

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 962 309 A2 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

08.12.1999 Patentblatt 1999/49

(21) Anmeldenummer: 99107472.5

(22) Anmeldetag: 29.04.1999

(51) Int. Cl.6: **B31B 37/02**

(84) Benannte Vertragsstaaten:

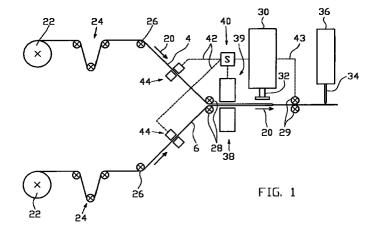
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

(30) Priorität: 03.06.1998 DE 19824797

(71) Anmelder:


INDAG GmbH & Co. Betriebs-KG D-692214 Eppelheim/Heidelberg (DE) (72) Erfinder: Die Erfinder haben auf ihre Nennung verzichtet

(74) Vertreter:

Grünecker, Kinkeldey, Stockmair & Schwanhäusser Anwaltssozietät Maximilianstrasse 58 80538 München (DE)

(54)Beutelherstellungsvorrichtung und Verfahren zum Herstellen von Folienbeutel

(57)Die Erfindung betrifft ein Verfahren zum Herstellen von Folienbeuteln, bei welchem zumindest zwei Folien zugeführt werden, die als Seitenfolien der Folienbeutel dienen, die Folien miteinander verbunden werden und im Anschluß daran zu einzelnen Folienbeuteln zerschnitten werden, wobei evtl. auftretende Unterschiede in den Folienmaterialmengen, die von den zumindest zwei Folien in Zuführrichtung für jeweils einen Folienbeutel vorgesehen sind, durch Streckung derjenigen Folie erreicht wird, die für einen Folienbeutel die kleinere Folienmaterialmenge bereitstellt, und eine Beutelherstellungsvorrichtung zur Durchführung des Verfahrens.

Beschreibung

[0001] Die Erfindung betrifft ein Verfahren zum Herstellen von Folienbeuteln, bei welchem zumindest zwei Folien, die als Seitenfolien der Folienbeutel dienen, aufeinandergelegt, miteinander verbunden und zu einzelnen Folienbeuteln zerschnitten werden, und eine Beutelherstellungsvorrichtung zur Durchführung des Verfahrens.

[0002] Bei einem Folienbeutelherstellungsprozeß werden zumindest zwei Folien zugeführt, die als Seitenfolien des Folienbeutels dienen. Die Zuführung erfolgt im allgemeinen von entsprechenden Vorratsrollen. Die einzelnen Folien werden aufeinandergelegt und zumindest dort, wo sich die Seitenkanten der Folienbeutel befinden werden, miteinander verschweißt oder verklebt. Im Anschluß daran werden die so miteinander verbundenen Folienstränge entlang der Verbindungen zerschnitten, um einzelne Folienbeutel zu bilden. Zwischen die Seitenfolien kann eine Bodenfolie gelegt werden, die im Bereich des zukünftigen Bodens des Folienbeutels zwischen die Seitenfolien geschweißt bzw. geklebt wird und durch Auseinanderfalten Raum für das Füllgut bietet. Außerdem übernimmt diese Bodenfolie eine Standbodenfunktion. Die so hergestellten und an drei Seitenkanten verschlossenen Folienbeutel können dann z.B. einer Füllstation zugeführt werden, in der durch die noch nicht verschlossene vierte Kante das Füllgut eingefüllt wird und daraufhin diese vierte Kante der zwei Seitenfolien miteinander verschweißt oder verklebt wird.

[0003] Die Folienstränge, die der Schweißeinrichtung zugeführt sind, sind in der Regel bereits mit entsprechenden Aufdrucken über das zu enthaltene Produkt in dem Folienbeutel versehen. So ist bereits vor dem Zuführen zu der Schweiß- bzw. Klebeeinrichtung für jeden einzelnen Folienstrang genau festgelegt, wieviel Folienmaterial für einen Folienbeutel jeweils vorgesehen ist. Dabei können jedoch geringfügige Abweichungen in der für einen Folienbeutel vorgesehenen Folienmaterialmenge vorhanden sein. Dies kann z.B. durch eine unpräzise Aufdruckmaschine für den Aufdruck hervorgerufen sein. Außerdem ergeben sich durch den Abrollvorgang auf der Vorratsrolle unterschiedliche Dehnungen für das Folienmaterial, je nachdem ob auf der Vorratsrolle viel oder wenig Folienmaterial aufgerollt ist. Bei den großen Durchsätzen, die heutzutage bei automatisierten Herstellungsanlagen üblich sind, addieren sich derartige Abweichungen, auch wenn sie im einzelnen gering sind, immer weiter auf, so daß es zu einer unerwünschten Verschiebung des aufgedruckten Musters gegenüber den Seitenkanten des zukünftigen Folienbeutels kommen kann. Dieses Problem wird umso schwerwiegender, wenn zusätzlich zu dem Aufdruck noch weitere Merkmale vorgesehen sind, wie z.B. ein Einsteckloch für einen Trinkhalm bei einem Getränkefolienbeutel, der gegenüber seiner eigentlichen Position verschoben

wird.

[0004] Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren und eine Vorrichtung anzugeben, bei welchem Abweichungen der Menge des Folienmateriales, das für die einzelnen Seiten des Folienbeutels vorgesehen ist, verhindert werden.

[0005] Diese Aufgabe wird durch ein Verfahren zum Herstellen von Folienbeuteln mit den Merkmalen des Anspruchs 1 und eine Beutelherstellungsvorrichtung mit den Merkmalen des Anspruchs 15 gelöst.

[0006] Bei dem erfindungsgemäßen Verfahren werden zunächst zumindest zwei Folienstränge zugeführt, die die Seitenfolien der Folienbeutel bilden sollen. Die Folien werden aufeinandergelegt und miteinander an den zukünftigen Seitenkanten der Folienbeutel verbunden. Evtl. auftretende Unterschiede in den Folienmaterialmengen, die von den zumindest zwei Folien in Zuführrichtung für jeweils einen Folienbeutel vorgesehen sind, werden durch Streckung derjenigen Folie ausgeglichen, die für einen Folienbeutel die kleinere Folienmaterialmenge bereitstellt.

[0007] Vor dem Klebe- bzw. Schweißprozeß wird dementsprechend ein Verfahrensschritt eingeführt, der zum Ausgleich der evtl. verschiedenen Folienmaterialmengen führt. Auf diese Weise ist sichergestellt, daß die einzelnen Folienstränge lagerichtig aufeinander zu liegen kommen, bevor sie miteinander verbunden werden. Ein wenn auch nur geringfügiger Versatz kann auf diese Weise verhindert werden, so daß ein Aufaddieren der Fehllage verhindert wird. Indem nur immer jene Folie gestreckt wird, die im aktuellen Fall weniger Folienmenge für einen Folienbeutel in Zuführrichtung zur Verfügung stellt, reagiert das Verfahren auf jede Änderung der Umstände sofort.

[0008] Auf einfache Weise läßt sich die Streckung realisieren, wenn die Folienzufuhr der zu streckenden Folie kurzzeitig unterbrochen oder verlangsamt wird, während die Abförderung nach dem Verbindungsprozeß weiterläuft. Auf diese Weise wird abhängig von der notwendigen Streckung die Folienzufuhr gesteuert. Das Unterbrechen der Folienzufuhr kann z.B. durch Klammereinrichtungen erreicht werden, die an die zugeführte Folie angreifen, wenn diese Folie gestreckt werden soll.

[0009] In anderer Ausgestaltung des Verfahrens wird die Streckung durch ein Halten der zu streckenden Folie an zwei beabstandeten Stellen und gleichzeitiges Erhöhen der Folienspannung zwischen den Haltepunkten erreicht. Dieses Verfahren ermöglicht eine sehr präzise Streckung der Folie. Dabei kann vorgesehen sein, daß die Folie an den Haltepunkten fest eingeklemmt wird, so daß die Streckung in dem Folienabschnitt zwischen den Haltepunkten geschieht.

[0010] Die Erhöhung der Folienspannung kann auf einfache Weise mit Hilfe eines Streckkörpers erreicht werden, der die zu streckende Folie über die gesamte Breite zwischen den zwei Haltepunkten seitlich aus der unbeeinflußten Transportbahn auslenkt. Durch die seit-

40

liche Auslenkung wird die Folienbahn gestreckt.

Welche der Streckungseinrichtungen an den zumindest zwei zugeführten Folien gerade aktiv ist, richtet sich danach, welche der Folienbahnen zu strekken ist. Dies kann automatisch erfolgen oder aber manuell gesteuert werden. Sind die Folienmaterialmengen, die jeweils von den zumindest zwei Folien in Zuführrichtung für jeweils einen Folienbeutel vorgesehen sind, für die beiden Folien annähernd gleich, so kann es vorteilhaft sein, wenn eine der Folien z.B. durch eine langsamere Zuführung permanent vorgedehnt wird. Die andere Folie wird dann gemäß dem erfindungsgemäßen Verfahren entsprechend gestreckt. [0012] Es sind verschiedene Möglichkeiten zur Erfassung der Folienmaterialmenge, die einem Folienbeutel in Zuführrichtung zugedacht ist, möglich. In besonders vorteilhafter Ausgestaltung des Verfahrens sind an der zugeführten Folie jeweils Markierungen vorgesehen, die auf dem Folienmaterial in Abständen aufgebracht sind, die der Folienmaterialmenge entsprechen, die jeweils für einen Folienbeutel bereitgestellt wird. Durch Messen des Abstandes dieser Markierungen läßt sich leicht feststellen, wieviel Folienmaterial bei der jeweiligen Folie für einen Folienbeutel vorgesehen ist. Ist der Abstand der einzelnen Markierungen kreiner als die Ausdehnung, die ein zukünftiger Folienbeutel in Zuführrichtung aufweisen soll, so wird an diesem Folienmaterial eine entsprechende Streckung durchgeführt, bis die jeweiligen Markierungen den gewünschten Abstand aufweisen.

[0013] Die Markierungen können durch Kerben, Löcher oder strukturelle Merkmale gebildet werden. Eine einfachere Realisierung ist jedoch eine Markierung, die optisch erfaßt werden kann. Eine solche Markierung läßt sich leicht auf dem zuzuführenden Folienmaterial im Vorhinein aufdrucken, z.B. in dem Prozeß bei welchem die Aufschrift auf dem zukünftigen Folienbeutel auf der Folie aufgebracht wird. Dazu ist kein zusätzlicher Verfahrensschritt nötig. Zudem lassen sich optische Markierungen auf sehr leichte Weise detektieren und auswerten.

[0014] Diese Markierungen können in einem Bereich des zugeführten Folienmaterials aufgebracht sein, der vor der endgültigen Bildung des Fotienbeutels abgeschnitten wird. Besonders sparsam ist es jedoch, wenn die Markierung in einem Bereich vorgesehen wird, der später die Seitenfolie eines jeweiligen Folienbeutels bildet. Auf diese Weise braucht kein Folienmaterial verschwendet werden, um die Markierung zu entfernen. Eine Markierung, die optisch ausgelesen werden kann, kann dabei sehr klein und dementsprechend nicht störend ausgebildet sein. Ebenso läßt sich die optische Markierung in dem sowieso vorhandenen Aufdruck des Folienbeutels integrieren, oder es kann ein Teil des vorhandenen Aufdruckes selbst als optische Markierung eingesetzt werden.

[0015] Das Verfahren kann an Foliensträngen durchgeführt werden, die eine Breite senkrecht zur Zuführ-

richtung haben, die genau einem Folienbeutel entspricht. Besonders effizient läßt sich das Verfahren jedoch einsetzen, wenn das zugeführte Folienmaterial eine Breite hat, die mehreren Folienbeuteln entspricht, so daß mehrere Folienbeutel nebeneinander und gleichzeitig den einzelnen Produktionsschritten unterzogen werden. Die so nebeneinander produzierten Folienbeutel werden dann in einem anschließenden Prozeß voneinander getrennt. Bei Einsatz eines derartigen Parallelverfahrens ist eine einzelne Markierung, die jeweils für eine Reihe parallel hergestellter Folienbeutel gültig ist, ausreichend.

[0016] Die erfindungsgemäße Beutelherstellungsvorrichtung zur Durchführung des erfindungsgemäßen Verfahrens weist eine Meßeinrichtung zur Erfassung der Menge an Folienmaterial der jeweils zugeführten Folien auf, welches in Zuführrichtung für die Herstellung jeweils eines Folienbeutels vorgesehen ist. Weiterhin weist die erfindungsgemäße Beutelherstellungsvorrichtung eine Streckungseinrichtung für jede zugeführte Folie auf, die derart ausgestaltet ist, daß sie in Antwort auf ein Signal der Meßeinrichtung die jeweilige Folie streckt.

[0017] Vorteilhafterweise ist eine Anzahl optischer Sensoren zur Erfassung von Markierungen auf den zugeführten Folien vorgesehen, aus der die Folienmenge bestimmt werden kann, die von den einzelnen Folien zur Bildung eines einzelnen Folienbeutels bereitgestellt wird. Derartige optische Sensoren gestatten auf leichte Weise eine präzise Messung. Das Signal der optischen Sensoren kann direkt eingesetzt werden, um eine entsprechende Streckung durch die Streckungseinrichtung auszulösen.

[0018] Werden Folien verarbeitet, deren Ausdehnung senkrecht zur Zuführungsrichtung mehreren Folienbeuteln entspricht, so ist ein einzelner Sensor entlang der Breite der zugeführten Folie ausreichend, um die Folienmaterialmenge zu bestimmen, die von der jeweiligen Folie zur Herstellung eines Folienbeutels zur Verfügung gestellt wird.

[0019] Durch die Streckungseinrichtung können auch Unterschiede der Zuführgeschwindigkeit der einzelnen Folienmaterialien ausgeglichen werden. Vorteilhafterweise werden diese jedoch mit Hilfe von Spanneinrichtungen ausgeglichen, die die Folie stromaufwärts der Streckungseinrichtung mit einer konstanten Spannung beaufschlagen. Dies dient zur Erhöhung der Präzision bei der Folienzuführung.

[0020] Bei einer bevorzugten Ausführungsform sowohl des Verfahrens als auch der Vorrichtung ist als Verbindungsmechanismus für die einzelnen Folien ein Schweißvorgang vorgesehen. Bei der erfindungsgemäßen Beutelherstellungsvorrichtung ist dann eine Schweißeinrichtung stromabwärts der Streckungseinrichtung vorgesehen.

[0021] Im folgenden wird eine Ausgestaltung des erfindungsgemäßen Verfahrens anhand einer Ausführungsform der erfindungsgemäßen Beutelherstellungs-

15

25

35

vorrichtung mit Hilfe der anliegenden Figuren erläutert. Dabei zeigt

Figur 1 eine schematisierte Seitenansicht

einer erfindungsgemäßen Beutel-

herstellungsvorrichtung,

Figur 2 einen Ausschnitt eines Folien-

stranges vor dem Zuführen zu der Verbindungseinrichtung,

Figur 3 einen fertiggestellten Folienbeutel,

und

Figuren 4a und 4b

eine Streckungseinrichtung einer anderen Ausführungsform der erfindungsgemäßen Vorrichtung.

Figur 3 zeigt einen fertiggestellten Folienbeutel, wie er z.B. zur Aufnahme von Getränken vorgesehen ist. Der Folienbeutel 2 besteht aus zwei Seitenfolien, die entlang der Seitenkanten 8 miteinander verschweißt sind. Im Bodenbereich ist bei dem gezeigten Beispiel eine Bodenfolie in dem Bereich 10 dazwischen geschweißt. Auf diese Weise hat der Folienbeutel 2 nach Auseinanderfalten der Bodenfolie eine Ausdehnung, die Raum für das Füllgut z.B. das Getränk, zur Verfügung stellt. Im Anschluß an den Füllvorgang wird der Folienbeutel an der Oberkante 12 verschweißt, um verschlossen zu werden. Auf den Seitenfolien sind z.B. Aufdrucke 14 über den Inhalt des Folienbeutels vorgesehen. Bei dem gezeigten Beispiel eines Folienbeutels ist nahe der Unterkante der jeweiligen Seitenfolien eine Markierung 16 vorgesehen. Das Material des Folienbeutels kann z.B. Aluminiumlaminatfolie sein.

[0023] In Figur 1 bezeichnet 22 Vorratsrollen, auf denen Folienstränge zur Bildung der Seitenfolien aufgerollt sind Auf den Seitenfolien ist bereits der Aufdruck 14 für die einzelnen Folien vorgesehen, Nicht gezeigt ist der Übersicherlichkeit halber die Zuführung der Bodenfolie. Die einzelnen Folien 4, 6 werden z.B. durch an sich bekannte, federbeaufschlagte Spanneinrichtungen 24 und um Umlenkrollen 26 und 28 geführt. 29 bezeichnet eine Abzugseinrichtung für die miteinander verbundenen Folien, z.B. rotierende Walzen, die die verschweißten Folien in Richtung 20 durch Reibschluß fördern. 32 bezeichnet den Schweißkopf einer Schweißeinrichtung 30 und 34 bezeichnet das Messer einer Schneideinrichtung 36, das sich über die Breite der Folie erstreckt.

[0024] 38, 39 bezeichnet eine Meßeinrichtung, die z.B. durch zwei optische Sensoren 38, 39 gebildet ist, die oberhalb und unterhalb des zusammengeführten Folienstranges angeordnet sind, um darauf befindliche Markierungen zu detektieren. Die optische Meßeinrichtung ist mit einer Steuerung 40 verbunden, die über

Signalleitungen 42 wiederum mit Klammereinrichtungen 44 verkoppelt ist, die an den zugeführten Foliensträngen angreifen können.

[0025] Figur 2 zeigt einen Ausschnitt einer zugeführten Folie. Die Laufrichtung des Folienstranges ist wiederum mit 20 bezeichnet. 18 bezeichnet die Schnittkanten, entlang derer die Schneideinrichtung 36 den Folienstrang in einzelne Folienbeutel zerschneiden soll. Markierungen 16 sind bei dem gezeigten Ausführungsbeispiel entlang einer solchen zukünftigen Schnittkante vorgesehen. Sie sind bereits zusammen mit den Aufdrucken 14 für die einzelnen Folienbeutel auf der Folie aufgedruckt, die von der Vorratsrolle 20 abgezogen wird. Beim gezeigten Ausführungsbeispiel werden zwei Folienbeutel senkrecht zur Laufrichtung gleichzeitig bearbeitet.

[0026] Figuren 4a und 4b zeigen eine Streckungsvorrichtung 46, die bei einer anderen Ausführungsform der erfindungsgemäßen Vorrichtung anstelle der Klammereinrichtungen 44 zum Einsatz kommt. 4 bezeichnet wiederum einen Folienstrang, der zu strecken ist. Halteeinrichtungen 48 und 50 sind in einem Abstand 60 in Zuführrichtung 20 der Folie vorgesehen. Die Halteeinrichtungen sind z.B. Klammern, die senkrecht zur Transportrichtung 20 der Folie aufeinander zubewegt werden können. Ein Streckungskörper 52 in Form eines Kolbens, der in Richtung 58 bewegbar ist, ist derart angeordnet, daß er sich in Richtung 58 auf die Folie 4 zubewegen kann. Der Streckungskörper 52 erstreckt sich ebenso über die gesamte Breite des Folienmateriales 4.

[0027] Das erfindungsgemäße Verfahren wird mit der ersten beschriebenen Ausführungsform der erfindungsgemäßen Vorrichtung wie folgt durchgeführt:

Folienstränge, wie sie als Ausschnitt in der [0028] Figur 2 gezeigt sind, werden von den Folienrollen 22 abgerollt. Dies geschieht z.B. durch die Zugkraft, die die Abführeinrichtung 29 z.B. durch Reibschluß von entsprechenden Förderwalzen auf den Folienstrang ausübt Die Abfördergeschwindigkeit wird dabei an der Stelle der Abförderwalzen 29 konstant gehalten. Die jeweiligen Folienstränge 4, 6 werden durch eine Spanneinrichtung 24 mit einer im wesentlichen konstanten Spannung beaufschlagt, bevor sie durch Umlenkrollen 26 und 28 zusammengeführt werden. In der Darstellung der Figur 1 befinden sich auf dem oberen Folienstrang 4 der Figur 2 entsprechende Aufdrucke 14 auf der nach oben weisenden Seite. Analog befinden sich bei der Darstellung der Figur 1 auf dem unteren Folienstrang 6 entsprechende oder andere Aufdrücke auf der nach unten weisenden Seite. Nach dem Zusammenführen der Folienstränge 4 und 6 durch die Umlenkrolle 28 laufen diese durch die optischen Meßeinrichtungen 38, 39. 39 detektiert die einzelnen Markierungen 16 auf dem oberen Folienstrang, während 38 die Markierungen auf dem unteren Folienstrang detektiert. Entsprechende Signale dieser optischen Meßeinrichtungen 38, 39 werden an die Steuerung 40 weitergeleitet, die aus der

25

40

Geschwindigkeit der Abfördereinrichtung 29, die der Steuerung 40 über die Signalleitung 43 zugeführt wird, den Abstand der einzelnen Markierungen 16 sowohl für den oberen als auch für den unteren Folienstrang 4 bzw. 6 errechnet.

[0029] Ergibt sich aus der Messung der Meßeinrichtungen 38, 39 ein Unterschied der Abstände der einzelnen Markierungen von einem Folienstrang 4 zum anderen Folienstrang 6, so gibt die Steuerung 40 ein Signal an die Klammer 44, die dem Folienstrang zugeordnet ist, auf dem die Markierungen 16 einen geringeren Abstand haben als auf dem anderen Folienstrang. Die entsprechende Klammer 44 greift kurzzeitig an den entsprechenden Folienstrang an. Dadurch, daß die Abfördergeschwindigkeit der Abförderungswalzen 29 konstant bleibt, kommt es zu einer Streckung der kürzeren Folie, während die andere Folie nicht gestreckt wird. Die Klammer 44, die das Signal der Steuerung 40 erhalten hat, bleibt solange geschlossen, bis der Unterschied der Abstände der Markierungen 16 auf den jeweiligen Foliensträngen ausgeglichen ist.

[0030] Abweichend von der beschriebenen Ausführungsform kann die Steuerung 40 den gemessenen Abstand der einzelnen Markierungen 16 in Zuführrichtung auch mit einem vorgegebenen Sollabstand vergleichen. Auf diese Weise ist ein Vergleich der einzelnen Abstände auf den zwei verschiedenen Folien überflüssig.

[0031] Mit einer Ausführungsform der erfindungsgemäßen Vorrichtung, die eine Streckungseinrichtung 46 gemäß den Figuren 4a und b aufweist, wird die Streckung wie folgt durchgeführt. Wird von einer der Meßeinrichtungen 38, 39 festgestellt, daß eine Folie gestreckt werden muß, so wird ein Signal an die Strekkungseinrichtung 46 gegeben. Die Halteeinrichtungen 48, 50 bewegen sich auf die Folie 4, 6 zu und halten diese im Abstand 60 fest. Gleichzeitig bewegt sich der Stempel 52 in Richtung 58 auf die Folie zu und zieht diese aus ihrer ursprünglichen Lage seitlich heraus. Auf diese Weise wird eine Streckung erreicht, die nur im Bereich zwischen den Halteeinrichtungen 48, 50 wirkt und so einen Längenunterschied der Folien ausgleicht. Nachdem durch den entsprechenden Strek-[0032] kungsprozeß die Folienmaterialmenge, die von den einzelnen Folien 4, 6 für einen Folienbeutel in Zuführungsrichtung zur Verfügung gestellt wird, ausgeglichen ist, werden die zusammengelegten Folienstränge 4, 6 der Schweißeinrichtung 30 zugeführt. Der Schweißkopf 32 ist so ausgestaltet, daß er beim Absenken auf die zusammengelegten Folien 4, 6 diese entlang der zukünftigen Seitenkanten 8 und dem Bodenbereich 10 miteinander verschweißt. Dies geschieht durch entsprechend ausgeformte Heizbereiche an dem Schweißkopf 32 in an sich bekannter Weise. Nach dem Verschweißen hebt sich der Schweißkopf 32 wieder an und die zusammengeschweißten Folienstränge werden der Schneideinrichtung 36 zugeführt Mit Hilfe eines Messers 34 wird der

zusammengechweißte Folienstrang entlang der Kanten 18 zerschnitten, um einzelne Folienbeutel zu bilden.

[0033] Die gesamte Beutelherstellungsvorrichtung arbeitet dabei in der Regel taktweise in einem Takt, der der Breite eines Folienbeutels in Zuführrichtung des Folienmateriales entspricht. Wenn in den bisherigen Ausführungen von einer konstanten Geschwindigkeit der Abförderungswalze 29 gesprochen wird, so ist damit gemeint, daß ein konstanter Takt vorliegt und während der einzelnen Taktperioden die Geschwindigkeit konstant gehalten wird.

[0034] Abweichend von der beschriebenen Ausführungsform können die Vorratswalzen 22 auch motorgetrieben sein. Wird die Zufuhr einer Folie durch Angreifen der entsprechenden Klammereinrichtung 44, 46 gestoppt, oder die Folie gestreckt, so wird das während dieser Zeit von der Vorratsrolle 22 abgerollte Folienmaterial durch die Spannvorrichtung 24 trotzdem auf konstanter Spannung gehalten.

[0035] Bei dem beschriebenen Ausführungsbeispiel ist eine Markierung 16 für mehrere Folienbeutel, die senkrecht zur Zuführungsrichtung 20 der Folienmaterialien 4, 6 gleichzeitig bearbeitet werden, vorgesehen. Dementsprechend ist entlang der Breite des Folienmaterials auch nur jeweils ein optischer Sensor 38 bzw. ein optischer Sensor 39 notwendig. Soll Folienmaterial mit mehreren Markierungen entlang der Breite des Folienmaterlais verarbeitet werden, so ist eine entsprechende Anzahl von optischen Sensoren entlang der Breite vorzusehen.

[0036] Der Aufdruck über den Inhalt der Folienbeutel kann auch direkt als Markierung eingesetzt werden, indem entsprechende charakteristische Merkmale, wie Ecken oder Kanten in dem Bild von den Meßeinrichtungen ausgewertet werden. So kann auf eine zusätzliche Markierung 16 vollständig verzichtet werden.

[0037] Ein Sonderfall kann auftreten, wenn die Folienmaterialmenge, die von den einzelnen Foliensträngen jeweils für einen Folienbeutel zur Verfügung gestellt wird, im wesentlichen gleich ist. Es könnte dann dazu kommen, daß die Maschine ständig zwischen den Klemmeinrichtungen der einzelnen Folienstränge 4, 6 umschalten würde. In diesem Fall kann es zweckmäßig sein, wenn einer der beiden Folienstränge permanent vorgedehnt wird. Der entsprechend andere Folienstrang wird dann auf die oben beschriebene Weise mit der ihm zugeordneten Streckungseinrichtung entsprechend gestreckt und dem permanent vorgedehnten Folienstrang angeglichen.

[0038] Die permanente Dehnung kann z.B. erreicht werden, indem der Motor der entsprechenden Vorratsrolle langsamer betrieben wird. Eine andere Möglichkeit ist es, die Spanneinrichtung 24 des entsprechenden Folienstranges mit einer höheren Vorspannung zu versehen. Schließlich ist es auf einfache Weise möglich, die Streckungseinrichtung der permanent vorzudehnenden Folie zur Vordehnung einzusetzen. Die entsprechenden Klemmeinrichtungen 40, 48, 52 werden in

20

25

40

45

50

diesem Fall zur Verlangsamung des entsprechenden Folienmateriales eingesetzt, indem sie nicht vollständig den Folientransport stoppen.

Werden mehr als zwei Folienstränge einge-[0039] setzt, so kann bei jeder Zuführung ein entsprechender 5 Streckungsmechanismus vorgesehen werden.

Mit dem erfindungsgemäßen Verfahren und der erfindungsgemäßen Vorrichtung ist sichergestellt, daß die Folienmaterialmenge, die von den einzelnen Foliensträngen 4,6 für einen Folienbeutel in Zuführrichtung bereitgestellt wird, konstant bleibt. Es lassen sich mit der erfindungsgemäßen Vorrichtung Genauigkeiten in der Größenordnung von µm erreichen. Auf diese Weise ist auch bei großen Durchsatzmengen und geschwindigkeiten gewährleistet, daß die einzelnen 15 Folien lagerichtig aufeinandergelegt werden und es zu keinem Versatz des Musters oder weiterer Merkmale der Folienbeutel kommen kann.

Patentansprüche

- 1. Verfahren zum Herstellen von Folienbeuteln, insbesondere Getränkefolienbeuteln (2), bei welchem zumindest zwei Folien (4, 6) zugeführt werden, die als Seitenfolien (8) der Folienbeutel dienen, die Folien aufeinandergelegt werden und an den zukünftigen Seitenkanten der Folienbeutel miteinander verbunden werden, die so miteinander verbundenen Folien abgeführt und entlang der Verbindung geschnitten werden um einzelne Folienbeutel zu bilden, wobei ein Ausgleich eventuell auftretender Unterschiede in den Folienmaterialmengen, die jeweils von den zumindest zwei Folien (4, 6) in Zuführrichtung (20) für jeweils einen Folienbeutel vorgesehen sind, durch Streckung derjenigen Folie erreicht wird, die für einen Folienbeutel die kreinere Folienmaterialmenge bereitstellt.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Streckung durch kurzzeitiges Unterbrechen oder Verlangsamen der Folienzufuhr der zu strekkenden Folie erreicht wird, während die Abförderungsbedingungen nicht verändert werden.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß eine kurzzeitige Unterbrechung mit Hilfe einer Klammereinrichtung (44) erreicht wird, die an der zugeführten Folie angreift.
- 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Streckung durch kurzzeitiges Halten der zu streckenden Folie (4, 6) an zwei in Zuführrichtung (20) beabstandeten Stellen (54, 56) und gleichzeitiges Erhöhen der Folienspannung zwischen den zwei Haltepunkten (54, 56) erreicht wird.

- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Erhöhung der Folienspannung mit Hilfe eines Streckkörpers (52) erreicht wird, der die zu strekkende Folie (4, 6) über die gesamte Breite zwischen den zwei Haltepunkten (54, 56) seitlich aus der unbeeinflußten Transportbahn auslenkt.
- Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die zugeführten Folienmaterialien senkrecht zur Zuführungsrichtung zumindest eine Breite aufweisen, die mehreren Folienbeuteln (2) entspricht, und mehrere Folienbeutel in einer Reihe gleichzeitig aus diesen Folienmaterialien hergestellt werden.
- Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Folienmaterialmenge, die in Zuführrichtung von einer Folie für jeweils einen Folienbeutel bereitgestellt wird, mit Hilfe von Markierungen (16) ermittelt wird, die an dem Folienmaterial in Abständen aufgebracht sind, die der Folienmaterialmenge entsprechen, die jeweils für einen Folienbeutel bereitgestellt wird.
- Verfahren nach den Ansprüchen 6 und 7. dadurch gekennzeichnet, daß jeweils nur eine Markierung (16) für eine Reihe vorgesehen ist.
- Verfahren nach einem der Ansprüche 7 und 8, dadurch gekennzeichnet, daß die Markierungen (16) optisch erfaßt werden.
- 10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die Markierungen (16) auf die Folien (4, 6) aufgedruckt sind.
- 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß die Markierungen (16) in einem Bereich der Folien (4, 6) aufgebracht sind, der Teil der Seitenfolien eines Folienbeutels wird.
- 12. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß als Markierungen Teile eines Informationsausdrukkes (14) eingesetzt werden.
- 13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die einzelnen Folien beim Verbindungsprozeß entlang der zukünftigen Seitenkanten (8) der Folienbeutel miteinander verschweißt werden.
- 14. Verfahren nach einem der Ansprüche 1 bis 13,

6

25

30

dadurch gekennzeichnet, daß

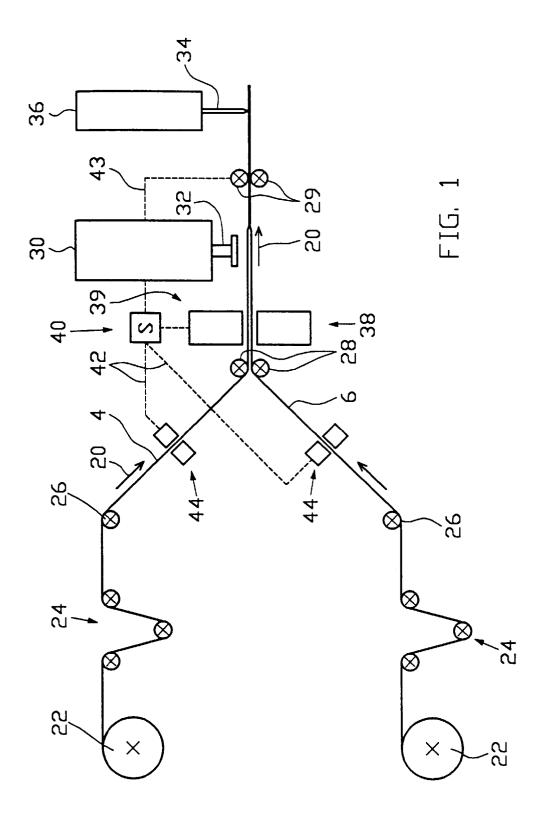
eine der zumindest zwei Folien (4, 6) permanent vorgedehnt wird und die andere Folie oder die anderen Folien entsprechend durch Streckung angeglichen werden.

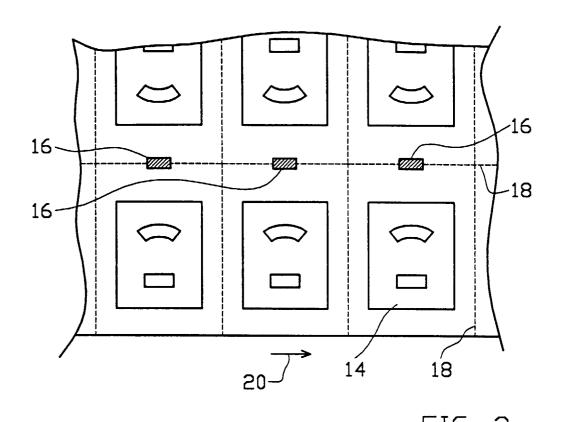
- 15. Beutelherstellungsvorrichtung zur Durchführung des Verfahrens nach Anspruch 1 mit zumindest einer ersten und einer zweiten Zuführeinrichtung (22, 24, 26, 28) für jeweils eine Folie (4, 6), einer Einrichtung (30) zum Verbinden der einzelnen Folien, einer Abfördereinrichtung (29) zum Abfördern der verbundenen Folien, einer Schneideinrichtung (36) zum Zerschneiden der verbundenen Folien zu einzelnen Folienbeuteln, einer Meßeinrichtung (38, 39) zur Erfassung der Menge an Folienmaterial der zugeführten Folien (4, 6), das in Zuführrichtung für die Herstellung jeweils eines Folienbeutels vorgesehen ist, und jeweils einer Streckungseinrichtung (44,46) für jede der zumindest zwei zugeführten Folien, die so ausgestattet sind, daß sie in Antwort auf ein Signal der Meßeinrichtung die jeweilige Folie (4, 6) strecken.
- 16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß die Meßeinrichtung eine Anzahl optischer Sensoren (38, 39) zur Erfassung von Markierungen (16) auf den Folien umfaßt.
- 17. Vorrichtung nach einem der Ansprüche 15 und 16, dadurch gekennzeichnet, daß die Streckungseinrichtungen Klammern (44) umfassen, die an den zugeführten Folien (4, 6) angreifen, um die jeweilige Folienzufuhr zu verlangsamen oder zu unterbrechen.
- 18. Vorrichtung nach einem der Ansprüche 15 und 16, dadurch gekennzeichnet, daß die Streckungseinrichtung (46) zwei in Folientransportrichtung (20) beabstandete Klammereinrichtungen (48, 50), die so ausgestaltet sind, daß sie an der zugeführten Folie (4, 6) an zwei beabstandeten Haltepunkten (54, 56) angreifen können und einen Streckmechanismus (52) zwischen den Klammereinrichtungen (48, 50), der so ausgestaltet ist, daß er die zugeführte Folie (4, 6) über die gesamte Folienbreite zwischen den Haltepunkten (54, 56) seitlich auslenken kann, umfaßt.
- 19. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, daß der Streckungsmechanismus einen senkrecht zur Folientransportrichtung (20) beweglichen Stempel (52) umfaßt, der sich über die gesamte Folienbreite 55 erstreckt.
- 20. Vorrichtung nach einem der Ansprüche 15 bis 19,

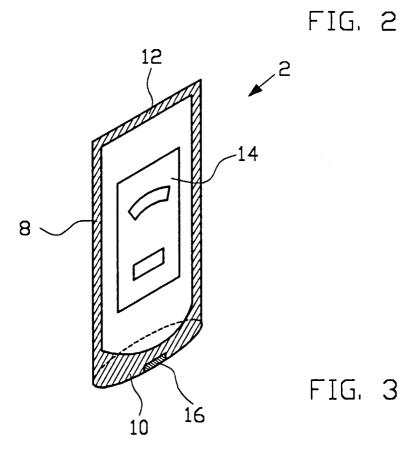
gekennzeichnet durch

eine Ausdehnung senkrecht zur Zuführrichtung der Folien, (4, 6) die ausreichend ist, Folien zu verarbeiten, deren Breite mehreren Folienbeuteln (2) entspricht.

21. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, daß


zur Erfassung der Folienmaterialmenge, die in Zuführrichtung (20) von den einzelnen Folien (4,6) zur Herstellung eines Folienbeutels bereitgestellt wird, für jede zugeführte Folie nur ein Sensor (38, 39) entlang der Breite der zugeführten Folie vorgesehen ist.


22. Vorrichtung nach einem der Ansprüche 15 bis 21, gekennzeichnet durch Spanneinrichtungen (24) zur Aufrechterhaltung der Spannung der zugeführten Folien (4, 6).


23. Vorrichtung nach einem der Ansprüche 15 bis 22, dadurch gekennzeichnet, daß die Einrichtung zum Verbinden der einzelnen Folien eine Schweißeinrichtung (30, 32) umfaßt.

7

50

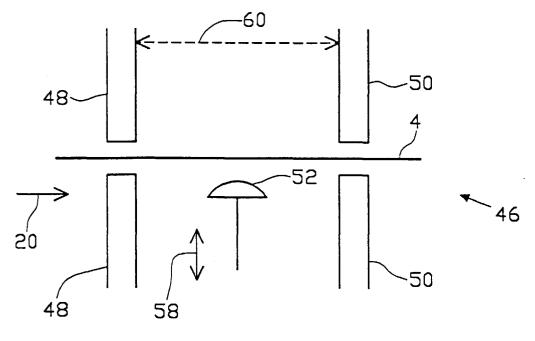


FIG. 4a

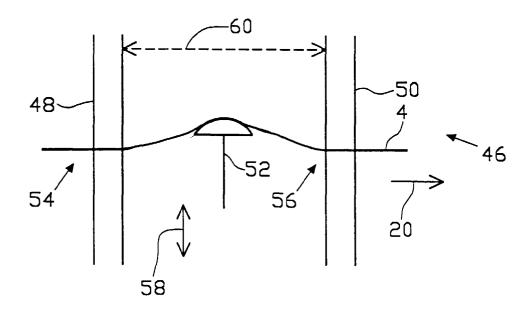


FIG. 4b