FIELD OF THE INVENTION
[0001] The present invention relates generally to servo positioned actuators, and more particularly,
to a carriage and positioning actuator assembly in which the support structure for
the carriage is located at least partially within the central portion of the motor.
BACKGROUND OF THE INVENTION
[0002] Information is recorded on and read from a moving magnetic tape with a magnetic read/write
head positioned next to the tape. The magnetic "head" may be a single head or, as
is common, a series of read/write head elements stacked individually and/or in pairs
within the head unit. Data is recorded in tracks on the tape by moving the tape lengthwise
past the head. The head elements are selectively activated by electric currents representing
the information to be recorded on the tape. The information is read from the tape
by moving the tape longitudinally past the head elements so that magnetic flux patterns
on the tape create electric signals in the head elements. These signals represent
the information stored on the tape.
[0003] Data is recorded on and read from each of the parallel tracks on the tape by positioning
the head elements at different locations across the tape. That is, head elements are
moved from track to track as necessary to either record or read the desired information.
Movement of the magnetic head is controlled by an actuator operatively coupled to
some type of servo control circuitry. Tape drive head positioning actuators often
include a lead screw driven by a stepper motor, a voice coil motor, or a combination
of both. The carriage that supports the head is driven by the actuator along a path
perpendicular to the direction that the tape travels. The head elements are positioned
as close to the center of a track as possible based upon the servo information recorded
on the tape.
[0004] EP 0 595 785 A discloses an electromagnetic actuator for driving an optical head
incorporated in an optical disk apparatus. The actuator comprises a pair of magnetic
circuits, a coil fixed to a movable member and linear guides, the linear guides being
not surrounded by the coil. Rollers are supported by the movable member and roll on
the linear guide for regulating a moving direction of the movable member. The movable
member is driven by a Lorentz force generated by a current flowing through the coil
and magnetic fluxes flowing in the magnetic circuits.
[0005] WO95/15689 discloses a carriage and actuator assembly comprising a motor comprising
a coil 140 of electrically conductive windings and a magnet 126 adjacent to the coil,
wherein the motor has a central portion defined by an inside perimeter of the coil.
A guide rail 130 is positioned outside the central portion of the motor. The central
portion of the motor is occupied by the LVDT coil assembly 123 for measuring the position
of the carriage along the vertical axis.
[0006] It is the object of the present invention to provide a carriage and actuator assembly
with a more compact design.
[0007] This object is achieved by a carriage and actuator assembly according to claim 1.
[0008] The present invention is directed in general to a servo positioned carriage and actuator
assembly and, more particularly, to a head carriage and actuator assembly for a tape
drive. The support structure for the carriage is located at least partially within
the central portion of the motor. This configuration provides a new compact design
that minimizes the overall mass of the carriage elements of the actuator. In one embodiment,
the assembly includes a motor, a guide rail and a carriage that travels along the
guide rail. The motor, typically a voice coil motor, has a coil of electrically conductive
windings and a magnet or magnets adjacent to the coil. The inside perimeter of the
coil defines the central portion of the motor. The guide rail extends axially through
the central portion of the motor. In a second embodiment, a post extends axially through
the inside of an annular coil and the carriage travels on a pair of guide rails. The
first guide rail is secured to the post and extends axially through the inside of
the coil along the post. The second guide rail is positioned outside the coil radially
opposite and parallel to the first guide rail.
DESCRIPTION OF THE DRAWINGS
[0009]
Fig. 1 is a top down plan view of a tape drive incorporating a head positioning actuator
constructed according to one embodiment of the present invention.
Fig. 2 is a perspective view of the moveable carriage and head positioning actuator
of Fig. 1.
Figs. 3A and 3B are side elevation and partial section views of the moveable carriage
and head positioning actuator of Figs. 1 and 2 in different positions along the guide
rails.
Fig. 4 is a top down plan and partial section view of the moveable carriage and head
positioning actuator taken along the line 4-4 in Fig. 3A.
Fig. 5 is a front elevation and partial cut-away view of the moveable carriage and
head positioning actuator as viewed along the line 5-5 in Fig. 4.
Figs. 6A, 6B and 6C are detail perspective views of the head carriage. Fig. 6A illustrates
the carriage without the coil. Fig. 6B illustrates the carriage with the coil installed
in the carriage. Fig. 6C illustrates a carriage in which a non-conductive break is
made between the center portions of the carriage and the back portion of the carriage.
Fig. 7 is a detail side elevation view of the back portion of the carriage showing
one type of bearing preload mechanism.
Fig. 8 is a representational side view of the actuator showing the magnetic flux in
the voice coil motor.
DETAILED DESCRIPTION OF THE INVENTION
[0010] Referring first to Fig.1, a magnetic tape 12 is wound on a single supply spool 14
and tape cartridge 16. Tape cartridge 16 is inserted into tape drive 10 for read and
write operations. Tape 12 passes around tape guide 17, over a magnetic read/write
head 18, around tape guide 19 to take up spool 20. Head 18 is mounted to a head carriage
and actuator assembly 22 that includes a variety of operational features related to
head 18. Head carriage and actuator assembly 22 is also referred to for convenience
as actuator 22. Magnetic head 18 engages tape 12 as tape 12 moves across the face
of head 18 to record data on tape 12 and to read data from tape 12.
[0011] Fig. 2 is a perspective view of the actuator 22. Figs. 3, 4 and 5 are elevation and
plan views of actuator 22. The operative components of actuator 22 are best seen in
Figs. 3-5. Referring to Figs. 2-5, head 18 is carried by a moveable carriage 24. Carriage
24 moves up and down along a primary guide rail 26 and a secondary guide rail 28 at
the urging of voice coil motor 30. Head 18, which is carried by carriage 24, therefore,
also moves up and down in a direction perpendicular to the direction of tape travel
as desired to properly position head 18 for reading and writing operations. Figs.
3A and 3B show carriage 24 and head 18 in different positions along the guide rails.
[0012] Voice coil motor 30 includes a coil 32 and magnets 34. Magnets 34 are attached to
the inside of sidewalls 54 of actuator base 50. Top flux plate 36 fits on top of sidewalls
54 of base 50. Actuator base 50 is secured to the frame or another stable component
of tape drive 10. Coil 32 is mounted to carriage 24.
[0013] The details of carriage 24 are best seen in Figs. 6A and 6B. Fig. 6A is a perspective
view of carriage 24 without coil 32. Fig. 6B is a perspective view of carriage 24
with coil 32 installed. Referring to Figs. 6A and 6B, carriage 24 includes a front
portion 38, a back portion 40 and truncated ring shaped center portions 42A and 42B
that join the front and back portions 38, 40. Center portions 42A and 42B are positioned
inside a circumferential perimeter defined by magnets 34. The ring shaped center portions
42A and 42B are spaced apart a distance equal to or slightly greater than the height
(the axial dimension) of coil 32. Coil 32 is sandwiched between and firmly attached
to ring shaped center portions 42B and 42C in carriage 24. Coil 32 is exposed at cavities
44 formed on each side of carriage 24 between ring shaped center portions 42A and
42B.
[0014] Referring again to Figs. 2-5, a post 46 extends vertically through the center portion
of coil 32. In the embodiment of the invention shown in the drawings, post 46 is the
upright core portion of actuator base 50. Primary guide rail 26 extends up along a
V-shaped trough 48 formed in the front side of core 42. Secondary guide rail 28 is
positioned at the back of carriage 24 just outside coil 32. Head 18 is mounted to
front piece 38 of carriage 24. If necessary or desirable, a position sensor 52 that
reads the vertical position of carriage 24 may be mounted between back piece 40 and
actuator base 50. Carriage 24 travels along primary guide rail 26 on two pairs of
bearings 56A and 56B mounted in the front piece 38 of carriage 24. Carriage 24 travels
along secondary guide rail 28 on one pair of bearings 58 mounted in the back piece
40 of carriage 24. Preferably, bearings 56A are mounted at the top of carriage 24,
bearings 56B are mounted at the bottom 62 of carriage 24, and bearings 58 are mounted
at the middle of carriage 24. In this configuration, bearings 56A and 56B control
the position of carriage 24 in the azimuth direction, indicated by arrow A in Fig.
5, and the zenith direction, indicated by arrow Z in Fig. 3A. Bearings 58 control
the position of carriage 24 in the yaw direction, indicated by arrow Y in Fig. 4.
[0015] It may be desirable to preload one or both bearings 58 against secondary rail 28
to maintain contact of all of the bearings against the rails. One type of bearing
preload mechanism is shown in Fig. 7. Referring to Fig. 7, one or both of the secondary
rail bearings 58 are spring loaded against secondary guide rail 28. A spring 64, which
supports bearing 58, extends between back portion 40 of carriage 24 and bearing shaft
59. Spring 64 generates a spring force F that pushes bearing 58 against secondary
guide rail 28 and pulls carriage 24 rearward. The rearward pull of carriage 24 urges
the primary guide rail bearings 56 against primary guide 26.
[0016] In operation, actuator 22 positions head 18 relative to tape 12 according to positional
information recorded on tape 12. It may be desirable, and in some cases necessary,
to make one or all of top flux plate 36, post 46 and actuator base 50 from a soft
magnetic steel to carry the magnetic flux 66 generated by magnets 34 through the space
occupied by coil 32, as shown in Fig. 8. A servo control signal is generated from
the positional information on tape 12 through servo control circuitry (not shown)
and delivered as an electrical current to voice coil 32. The presence of current in
coil 32 in the magnetic field generated by magnets 34 creates a vertical force on
coil 32 and, correspondingly, on carriage 24. This vertical force moves carriage 24
and head 18 up or down as necessary to properly position head 18 relative to tape
12.
[0017] The position of primary guide rail 26 inside coil 32 and the position of bearings
56A and 56B above and below coil 32 minimizes the amount of mass needed at the back
of carriage 24 to place the center of gravity of carriage 24 at the same location
as the center of force exerted by voice coil motor 30. Positioning the center of gravity
of carriage 24 at the same location as the center of force of voice coil motor 30
reduces the amplitude of the carriage rocking modes. So, by locating primary guide
rail 26 inside coil 32, the overall mass of carriage 24 can be reduced. A more compact
design can also be achieved by positioning coil 32 between primary guide rail bearings
56A and 56B. This configuration allows the positioning of head 18 closer to the center
of force of voice coil motor 30 to further reduce the size and mass of carriage 24.
[0018] It is desirable to glue or otherwise fasten primary guide rail 26 to post 46 to increase
the stiffness of primary guide rail 26. In addition, fastening primary guide rail
26 to post 46 eliminates the need to provide other support for primary guide rail
26, particularly at the ends of the primary guide rail. The added stiffness allows
higher resonant frequencies of the rocking modes of carriage 24 and, hence, a higher
band width for the servo control system. It is also desirable to separate upper guide
bearings 56A from lower guide bearings 56B as much as possible without exceeding the
vertical height limitations of actuator 22 and tape drive 10. Since the lowest stiffness
member in determining the carriage rocking frequencies is the bearings, spreading
the bearings as far apart as possible increases the effective stiffness of the carriage
guide system. So, by maximizing the spacing between bearings 56A and 56B, the resonant
frequency of the carriage rocking modes can be made as high as possible for a given
stiffness of bearings.
[0019] If carriage 24, or at least one of the center portions 42A and 42B, are made of conductive
material, then the carriage will form an electrically conductive loop in the magnetic
flux of voice coil motor 30. The movement of carriage 24 as it is driven by motor
30, therefore, will generate an electrical current through this conductive loop. The
current in carriage 24 generates a damping force that acts on carriage 24 in a direction
opposite the direction of travel and is proportional to the velocity of the carriage.
This damping force can be avoided by making carriage 24, or at least the center portions
42A and 42B, from a non-conductive material or by forming a non-conductive break in
the otherwise conductive carriage loop. Fig. 6C shows such a non-conductive break
in carriage 24. Referring to Fig. 6C, a strip 41 of adhesive material fills a break
made in carriage 24 near one of the junctions of back portions 40 and center portions
42A and 42B. Although any electrically non-conductive material may be used, an epoxy
or other strong adhesive is preferred to help maintain the structural integrity of
carriage 24.
[0020] "Bearings" as used in this Specification and in the Claims means any suitable object,
structure or surface that moveably supports the carriage for travel along the rails.
Suitable bearings may include, for example, ball bearings, roller bearings, Gothic
arch bearings, journal bearings, bushings and the like.
[0021] Although the invention has been shown and described with reference to a head carriage
and actuator assembly for a tape drive, the invention may be embodied in other carriage
and actuator assemblies, structures and designs. For example, the invention could
be incorporated in many different types of servo positioned actuators that use a voice
coil motor. The voice coil motor might be configured so that the magnets are secured
to the head carriage and the coil remains stationary. And, the coil need not be annular.
A square or rectangular coil may be appropriate in some applications. The post and
the primary guide rail could be formed as an integral unit, rather the discrete components
described above. The sidewalls of the actuator base might be formed integral to the
base foundation, as shown in Figs. 2, 5 and 6, or the sidewalls might be formed integral
with the top plate and separate from the base. Therefore, it is to be understood that
these and other variations of and modifications to the embodiments shown and described
may be made without departing from the scope of the invention as defined in following
claims.
1. A carriage and actuator assembly, the assembly comprising:
a motor (30) comprising a coil (32) of electrically conductive windings and a magnet
(34) adjacent to the coil (32), wherein the motor (30) has a central portion defined
by an inside perimeter of the coil (32);
a first guide rail (26) extending axially through the central portion of the motor
(30)
a second guide rail (28) positioned parallel to the first guide rail (26) and outside
the central portion of the motor (30); and
a carriage (24) operatively coupled to the motor (30) and moveably supported by the
guide rails.
2. The assembly according to Claim 1, further comprising bearings (56A or 56B) mounted
to the carriage (24), the bearings (56A or 56B) engaging the first guide rail (26)
to facilitate movement of the carriage (24) along the first guide rail (26).
3. The assembly according to claim 1, further comprising first bearings (56A) mounted
to the carriage (24) and second bearings (56B) mounted to the carriage (24) at a location
spaced apart axially from the first bearings (66A), the first and second bearings
(56A and 56B) engaging the first guide rail (26) to facilitate movement of the carriage
(24) along the first guide rail (26).
4. The assembly according to Claim 3, wherein the first and second bearings (56A and
56B) are spaced apart a distance greater than an axial dimension of the coil (32).
5. The assembly according to Claim 1, further comprising first bearings (56A or 56B)
mounted to the carriage (24) and second bearings (58) mounted to the carriage (24)
at a location spaced apart from the first bearings (56A or 56B), the first bearings
(56A or 56B) engaging the first guide rail (26) to facilitate movement of the carriage
(24) along the first guide rail (26) and the second bearings (58) engaging the second
guide rail (28) to facilitate movement of the carriage (24) along the second guide
rail (28).
6. The assembly according to Claim 1, wherein:
the coil (32) is an annular coil;
the magnet (34) surrounds at least a part of the coil (32); and
the assembly further comprises a post (46) extending axially through the inside of
the coil (32), the first guide rail (26) being secured to the post (46) and extending
axially through the inside of the coil (32) along the post (46), the second guide
rail (28) being disposed radially opposite to the first guide rail (26).
7. The assembly according to Claim 6, further comprising first, second and third bearings
(56A, 56B and 58) mounted to the carriage (24), the first and second bearings (56A
and 56B) engaging the first guide rail (26) at locations spaced apart axially from
one another and the third bearings (58) engaging the second guide rail (28) at an
axial location between the first and second bearings (56A and 56B).
8. The assembly according to Claim 7, wherein the first and second bearings (56A and
56B) are spaced apart a distance greater than an axial dimension of the coil (32).
1. Eine Wagen- und Betätigungsglied-Anordnung, wobei die Anordnung folgende Merkmale
aufweist:
einen Motor (30), der eine Spule (32) aus elektrisch leitfähigen Wicklungen und einen
Magneten (34), der zur Spule (32) benachbart ist, aufweist, wobei der Motor (30) einen
mittleren Abschnitt besitzt, der durch einen inneren Umfang der Spule (32) definiert
ist;
eine erste Führungsschiene (26), die sich axial durch den mittleren Abschnitt des
Motors (30) erstreckt;
eine zweite Führungsschiene (28), die parallel zu der ersten Führungsschiene (26)
und außerhalb des mittleren Abschnitts des Motors (30) positioniert ist; und
einen Wagen (24), der wirksam mit dem Motor (30) gekoppelt ist und beweglich von den
Führungsschienen gehalten wird.
2. Die Anordnung gemäß Anspruch 1, die ferner Lager (56A oder 56B), die an dem Wagen
(24) befestigt sind, aufweist, wobei die Lager (56A oder 56B) mit der ersten Führungsschiene
(26) Eingriff nehmen, um eine Bewegung des Wagens (24) entlang der ersten Führungsschiene
(26) zu erleichtern.
3. Die Anordnung gemäß Anspruch 1, die ferner ein erstes Lager (56A), das an dem Wagen
(24) befestigt ist, und zweite Lager (56B), das an dem Wagen (24) an einer Stelle
befestigt ist, die axial von den ersten Lagern (66A) beabstandet sind, aufweist, wobei
das erste und das zweite Lager (56A und 56B) mit der ersten Führungsschiene (26) Eingriff
nehmen, um eine Bewegung des Wagens (24) entlang der ersten Führungsschiene (26) zu
erleichtern.
4. Die Anordnung gemäß Anspruch 3, bei der das erste und das zweite Lager (56A und 56B)
um eine Entfernung beabstandet sind, der größer als eine axiale Abmessung der Spule
(32) ist.
5. Die Anordnung gemäß Anspruch 1, die ferner ein erstes Lager (56A oder 56B), das an
dem Wagen (24) befestigt ist, und ein zweites Lager (58), das an dem Wagen (24) an
einer Stelle befestigt ist, die von dem ersten Lagern (56A oder 56B) beabstandet ist,
aufweist, wobei das erste Lager (56A oder 56B) mit der ersten Führungsschiene (26)
Eingriff nimmt, um eine Bewegung des Wagens (24) entlang der ersten Führungsschiene
(26) zu erleichtern und das zweite Lager (58) mit der zweiten Führungsschiene (28)
Eingriff nimmt, um eine Bewegung des Wagens (24) entlang der zweiten Führungsschiene
(28) zu erleichtern.
6. Die Anordnung gemäß Anspruch 1, bei der:
die Spule (32) eine ringförmige Spule ist;
der Magnet (34) mindestens einen Teil der Spule (32) umgibt; und
die Anordnung ferner einen Ständer (46), der sich axial durch das Innere der Spule
(32) erstreckt, aufweist, wobei die erste Führungsschiene (26) an dem Ständer (46)
befestigt ist und sich axial durch das Innere der Spule (32) entlang des Ständers
(46) erstreckt, wobei die zweite Führungsschiene (28) radial entgegengesetzt zu der
ersten Führungsschiene (26) angeordnet ist.
7. Die Anordnung gemäß Anspruch 6, die ferner ein erstes, zweites und drittes Lager (56A,
56B und 58) aufweist, die an dem Wagen (24) befestigt sind, wobei das erste und das
zweite Lager (56A und 56B) mit der ersten Führungsschiene (26) an Stellen, die axial
voneinander beabstandet sind, Eingriff nehmen, und das dritte Lager (58) mit der zweiten
Führungsschiene (28) an einer axialen Stelle zwischen dem ersten und dem zweiten Lager
(56A und 56B) Eingriff nimmt.
8. Die Anordnung gemäß Anspruch 7, bei der das erste und das zweite Lager (56A und 56B)
um eine Entfernung beabstandet sind, der größer als eine axiale Abmessung der Spule
(32) ist.
1. Assemblage d'un chariot et d'un organe d'actionnement, l'assemblage comprenant:
• un moteur (30) comprenant une bobine (32) composée d'enroulements électriquement
conducteurs et d'un aimant (34) adjacent à la bobine (32), dans lequel le moteur (30)
présente une partie centrale définie par le périmètre intérieur de la bobine (32)
;
• un premier rail de guidage (26) s'étendant axialement à travers la partie centrale
du moteur (30) ;
• un second rail de guidage (28) placé parallèlement au premier rail de guidage (26)
et à l'extérieur de la partie centrale du moteur (30) ; et
• un chariot (24) couplé de manière opérationnelle au moteur (30) et supporté de manière
mobile par les rails de guidage.
2. Assemblage selon la revendication 1, comprenant en outre des paliers (56A ou 56B)
montés sur le chariot (24), les paliers (56A ou 56B) venant en prise avec le premier
rail de guidage (26) pour faciliter le déplacement du chariot (24) le long du premier
rail de guidage (26).
3. Assemblage selon la revendication 1, comprenant en outre les premiers paliers (56A)
montés sur le chariot (24) et les deuxièmes paliers (56B) montés sur le chariot (24)
sur un emplacement axialement à l'écart des premiers paliers (66A), les premiers et
deuxièmes paliers (56A et 56B) venant en prise avec le premier rail de guidage (26)
pour faciliter le déplacement du chariot (24) le long du premier rail de guidage (26).
4. Assemblage selon la revendication 3, dans lequel les premiers et deuxièmes paliers
(56A et 56B) sont espacés d'une distance supérieure à la dimension axiale de la bobine
(32).
5. Assemblage selon la revendication 1, comprenant en outre des premiers paliers (56A
ou 56B) montés sur le chariot (24) et des deuxièmes paliers (58) montés sur le chariot
(24) sur un emplacement à l'écart des premiers paliers (56A ou 56B), les premiers
paliers (56A ou 56B) venant en prise avec le premier rail de guidage (26) pour faciliter
le déplacement du chariot (24) le long du premier rail de guidage (26) et les deuxièmes
paliers (58) venant en prise avec le second rail de guidage (28) pour faciliter le
déplacement du chariot (24) le long du second rail de guidage (28).
6. Assemblage selon la revendication 1, dans lequel:
• la bobine (32) est une bobine annulaire ;
• l'aimant (34) entoure au moins une partie de la bobine (32) ; et
• l'assemblage comprend en outre un montant (46) s'étendant axialement à l'intérieur
de la bobine (32), le premier rail de guidage (26) étant fixé au montant (46) et s'étendant
axialement à l'intérieur de la bobine (32) le long du montant (46), le second rail
de guidage (28) étant disposé radialement à l'opposé du premier rail de guidage (26).
7. Assemblage selon la revendication 6, comprenant en outre des premiers, deuxièmes et
troisièmes paliers (56A, 56B et 58) montés sur le chariot (24), les premiers et deuxièmes
paliers (56A et 56B) venant en prise avec le premier rail de guidage (26) sur des
emplacements axialement espacés les uns des autres et les troisièmes paliers (58)
venant en prise avec le second rail de guidage (28) sur un emplacement axial entre
les premiers et seconds paliers (56A et 56B).
8. Assemblage selon la revendication 7, dans lequel les premiers et deuxièmes paliers
(56A et 56B) sont espacés d'une distance supérieure à une dimension axiale de la bobine
(32).