environ 5% en poids, d'un retardateur
en une proportion d'environ 0,1 à environ 5% en poids, d'un promoteur d'adhérence
en une proportion d'environ 0,1 à environ 5% en poids et d'un agent de masquage en
une proportion d'environ 0,1 à environ 1 % en poids.
41. Composition polymérisable de la revendication 37 qui comprend un mélange d'au moins
deux polythioéthers (i) différents.
42. Composition polymérisable comprenant :
(i) environ 30 à environ 90 % en poids d'au moins un polythioéther de la revendication
1, ledit au moins un polythioéther présentant une température de transition vitreuse
non supérieure à -50°C,
(ii) un agent de durcissement en une proportion d'environ 90 à environ 150 % de la
quantité stoechiométrique, sur la base de la quantité dudit au moins un polythioéther,
(iii) un plastifiant en une proportion d'environ 1 à environ 40 % en poids, et
(iv) environ 5 à environ 60% en poids d'une charge,
tous les % en poids étant basés sur le poids total des composants non volatils
de la composition, ladite composition étant durcissable à une température minimum
de 0°C.
43. Composition polymérisable de la revendication 42, qui présente une température de
transition vitreuse Tg non supérieure à -55°C.
44. Composition polymérisable de la revendication 42 qui, lorsqu'elle est durcie, présente
un pourcentage de gonflement en volume non supérieur à 25 % après immersion pendant
une semaine à température et pression ambiantes.
45. Composition polymérisable de la revendication 42, dans laquelle ledit plastifiant
est choisi dans le groupe constitué d'esters de phtalates, paraffines chlorées et
terphényles hydrogénés.
46. Composition polymérisable de la revendication 42, comprenant en outre un additif choisi
parmi le groupe constitué d'un pigment en une proportion d'environ 0,1 à environ 10%
en poids, d'un thixotrope en une proportion d'environ 0,1 à environ 5 % en poids,
d'un accélérateur en une proportion d'environ 0,1 à environ 5% en poids, d'un retardateur
en une proportion d'environ 0,1 à environ 5% en poids, d'un promoteur d'adhérence
en une proportion d'environ 0,1 à environ 5% en poids et d'un agent de masquage en
une proportion d'environ 0,1 à environ 1 % en poids.
47. Composition polymérisable de la revendication 42 qui comprend un mélange d'au moins
deux polythioéthers (i) différents.