[0001] This invention relates to a method for modelling solid objects, particularly for
use in the simulation of fluid flow, to be used for example to simulate prototypes
before production. In a preferred embodiment the method is used in the design of articles
to be manufactured by injection molding, preferably from molten plastic materials.
[0002] The modelling of solid objects is employed in various fields. Such modelling is used,
for example, in the simulation of injection molding. In that field, it is widely recognized
that the filling and packing phases of injection molding have a significant effect
on the visual and mechanical properties of a molded object. Simulation is employed
to analyse proposed shapes and injection points, and thus the final quality of the
ultimate article. A requirement of any injection mold is that it can be filled with
molten polymer given the pressure limits of a real injection molding machine. Simulation
can provide information as to whether the mold can be filled and the fill pattern
that will be achieved. By using simulation, it is possible to determine optimum gate
locations and processing conditions. It is possible to predict the location of weld
lines and air traps. Economic benefit is derived from simulation because problems
can be predicted and solutions tested prior to the actual creation of the mold. This
eliminates costly re-working and decreases the time required to get an object into
production.
[0003] Simulation technology has been developed and generally uses finite element/finite
difference techniques to solve the governing equations of fluid flow and heat transfer.
In order to minimize the time required for analysis and hence the required computer
resources, the Hele-Shaw approximation is invoked to simplify the governing equations.
It has been found that this simplification provides sufficient accuracy for injection
molding but does create the need for specific modelling of the computational domain.
[0004] Injection molding is an excellent process for repetitively manufacturing large numbers
of objects or parts having complicated geometries. A characteristic of injection molded
components is that the thickness of the wall is generally a small fraction of the
overall length of the component. In view of the low thermal conductivity of plastics,
this physical characteristic is essential to achieve the rapid cycle times that make
the process so attractive.
[0005] The flow of melt in an injection mold is determined by the familiar conservation
laws of fluid mechanics. Solution of the equations in their full generality presents
several practical problems. Owing to the characteristically thin walls of molded components,
however, it is possible to make some reasonable assumptions that lead to a simplification
of the governing equations. These simplified equations describe what is called Hele-Shaw
flow and may be readily solved in complex geometries using an appropriate numerical
technique such as the finite element and/or finite difference method.
[0006] Injection molding simulation is now routinely regarded as a desirable aspect of plastic
part design. Similarly, improved computer aided drafting (CAD) technology has led
to the widespread use of surface and solid modelling. Associated advantages of this
are the ability to better visualize an object, to use numerical cutting, and the possibility
of achieving more concurrency in engineering design and manufacture. When using the
Hele-Shaw approximation, plastic CAE analysis still requires the use of a surface
model, representing the midplane of the real component, which is then meshed with
triangular or quadrilateral elements to which suitable thicknesses are ascribed. The
preparation of such a mesh can take a considerable amount of time, and requires substantial
user input; owing to the labour intensive nature of this step, model preparation requires
the greatest share of time when performing a molding simulation and makes this technique
time consuming. In addition, as model preparation is an interactive task, it has a
higher cost associated with it than simply running a computer program.
[0007] Dan Deitz, in "Optimizing injection-molded parts" (Mechanical Engineering,
118(10) (1996) 89-90), discusses an automated process for creating a midplane mesh representation
of a three-dimensional object. This approach is described as successful in most cases,
but in some instances the resulting midplane required improvement by manual manipulation.
[0008] This conventional technique for the simulation of three dimensional bodies is illustrated
in figures 1 to 3 of the accompanying drawings in which:
Figure 1 is a representative example of an article to be manufactured by injection
molding in the form of a T-shaped component;
Figure 2 is a midplane representation of the component of figure 1 that is meshed;
and
Figure 3 is a view of the major results from a conventional analysis showing the position
of the advancing melt at given times.
[0009] One solution to the above shortcomings is to avoid the use of the Hele-Shaw equations
and solve the governing equations in their full generality. This has inherent problems
owing to the thin walled nature of injection molded objects and parts. To perform
such an analysis, the region representing the mold cavity into which molten polymer
will be injected must be divided into small sub-domains called elements. Usually these
elements are of tetrahedral or hexahedral shape. This process of subdivision is called
meshing and the resultant network of tetrahedra or hexahedra the mesh.
[0010] EP 0 698 467 discloses such an approach, in which a three-dimensional model of a cavity where
fluid flows is divided into a plurality of small three-dimensional elements; the flow
conductance of the fluid at each element is determined as a small value when the element
is close to the cavity wall and as a large value when the element is far from the
cavity wall, and the pressure of the fluid at each element is determined based on
these flow conductances. This model is then used for analyzing a fluid flow process
such as injection molding.
[0011] Owing to the complicated shape of many injection molded objects and parts it is generally
not possible to automatically mesh the cavity with hexahedral elements. It is possible,
however, to mesh the domain automatically with tetrahedral elements. The thin walled
nature of injection molded objects and parts means that the plastic is subject to
a huge thermal gradient in the thickness direction of the component. This requires
that there be a reasonable number of elements through the thickness. Using existing
meshing technology, the result is a mesh consisting of hundreds of thousands or even
millions of elements. The high number of elements makes the problem intractable for
any but the fastest super computers. These are rarely found in industry, being extremely
costly to purchase and maintain. Thus, although three dimensional simulation provides
a solution that avoids the requirement of a midplane model, it is not as yet a practical
solution.
[0012] It is an object of the present invention, therefore, to provide a method for the
simulation of flow in a three dimensional object that can produce simulations substantially
automatically, without requiring the solution of the governing equations in their
full generality.
[0013] This object is achieved by a method according to claim 1.
[0014] It should be noted that, in the context of the invention, generally opposed surfaces
may be parallel, inclined to each other, meet at an acute angle or otherwise, and
need not be planar, provided that a reasonable thickness or thicknesses may be assigned
to the space between the surfaces.
[0015] Preferably said injection point is linked to all locations from which flow may emanate
from substantially the commencement of said flow analysis.
[0016] Preferably said injection point remains so linked at substantially all times in said
flow analysis subsequent to said linking.
[0017] Thus, although the injection point must be linked to all these locations at some
point in the flow analysis, and essentially continuously thereafter, the injection
point may remain unlinked initially. Although this may decrease the accuracy of the
final analysis adversely, it may nevertheless allow the analysis to yield useful results.
[0018] Preferably said injection is one of a plurality of injection points.
[0019] Preferably said synchronization of said flow fronts is checked periodically.
[0020] Preferably said flow fronts are synchronized if found not to be or no longer synchronized.
[0021] Preferably said checking is performed at each time step.
[0022] More complex parts require synchronization at each calculational time step.
[0023] Preferably said first and second generally opposed surfaces are one of a plurality
of pairs of generally opposed surfaces.
[0024] Thus, where the existing techniques utilize a single, midplane representation of
the object in which flow is to be modelled, and perform a simulation with this representation,
the method according to the present invention utilizes only the outer surfaces defining
the three dimensional object to create a computational domain. These correspond to
representations (in a preferred embodiment, meshed representations) of the domain
in which flow is to be simulated, and would comprise, for example, meshed representations
of the top and bottom surfaces of a part. Thus, in such an example the invention could
be said to utilize an outer skin mesh rather than a midplane mesh. Elements of the
two surfaces are matched, based on the ability to identify a thickness between such
elements. An analysis, substantially along conventional lines (by means, for example,
of the Hele-Shaw equations), is then performed of the flow in each of these domains
in which flow is to be simulated, but linked to ensure fidelity with the physical
reality being modelled.
[0025] Preferably any unmatched elements of said first and second surfaces, being elements
that could not be matched, are assigned thicknesses being the average of the thicknesses
of adjacent matched elements where such adjacent matched elements exist, or of adjacent
unmatched elements where such adjacent matched elements do not exist and said adjacent
unmatched elements have been assigned thicknesses.
[0026] Thus, eventually all matched and unmatched elements of the first and second surfaces
may be assigned thicknesses.
[0027] Preferably each element of an edge surface, being a surface between said first and
second surfaces, and adjacent to either of said first or second surface is assigned
a thickness proportional to the thickness of the element of said first or second surface
to which said element of said edge surface is adjacent.
[0028] Preferably each said element of an edge surface is assigned a thickness between 0.5
and 1.5 times said thickness of the element of said first or second surface to which
said element of said edge surface is adjacent.
[0029] Preferably each said element of an edge surface is assigned a thickness between 0.7
and 0.9 times said thickness of the element of said first or second surface to which
said element of said edge surface is adjacent.
[0030] Still more preferably each said element of an edge surface is assigned a thickness
0.75 times said thickness of the element of said first or second surface to which
said element of said edge surface is adjacent.
[0031] Preferably each element of an edge surface not adjacent to said first or second surface
is assigned a thickness being the average of the thicknesses of adjacent elements
of said edge surface that have been assigned thicknesses.
[0032] Assigning a thickness, therefore, to every element of both surfaces and of edge surfaces
ensures that the greatest accuracy will be achieved in the simulation.
[0033] Preferably flow is simulated at a rate directly proportional to a desired flow rate
for the object.
[0034] The desired flow rate will usually be a flow rate selected by a user based simply
on the volume of the object to be filled and the desired fill-time.
[0035] Preferably said rate is proportional to the ratio of computational domain volume
of said object to real volume of said object.
[0036] More preferably said rate is substantially equal to the ratio of said computational
domain volume to said real volume.
[0037] This approach may be used to compensate for the modification of the effective volume
of the object being modelled, owing to the use of two domains (for example, associated
with the top and bottom surfaces), rather than one meshed domain as in the midplane
approach. The computational domain volume is thus this effective volume used for the
purposes of modelling the object, which most preferably will be approximately double
the real volume.
[0038] Preferably the method is performed with first and second representations of said
first and second surfaces respectively comprising first and second meshes or lattices
respectively, wherein said elements are interstices of said first and second meshes
or lattices.
[0039] Preferably said elements are triangular or quadrilateral.
[0040] Preferably, when said elements are triangular, said elements are substantially equilateral.
[0041] Preferably said method includes creating said first and second representations.
[0042] In one embodiment the method includes creating improved representations of said first
and second surfaces, whereby said elements are elements of said improved representations
and said method is performed with said improved representations.
[0043] Preferably said first and second representations are, or are a part of, a representation
or representations for stereolithography of said object.
[0044] Thus, computer representations of the two surfaces may be provided as input to the
method, may be created by the method, or - if provided with representations of the
surfaces - the method may create improved representations. As described above, particularly
preferred representations include those with elements comprising equilateral triangles.
[0045] In one embodiment of the invention the method described above is performed by a computer
running a computer program encoding said method for simulating fluid flow.
[0046] Preferably said method optionally includes corrections for non-isothermal temperature
fields and/or non-Newtonian fluids.
[0047] Thus, known techniques for including the effects of non-isothermal temperature fields
and non-Newtonian fluids may be included so that more physically faithful simulations
may be performed, as well as faster simulations without these corrections when speed
is desirable, even at the expense of precision.
[0048] In an embodiment of the present invention said injection point is linked to all locations
on said first and second improved representations from which flow may emanate such
that resulting flow fronts along said first and second improved representations are
synchronized.
[0049] Preferably the first and second representations are, or are a part of, a representation
or representations for stereolithography of said object.
[0050] Preferably the first and second improved representations comprise small equilateral
triangular elements.
[0051] According to a further broad aspect of the invention there is provided a computer
provided with or running a computer program encoding the method for simulating fluid
flow described above.
[0052] In a further broad aspect of the invention there is provided a computer storage medium
provided with a computer program embodying the method for simulating fluid flow described
above.
[0053] According to an embodiment of the present invention there is provided a method for
simulating fluid flow within a three dimensional object having first and second generally
opposed surfaces including:
matching each element of said first surface with an element of said second surface
between which a reasonable thickness may be defined, wherein matched elements of said
first surface constitute a first set of matched elements and matched elements of said
second surface constitute a second set of matched elements,
specifying a fluid injection point,
performing a flow analysis using each set of said matched elements, and
synchronizing flow fronts resulting from said flow analysis along said first and second
surfaces.
[0054] Preferably said flow fronts are synchronized from substantially the commencement
of said flow analysis.
[0055] Alternatively said flow fronts are first synchronized after the commencement of said
flow analysis.
[0056] According to an embodiment of the present invention there is provided a method for
simulating fluid flow within a three dimensional object having first and second generally
opposed surfaces including:
matching each element of said first surface with an element of said second surface
between which a reasonable thickness may be defined, wherein matched elements of said
first surface constitute a first set of matched elements and matched elements of said
second surface constitute a second set of matched elements,
specifying a fluid injection point,
performing a flow analysis using said first set of matched elements,
adapting said flow analysis to said second set of matched elements, and
synchronizing flow fronts resulting from said flow analysis and said adaptation of
said flow analysis along said first and second surfaces.
[0057] Thus, it is possible in some cases to perform the method using only one of the sets
of elements, and mapping the result onto the other set, and performing minor adaptation
of the analysis to allow for any differences between the two surfaces.
[0058] Preferably the method is performed with first and second representations of said
first and second surfaces respectively comprising first and second meshes or lattices
respectively, wherein said elements are interstices of said first and second meshes
or lattices.
[0059] Preferably the elements are triangular, and most preferably equilateral triangles.
[0060] Preferably the elements are quadrilateral.
[0061] Preferably the method includes creating said first and second representations, and
more preferably creating improved representations, either from the original surfaces
or from the first and second representations, and performing the method with elements
of the representations or improved representations.
[0062] In all the above methods according to the present invention aspects it is preferred
that the synchronization comprises matching pressure and temperature.
[0063] In an embodiment of the present invention the method includes specifying a plurality
of fluid injection points, wherein said injection points are linked to all locations
on said first and second surfaces from which flow may emanate such that resulting
flow fronts along said first and second surfaces have matched flow rates.
[0064] A preferred embodiment of the invention will be described, by way of example, with
reference to the accompanying drawings, in which:
Figure 4 is an example of a stereolithography mesh of the T-shaped object of figure
1;
Figure 5a shows an initial mesh used in a remeshing method according to the present
invention;
Figures 5b-f show the mesh of figure 5a progressively remeshed according to the remeshing
method;
Figure 6 shows the mesh of figure 4, remeshed according to the preferred embodiment
of the present invention;
Figure 7a is a view of a mesh produced by conventional modelling techniques for a
flat plate;
Figure 7b is a view of a corresponding mesh produced for a flat plate according to
a preferred embodiment of the present invention;
Figure 8 illustrates surface matching for a flat plate according to the preferred
embodiment;
Figure 9 is a view similar to figure 8 illustrating in cross-section the edges, matched
surfaces and unmatched surfaces of another T-shaped object according to the preferred
embodiment;
Figure 10 is a cross-sectional view illustrating the edges, matched surfaces, matched
tapered surfaces, unmatched surfaces and unmatched edges of yet another T-shaped object
according to the preferred embodiment;
Figure 11 is a view of a simple object showing injection points;
Figure 12 is a view of an object comprising intersecting plates with a user selected
injection point according to the preferred embodiment;
Figure 13 is a enlarged view of the object of figure 12 showing the injection points
required to allow flow to emanate correctly from the selected point according to the
preferred embodiment;
Figure 14 is a cross-section of a plate, with a flow front advancing from the left
and leading a little on the top surface according to the preferred embodiment;
Figure 15 illustrates in a cross-sectional view the synchronization of flow in a ribbed
plate, with the flow splitting and also filling a vertical rib according to the preferred
embodiment;
Figure 16 illustrates in a cross-sectional view the assignment of identical pressures
at nodes to synchronize flow fronts at a rib according to the preferred embodiment;
and
Figure 17 is a view similar to figure 3 generated according to the preferred embodiment
of the present invention.
[0065] A method for simulating fluid flow within a three dimensional object according to
the present invention involves three main steps:
1) Preparation of geometry,
2) Selection of injection points, and
3) Analysis.
Before these steps are effected, however, the input for the simulation is prepared.
Mesh generators for producing finite element meshes are generally an expensive addition
to the base CAD system. Consequently many CAD installations have no finite element
analysis (FEA) mesh generation capability. In order to facilitate the implementation
of the invention, the method has been designed to avoid the need for a mesh generator.
This is done by using the type of mesh available for stereolithography. Stereolithography,
a prototyping technology that is widely employed in industry, is used to produce prototype
components for assembly or evaluation. It requires a stereolithography apparatus and
takes as input a computer file known as a "SLA" file. The ability to output SLA files
is common in CAD systems. However, the type of triangulation created is not good enough
for FEA. Characteristic of the SLA file is the inclusion of several very long, narrow
triangles of high aspect ratio as shown in figure 4.
[0066] A method in accordance with the present invention includes, therefore, a remeshing
algorithm (or remesher) that uses as input the triangles from a stereolithography
SLA (or similar) file and remeshes to produce a mesh that may be used in analysis.
[0067] There are several steps involved in the input of a stereolithography mesh and its
refinement into elements for analysis. These steps are:
- Input of mesh,
- Checking of mesh,
- Classification of mesh into surfaces, and
- Remeshing.
Each of these is described below.
Input of Mesh
[0068] In the preferred embodiment, the input mesh is of the form used for stereolithography.
Alternatively, however, the input could be IGES surfaces (which would then be meshed
internally), a surface mesh of quadrilaterals or a mix of quadrilaterals and triangles,
tetrahedral or hexahedral meshes.
Checking of mesh
[0069] The input mesh is checked to ensure that it is closed and orientable. The mesh is
consistently oriented so that a unit normal to each element points outward from the
internal volume defining the solid region that represents the object or part being
modelled. The volume of this region and the surface area of the mesh are calculated
and stored. The number of parts defined by the input mesh is also determined.
Classification of mesh into surfaces
[0070] The following properties for each element in the mesh are noted or calculated, and
stored:
- Area,
- Normal at the element centroid,
- Edge lengths of the element,
- Internal angles at the vertices of the elements,
- Adjacent elements (the elements attached to each side of the element under consideration),
and
- Bending angle between adjacent elements (the angle between normals of adjacent elements).
Nodal properties are then noted, calculated and stored. These are:
- Measure of minimum curvature (calculated by looking at the elements attached to a
node and noting the angle between each adjacent pair of elements, whereby the measure
of minimum curvature is then the smallest such angle between attached pairs of elements),
- Connecting elements (the set of elements connected to the node), and
- Number of edges connected to the node.
Surface edges are then calculated using a value of bending angle to group elements
into surfaces. Surfaces so formed are then classified into
- planar surfaces, and
- low curvature surfaces.
Further classification is then done to produce high curvature surfaces and edges.
The following properties of edges are noted or calculated and stored:
- Length,
- Bending angle,
- Direction of bending (in or out), and
- Adjacent Elements.
Surface loops are then created. These are defined to be the oriented edges of surfaces.
It should be noted that a surface with a hole in it will have two associated loops
- one for the outer edges and one describing the interior hole. Loop properties are
then noted or calculated and stored:
- Length, and
- Edges connected to loop.
The following surface properties are noted or calculated and stored:
- Perimeter,
- Area,
- Nodes in surface,
- Elements in surface,
- Edges, and
- Minimum measure of curvature.
Remeshing
[0071] With the surfaces classified, the mesh associated with each surface is refined using
a bisection algorithm which bisects the longest side of a triangle and creates extra
elements. This is illustrated in figures 5a-f. Figure 5a shows the initial mesh. The
mesh is refined by defining a node at the mid point of the longest element side and
extending lines to vertices to define extra triangles. In figures 5b to 5f, the midpoint
of the longest side (denoted by o) and the dotted lines extending from this point
define the new elements. Remeshing continues until the elements satisfy a criterion
on size.
[0072] The result of the remeshing algorithm when applied to the mesh shown in figure 4
is shown in figure 6. In this regard the ideal triangle is equilateral: it may be
seen that the triangles in figure 6 are far more uniform and closer to this ideal.
[0073] The method will thus accept as input stereolithography files (usually generated with
a ".st1" filename extension) and other files that are similar such as "render" files
(produced by "Pro-Engineer" with a ".slp" extension).
[0074] In practice any file format that describes a mesh (of, for example, a lattice or
quadrilaterals) covering the outer surfaces of the solid region may be used as input
to the invention. The remesher is always used to improve the mesh quality and produce
the triangular mesh for subsequent processing.
[0075] The first step is then the preparation of the geometry, in which the geometry of
the three dimensional CAD solid model is processed by conventional techniques to provide
a surface mesh covering the outer surfaces of a solid body, rather than a midplane
mesh as required by the conventional simulation approach. This distinction is depicted
in figures 7a and 7b. Figure 7a shows the midplane mesh for a simple plate required
by the conventional technique, whereas figure 7b shows the mesh employed according
to the present invention for the same object. Further, the flow front must be synchronized
on both sides of the surface in which the material flows. If material is injected
at the centre of the plate, then, in the conventional case, the material flows to
the boundary of the part or object and stops without any difficulty. For the surface
mesh on the solid model (figure 7b) the material will flow to the outer edge, across
the edge and then under the top surface. This is clearly not indicative of the physical
phenomenon of flow in a plate and so, according to the invention, there are imposed
some constraints on the flow when using the surface mesh. These constraints are that
the injection point must link to all surfaces from which flow will emanate and the
flow front must be synchronized along the top and bottom meshes of the surface mesh.
Preferably this link is established from the commencement of the flow analysis, but
a successful (if somewhat less accurate) analysis of the flow can still be performed
is this linking commences subsequently. To perform these tasks the surface mesh must
be categorized into surfaces which are then further classified to facilitate injection
node selection and synchronization. Thus, according to the present invention, the
surface mesh is then grouped into individual surfaces and classified. The categories
of surfaces are:
- Matched,
- Unmatched, and
- Edges.
Matched surfaces are defined to be those that have a relationship with another surface
such that a notion of thickness between them can be sensibly defined. Figure 8 illustrates
this idea. Surfaces abcd and efgh may clearly be associated so that the thickness
t between them is defined. Surfaces abfe, bcgf, cdhg and daeh are edge surfaces and
unmatched.
[0076] Figure 9 further clarifies these concepts. This figure shows a cross-section through
a filleted rib. Here ab, cd and gh are on edge surfaces. Lines aj and ed are matched
to bc, fg and hi are matched and the curved sections ij and ef are unmatched. It should
be noted that it is not possible to sensibly define a thickness of unmatched surfaces
in the manner described above. As a final example, figure 10 illustrates a tapered
rib cross-section. Here ab, cd and gh are edges as in figure 9. Lines aj and ed are
matched to line bc, and the curved lines ef and ij are unmatched as in figure 9. However
fg and hi are still considered matched despite the taper. Clearly, if the taper is
extreme it is possible that the surfaces forming the tapered ribs may not be matched.
[0077] When surfaces have been classified it is possible to assign to elements on matched
surfaces a thickness equal to the distance between the surfaces. Elements on edge
surfaces are given the thickness of the matched surfaces to which they are attached.
Finally elements on unmatched surfaces are given the average thickness of surrounding
elements on matched surfaces.
[0078] According to the present invention, the mesh on each side of the object is analyzed.
A key aspect in this is obtaining a similar flow front on each side of the matched
surfaces. As the entry point for flow is the injection node and is selected by the
user, the method ensures that, regardless of where the user chooses to inject plastic,
all matched surfaces near the point are tied to the injection node. "Tied" implies
that the same pressure and temperature of melt at the injection node is given to all
other tied nodes.
[0079] Figure 11 shows a cross-section of a rectangular plate. Point A is where the user
chooses to inject plastic, point AA is the corresponding point on the other side of
the surface. Point AA is automatically determined in accordance with the invention
using the information from the classification of surfaces described above. Injection
at this point ensures that the flow is matched on top and bottom surfaces. Similarly,
point B is the point chosen by the user and BB is the corresponding point determined
by the method in accordance with the invention to ensure that flow is matched along
top and bottom surfaces.
[0080] The selection of injection node(s) can be quite complex. This is illustrated in figure
12, which shows an object composed of intersecting plates. The small arrow near the
point of intersection of the plates indicates the user selected injection point. Figure
13 is an enlarged view of the injection area and shows the actual injection points
required to allow the flow to emanate correctly from the selected point. In this case
eight injection points are required one of which is supplied by the user and the other
seven are determined by the invention.
[0081] This method identifies which points need to be linked to the selected injection point
with the concept of matching. For a given injection point specified by the user, a
set consisting of all surfaces which are matched to all surfaces connected to the
injection point is defined. The following steps are then performed:
1. For each surface in this set, the point closest to the selected injection point
is noted. These closest points form a set of points that are potentially to be linked
to the user selected injection point.
2. Each member of the set of potential injection points is checked to see if it is
already an injection point specified by the user. If it has already been so determined,
it is omitted from the set.
3. For each potential injection point remaining, a set consisting of all surfaces
which are matched to all surfaces connected to the potential injection point is defined.
[0082] These steps are repeated until the set of potential points is unchanged. The set
then forms the set of points to be linked to the user specified injection point.
[0083] This procedure may be readily understood for the simple geometry of two crossed plates,
for which the user specifies injection at the intersection of the plates. In the event
that the surfaces connected to the specified injection point(s) are not matched to
any other surfaces, no attempt is made to link other points to the injection point(s).
Instead, flow is allowed to emanate until it reaches points attached to surfaces that
are matched to opposing surfaces. The flow fronts are then synchronised on the opposing
surfaces by assigning links between points on the opposing surfaces in a manner similar
to that described above for linking points to the injection point.
[0084] Analysis uses a Hele-Shaw type solver. The injection flow rate is approximately double
that for the volume of the object as each element in the surface mesh has a thickness
equal to the gap thickness and so the mesh volume is approximately double that of
the object. The time step for flow front advancement is determined by the geometric
connectivity of the control volumes attached to each node.
[0085] The solver has the ability to synchronize flow on matched surfaces during analysis.
Figure 14 shows a cross-section of a plate where it is assumed that the flow front
is advancing from the left and is leading a little on the top surface. By definition
each node may be empty, partially filled or filled. On each time step, whether all
the nodes belonging to an element are filled is checked. The instant this occurs the
element is defined to be the current last element to fill and a line is drawn from
its centroid to its matched element (the matched element is known from the surface
classification described above) defining the check point. This "check line" is indicated
in figure 14. The nearest node to the check point is then assigned the same pressure
as the last node to fill, as indicated in figure 14. Flow synchronization is done
for all matched surfaces and all elements near the flow front (on top and bottom surfaces)
are checked at each time step.
[0086] Synchronization is not performed on unmatched surfaces.
[0087] An example highlighting the role of synchronization is shown in figure 15, which
shows the cross-section of a ribbed plate. The flow will split physically and fill
the vertical rib as well as continuing to the right. Owing to the use of the surface
mesh it is necessary to impose synchronization or the flow will continue up through
node F to the top of the rib and then down to E and C. This is performed by using
matching. Since the element comprising nodes D and F and the element comprising nodes
C and E will be matched (as they are associated with matched surfaces) it is possible
to assign the same pressures at nodes to synchronize the fronts. This is illustrated
in Figure 16. Here a line from the centroid of the element comprising nodes D and
F is constructed to its matched element (comprising nodes C and E) to define the check
point. As the nearest node to the check point is C, it is given the same pressure
as node D for all subsequent time. Flow now emanates from node C as shown and so the
flow goes up the rib on both sides as required. When establishing links for synchronization,
links are only made to empty nodes to which are attached only empty nodes.
[0088] A sample result of the analysis according to the present invention is shown in figure
17. This figure corresponds to figure 3, which shows the results of the comparable,
conventional analysis of the same solid model shown in figure 1. As the present invention
uses a surface mesh rather than a midplane mesh, the results are displayed on the
solid model (figure 17) rather than on the midplane representation as in conventional
analysis (figure 3). Apart from being more natural for the operator, the display is
visually more meaningful.
[0089] Fundamental quantities calculated by the invention, therefore, include:
- the position of the melt front at any time (known as "filling contours"),
- the pressure at the injection node and the pressure distribution throughout the plastic
at any time during filling or packing phases (known as a "pressure distribution"),
and
- the temperature of the plastic melt at any point within the part at any time during
filling or packing phases (known as a "temperature distribution").
These may be displayed directly or processed to provide derived information to the
user of the program, such as distributions of shear rate, shear stress, velocity,
viscosity, direction of flow and orientation of reinforcing material. On the basis
of this derived information and the fundamental calculated quantity data, changes
to the component geometry, position of injection locations (gates), processing conditions
used by the injection molding machine or material for molding may be evaluated for
their efficacy in improving the quality or manufacturability of the part. This is
generally an iterative process in which an analysis is performed, results are considered
and changes made to bring about an improvement. Another analysis is then performed
to ensure that the changes have indeed improved the results. Frequently changes to
the part geometry are revealed. These are made in the CAD system and the revised model
is subjected to further analysis. It is this aspect which is assisted by the invention
as the need for the designer to recreate a new model for analysis every time a change
is made is removed.
[0090] Thus, an increase in the speed of evaluating of proposed part shapes is achieved.
[0091] Modifications within the scope of the invention may readily be effected by persons
skilled in the art. For example, linking may be performed in alternative methods such
as, where multiple injection points are selected by a user, assigning the same flow
rate to the linked nodes. It is to be understood, therefore, that this invention is
not limited to the particular embodiments described by way of example hereinabove.
1. A computer-implemented method for producing simulations of fluid flow within a three
dimensional object, the method comprising:
specifying first and second generally opposed surfaces of said object,
matching each elements of said first surface with an element of said second surfaces
between which a reasonable thickness may be defined, wherein matched elements of said
first surface constitute a first set of matched elements and matched elements of said
second surface constitute a second set of matched elements,
specifying a fluid injection point,
performing a flow analysis using each set of said matched elements, and
synchronizing flow fronts resulting from said flow analysis along said first and second
surfaces,
whereby the resulting flow fronts along said first and second surfaces are synchronized.
2. A method as claimed in claim 1, further comprising forming first and second representations
of said first and second surfaces, respectively, wherein said first and second representations
comprise first and second meshes or lattices respectively, and wherein said elements
are interstices of said first and second meshes or lattices.
3. A method as claimed in either claim 1 or 2 wherein each element of each of said matched
pairs of elements is assigned respectively said thickness.
4. A method as claimed in any one of claims 1 to 3 wherein said flow fronts are first
synchronized after the commencement of said flow analysis.
5. A method as claimed in any one of the preceding claims wherein said injection point
remains linked to locations on said first and second surfaces at substantially all
times in said flow analysis subsequent to being first so linked.
6. A method as claimed in claim 1, wherein performing said flow analysis using each set
of said matched elements comprises performing a flow analysis using said first set
of matched elements and adapting said flow analysis to said second set of matched
elements.
7. A method as claimed in claim 1 wherein performing said flow analysis comprises matching
pressure or matching pressure and temperature.
8. A method as claimed in claim 1 wherein said injection point is linked to all locations
on said first and second surfaces from which flow may emanate.
9. A method as claimed in claim 8 wherein said injection point is first linked to all
said locations from substantially the commencement of said flow analysis.
10. A method as claimed in either claim 8 or 9 wherein said injection point remains linked
to all said locations at substantially all times in said flow analysis subsequent
to being first so linked.
11. A method as claimed in any one of the preceding claims wherein said injection point
is one of a plurality of injection points.
12. A method as claimed in any one of the preceding claims wherein synchronization of
said flow fronts is checked periodically.
13. A method as claimed in claim 12 wherein said checking is performed at each time step.
14. A method as claimed in any one of the preceding claims wherein said flow fronts are
synchronized if found not to be or no longer to be synchronized.
15. A method as claimed in any one of the preceding claims wherein said first and second
generally opposed surfaces are one of a plurality of pairs of generally opposed surfaces.
16. A method as claimed in any one of the preceding claims wherein any unmatched elements
of said first and second surfaces, being elements that could not be matched, are assigned
thicknesses being the average of the thicknesses of adjacent matched elements where
such adjacent matched elements exist, or of adjacent unmatched elements where such
adjacent matched elements do not exist and said adjacent unmatched elements have been
assigned thicknesses.
17. A method as claimed in claim 16 wherein each element of an edge surface, being a surface
between said first and second surfaces, and adjacent to either of said first or second
surface is assigned a thickness proportional to the thickness of the element of said
first or second surface to which said element of said edge surface is adjacent.
18. A method as claimed in claim 17 wherein each said element of an edge surface is assigned
a thickness between 0.5 and 1.5 times said thickness of the element of said first
or second surface to which said element of said edge surface is adjacent.
19. A method as claimed in claim 18 wherein each said element of an edge surface is assigned
a thickness between 0.7 and 0.9 times said thickness of the element of said first
or second surface to which said element of said edge surface is adjacent.
20. A method as claimed in claim 17 wherein each element of an edge surface not adjacent
to said first or second surface is assigned a thickness being the average of the thicknesses
of adjacent elements of said edge surface that have been assigned thicknesses.
21. A method as claimed in any one of the preceding claims wherein flow is simulated at
a rate directly proportional to a desired flow rate for the object.
22. A method as claimed in claim 21 wherein said rate is proportional to the ratio of
computational domain volume of said object to real volume of said object.
23. A method as claimed in claim 22 wherein said rate is substantially equal to the ratio
of computational domain volume of said object to real volume of said object.
24. A method as claimed in any one of the preceding claims wherein said method is performed
with first and second representations of said first and second surfaces respectively
comprising first and second meshes or lattices respectively, wherein said elements
are interstices of said first and second meshes or lattices.
25. A method as claimed in claim 24 wherein said method includes creating said first and
second representations.
26. A method as claimed in either claim 24 or 25 wherein said method includes creating
improved representations of said first and second surfaces, whereby said elements
are elements of said improved representations and said method is performed with said
improved representations.
27. A method as claimed in any one of claims 24 to 26 wherein said first and second representations
are, or are a part of, a representation or representations for stereolithography of
said object.
28. A method as claimed in any one of the preceding claims wherein said elements are triangular
or quadrilateral.
29. A method as claimed in any one of the preceding claims wherein said method includes
corrections for non-isothermal temperature fields and/or non-Newtonian fluids.
30. A method as claimed in claim 1, comprising:
providing or creating first and second representations of said first and second surfaces
respectively;
creating first and second improved representations from said first and second representations
respectively;
performing said method with said first and second improved representations of said
respective surfaces, whereby each element of said first surface comprises a respective
element of said first improved representation and each element of said second surface
comprises a respective element of said second improved representation, so that matching
each element of said first surface with an element of said second surface comprises
matching each element of said first improved representation with an element of said
second improved representation, said first set of matched elements comprise matched
elements of said first improved representation, said second set of matched elements
comprise matched elements of said first improved representation and said injection
point is linked to all locations on said first and second improved representations
from which flow may emanate such that resulting flow fronts along said first and second
improved representations are synchronized.
31. A method as claimed in claim 30, wherein said first and second representations are,
or are a part of, a representation or representations for stereolithography of said
object.
32. A method of manufacturing an object having first and second generally opposed surfaces,
including simulating fluid flow within said object according to the method of any
one of the preceding claims.
33. A computer program product stored on a computer readable medium adapted for causing
a computer to perform the steps of the method of any one of claims 1 to 32.
34. A computer readable medium, having a program recorded thereon, where the program is
to make a computer execute a method defined in any one of claims 1 to 32.
1. Ein computerimplementiertes Verfahren zum Erzeugen von Simulationen eines Fluidflusses
in einem dreidimensionalen Objekt, wobei das Verfahren umfasst:
Festlegen einer ersten und einer zweiten Oberfläche des Objekts, die einander allgemein
gegenüberliegen,
Abstimmen jedes Elements der ersten Oberfläche mit einem Element der zweiten Oberfläche,
zwischen denen eine sinnvolle Dicke definiert werden kann, wobei abgestimmte Elemente
der ersten Oberfläche einen ersten Satz abgestimmter Elemente konstituieren und abgestimmte
Elemente der zweiten Oberfläche einen zweiten Satz abgestimmter Elemente konstituieren,
Festlegen eines Fluid-Einspritzpunkts,
Durchführen einer Flussanalyse unter Verwendung jedes Satzes abgestimmter Elemente,
und
Synchronisieren von Flussfronten, die sich aus der Flussanalyse entlang der ersten
und der zweiten Oberfläche ergeben,
wodurch die sich ergebenden Flussfronten entlang der ersten und der zweiten Oberfläche
synchronisiert werden.
2. Ein Verfahren gemäß Anspruch 1, das ferner ein Bilden einer ersten und einer zweiten
Darstellung der ersten beziehungsweise der zweiten Oberfläche umfasst, wobei die erste
und die zweite Darstellung ein erstes beziehungsweise ein zweites Netz oder Gitter
umfassen und wobei die Elemente Zwischenräume des ersten und des zweiten Netzes oder
Gitters sind.
3. Ein Verfahren gemäß Anspruch 1 oder 2, bei dem jedem Element eines jeden der abgestimmten
Paare von Elementen jeweils die Dicke zugewiesen wird.
4. Ein Verfahren gemäß einem der Ansprüche 1 bis 3, bei dem die Flussfronten nach dem
Beginn der Flussanalyse zum ersten Mal synchronisiert werden.
5. Ein Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem der Einspritzpunkt
zu im Wesentlichen jedem Zeitpunkt in der Flussanalyse mit Stellen auf der ersten
und der zweiten Oberfläche verbunden bleibt, nachdem er zum ersten Mal so verbunden
wurde.
6. Ein Verfahren gemäß Anspruch 1, bei dem das Durchführen der Flussanalyse unter Verwendungjedes
Satzes der abgestimmten Elemente ein Durchführen einer Flussanalyse unter Verwendung
des ersten Satzes von abgestimmten Elementen und ein Anpassen der Flussanalyse an
den zweiten Satz von abgestimmten Elementen umfasst.
7. Ein Verfahren gemäß Anspruch 1, bei dem das Durchführen der Flussanalyse ein Abstimmen
des Druckes oder ein Abstimmen des Druckes und der Temperatur umfasst.
8. Ein Verfahren gemäß Anspruch 1, bei dem der Einspritzpunkt mit allen Stellen auf der
ersten und der zweiten Oberfläche, von denen ein Fluss ausgehen kann, verbunden wird.
9. Ein Verfahren gemäß Anspruch 8, bei dem der Einspritzpunkt im Wesentlichen vom Beginn
der Flussanalyse an mit allen besagten Stellen verbunden wird.
10. Ein Verfahren gemäß Anspruch 8 oder 9, bei dem der Einspritzpunkt zu im Wesentlichen
jedem Zeitpunkt in der Flussanalyse mit allen besagten Stellen verbunden bleibt, nachdem
er zum ersten Mal so verbunden wurde.
11. Ein Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem der Einspritzpunkt
einer von einer Mehrzahl von Einspritzpunkten ist.
12. Ein Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem eine Synchronisierung
der Flussfronten regelmäßig geprüft wird.
13. Ein Verfahren gemäß Anspruch 12, bei dem das Prüfen bei jedem Zeitschritt durchgeführt
wird.
14. Ein Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem die Flussfronten synchronisiert
werden, wenn festgestellt wird, dass sie nicht oder nicht mehr synchronisiert sind.
15. Ein Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem die erste und die
zweite Oberfläche, die einander allgemein gegenüberliegen, eines von einer Mehrzahl
von Paaren von allgemein gegenüberliegenden Oberflächen sind.
16. Ein Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem jeglichen nichtabgestimmten
Elementen der ersten und der zweiten Oberfläche, da sie Elemente sind, die nicht abgestimmt
werden konnten, Dicken zugewiesen werden, die der Durchschnitt der Dicken benachbarter
abgestimmter Elemente, wo derartige benachbarte abgestimmte Elemente existieren, sind,
oder Dicken von benachbarten nichtabgestimmten Elementen zugewiesen werden, wo derartige
benachbarte abgestimmte Elemente nicht existieren und den benachbarten nichtabgestimmten
Elementen Dicken zugewiesen wurden.
17. Ein Verfahren gemäß Anspruch 16, bei dem jedem Element einer Kantenoberfläche, die
eine Oberfläche zwischen der ersten und der zweiten Oberfläche ist und entweder zu
der ersten oder der zweiten Oberfläche benachbart ist, eine Dicke zugewiesen wird,
die proportional zu der Dicke des Elements der ersten oder der zweiten Oberfläche
ist, zu dem das Element der Kantenoberfläche benachbart ist.
18. Ein Verfahren gemäß Anspruch 17, bei dem jedem besagten Element einer Kantenoberfläche
eine Dicke zugewiesen wird, die zwischen dem 0,5-fachen und dem 1,5-fachen der Dicke
des Elements der ersten oder der zweiten Oberfläche, zu dem das Element der Kantenoberfläche
benachbart ist, beträgt.
19. Ein Verfahren gemäß Anspruch 18, bei dem jedem besagten Element einer Kantenoberfläche
eine Dicke zugewiesen wird, die zwischen dem 0,7-fachen und dem 0,9-fachen der Dicke
des Elements der ersten oder der zweiten Oberfläche, zu dem das Element der Kantenoberfläche
benachbart ist, beträgt.
20. Ein Verfahren gemäß Anspruch 17, bei dem jedem Element einer Kantenoberfläche, das
nicht zu der ersten oder der zweiten Oberfläche benachbart ist, eine Dicke zugewiesen
wird, die die durchschnittliche Dicke benachbarter Elemente der Kantenoberfläche,
denen Dicken zugewiesen wurden, beträgt.
21. Ein Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem ein Fluss bei einer
Rate simuliert wird, die direkt proportional zu einer gewünschten Flussrate für das
Objekt ist.
22. Ein Verfahren gemäß Anspruch 21, bei dem die Rate proportional zu dem Verhältnis des
Rechenbereichsvolumens des Objekts zu dem echten Volumen des Objekts ist.
23. Ein Verfahren gemäß Anspruch 22, bei dem die Rate im Wesentlichen gleich dem Verhältnis
des Rechenbereichsvolumens des Objekts zu dem echten Volumen des Objekts ist.
24. Ein Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Verfahren mit einer
ersten und einer zweiten Darstellung der ersten beziehungsweise der zweiten Oberfläche
durchgeführt wird, die eine erstes beziehungsweise ein zweites Netz oder Gitter umfassen,
wobei die Elemente Zwischenräume des ersten und des zweiten Netzes oder Gitters sind.
25. Ein Verfahren gemäß Anspruch 24, wobei das Verfahren ein Erzeugen der ersten und der
zweiten Darstellung umfasst.
26. Ein Verfahren gemäß Anspruch 24 oder 25, wobei das Verfahren ein Erzeugen verbesserter
Darstellungen der ersten und zweiten Oberflächen umfasst, wodurch die Elemente Elemente
der verbesserten Darstellungen sind und das Verfahren mit den verbesserten Darstellungen
durchgeführt wird.
27. Ein Verfahren gemäß einem der Ansprüche 24 bis 26, bei dem die erste und die zweite
Darstellung eine Darstellung oder Darstellungen für eine Stereolithographie des Objekts
sind oder ein Teil derselben sind.
28. Ein Verfahren gemäß einem der vorhergehenden Ansprüche, bei dem die Elemente dreieckig
oder viereckig sind.
29. Ein Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Verfahren Korrekturen
für nicht-isotherme Temperaturfelder und/oder nicht-Newtonsche Fluide umfasst.
30. Ein Verfahren gemäß Anspruch 1, das folgende Schritte umfasst:
Liefern oder Erzeugen einer ersten und einer zweiten Darstellung der ersten beziehungsweise
der zweiten Oberfläche;
Erzeugen einer ersten und einer zweiten verbesserten Darstellung aus der ersten beziehungsweise
der zweiten Darstellung;
Durchführen des Verfahrens mit der ersten und der zweiten verbesserten Darstellung
der jeweiligen Oberflächen, wodurch jedes Element der ersten Oberfläche ein jeweiliges
Element der ersten verbesserten Darstellung umfasst und jedes Element der zweiten
Oberfläche ein jeweiliges Element der zweiten verbesserten Darstellung umfasst, so
dass ein Abstimmen jedes Elements der ersten Oberfläche mit einem Element der zweiten
Oberfläche ein Abstimmen jedes Elements der ersten verbesserten Darstellung mit einem
Element der zweiten verbesserten Darstellung umfasst, wobei der erste Satz von abgestimmten
Elementen abgestimmte Elemente der ersten verbesserten Darstellung umfasst, wobei
der zweite Satz abgestimmter Elemente abgestimmte Elemente der ersten verbesserten
Darstellung umfasst und der Einspritzpunkt mit allen Stellen auf der ersten und der
zweiten verbesserten Darstellung verbunden wird, von denen ein Fluss ausgehen kann,
so dass sich ergebende Flussfronten entlang der ersten und der zweiten verbesserten
Darstellung synchronisiert werden.
31. Ein Verfahren gemäß Anspruch 30, bei dem die erste und die zweite Darstellung eine
Darstellung oder Darstellungen für eine Stereolithographie des Objekts sind oder ein
Teil derselben sind.
32. Ein Verfahren zum Herstellen eines Objekts, das eine erste und eine zweite Oberfläche
aufweist, die einander allgemein gegenüberliegen, einschließlich eines Simulierens
eines Fluidflusses in dem Objekt gemäß dem Verfahren eines der vorhergehenden Ansprüche.
33. Ein Computerprogrammprodukt, das auf einem computerlesbaren Medium gespeichert ist,
das ausgelegt ist, einen Computer zu veranlassen, die Schritte des Verfahrens gemäß
einem der Ansprüche 1 bis 32 durchzuführen.
34. Ein computerlesbares Medium, auf dem ein Programm aufgezeichnet ist, wobei das Programm
darin besteht, einen Computer zu veranlassen, ein Verfahren auszuführen, das in einem
der Ansprüche 1 bis 32 definiert ist.
1. Méthode implémentée par ordinateur en vue de la production de simulations d'écoulement
de fluide à l'intérieur d'un objet à trois dimensions, la méthode comprenant :
la spécification d'une première et d'une seconde surfaces généralement opposées dudit
objet,
la correspondance de chaque élément de ladite première surface avec un élément de
ladite seconde surface entre lesquelles une épaisseur raisonnable peut être définie,
dans laquelle les éléments correspondus de ladite première surface constituent un
premier jeu d'éléments correspondus et les éléments correspondus de ladite seconde
surface constituent un second jeu d'éléments correspondus
la spécification d'un point d'injection de fluide,
la réalisation d'une analyse d'écoulement utilisant chaque jeu desdits éléments correspondus,
et
la synchronisation des fronts de fluide résultant de ladite analyse de fluide le long
desdites première et seconde surfaces,
où les fronts d'écoulement résultant le long desdites première et secondes surfaces
sont synchronisés.
2. Méthode selon la revendication 1, comprenant par ailleurs respectivement la formation
de première et secondes représentations desdites première et seconde surface, dans
laquelle lesdites première et seconde représentations comprennent respectivement des
première et seconde mailles ou réseaux, et dans lesquelles lesdits éléments sont des
interstices des première et seconde mailles ou réseaux.
3. Méthode telle que revendiquée soit dans la revendication 1, soit dans la revendication
2, dans laquelle chaque élément de chacune desdites paires d'éléments correspondus
est assigné respectivement à ladite épaisseur.
4. Méthode telle que revendiquée dans une quelconque des revendications 1 à 3, dans laquelle
lesdits fronts d'écoulement sont synchronisés en premier après le commencement de
ladite analyse d'écoulement.
5. Méthode telle que revendiquée dans une quelconque des revendications précédentes,
dans laquelle ledit point d'injection demeure relié à des emplacements sur lesdites
première et seconde surfaces à principalement tous moments dans ladite analyse d'écoulement
de fluide ultérieurement après avoir été relié premièrement ainsi.
6. Méthode telle que revendiquée dans la revendication 1, dans laquelle l'exécution de
ladite analyse d'écoulement utilisant chaque jeu desdits éléments correspondus comprend
l'exécution d'une analyse d'écoulement utilisant ledit premier jeu des éléments correspondus
et l'adaptation de ladite analyse d'écoulement audit second jeu d'éléments correspondus.
7. Méthode telle que revendiquée dans la revendication 1, dans laquelle l'exécution de
ladite analyse d'écoulement comprend une pression correspondante ou une pression et
une température correspondantes.
8. Méthode telle que revendiquée dans la revendication 1, dans laquelle ledit point d'injection
est relié à tous les emplacements sur ladite première et seconde surfaces desquelles
l'écoulement peut émaner.
9. Méthode telle que revendiquée dans la revendication 8, dans laquelle ledit point d'injection
est relié en premier à tous lesdits emplacements à partir principalement du commencement
de ladite analyse d'écoulement.
10. Méthode telle que revendiquée dans une quelconque des revendications 8 ou 9, dans
laquelle ledit point d'injection demeure relié à tous lesdits emplacements à principalement
tous moments dans ladite analyse d'écoulement de fluide ultérieurement après avoir
été relié premièrement ainsi.
11. Méthode telle que revendiquée dans une quelconque des revendications précédentes,
dans laquelle ledit point d'injection est un quelconque d'une pluralité de points
d'injection.
12. Méthode telle que revendiquée dans une quelconque des revendications précédentes,
dans laquelle la synchronisation desdits fronts d'écoulement est contrôlée périodiquement.
13. Méthode telle que revendiquée dans la revendication 12, dans laquelle ledit contrôle
est réalisé à chaque étape de temps.
14. Méthode telle que revendiquée dans une quelconque des revendications précédentes,
dans laquelle lesdits fronts d'écoulement sont synchronisés s'il a été trouvé qu'ils
n'ont pas ou plus été synchronisés.
15. Méthode telle que revendiquée dans une quelconque des revendications précédentes,
dans laquelle lesdites première et seconde surface opposées généralement sont des
quelconques d'une pluralité de paires de surfaces opposées généralement.
16. Méthode telle que revendiquée dans une quelconque des revendications précédentes,
dans laquelle quelques éléments non correspondus desdites première et seconde surfaces
étant des éléments qui n'ont pas pu être correspondus sont des épaisseurs étant la
moyenne des épaisseurs d'éléments correspondus adjacents, où de tels éléments correspondus
adjacents existent, ou d'éléments non correspondus adjacents, où de tels éléments
correspondus adjacents n'existent pas et lesdits éléments non correspondus adjacents
sont des épaisseurs assignées.
17. Méthode telle que revendiquée dans la revendication 16, dans laquelle chaque élément
d'une surface de flanc étant une surface entre lesdites première et secondes surfaces,
et adjacente soit à ladite première ou seconde surface est assigné à une épaisseur
proportionnelle à l'épaisseur de l'élément desdites première ou seconde surface auxquelles
ledit élément de ladite surface de flanc est adjacent.
18. Méthode telle que revendiquée dans la revendication 17, dans laquelle chaque dit élément
d'une surface de flanc est assigné à une épaisseur entre 0,5 et 1,5 fois ladite épaisseur
de l'élément desdites première ou seconde surface auxquelles ledit élément de ladite
surface de flanc est adjacent.
19. Méthode telle que revendiquée dans la revendication 18, dans laquelle chaque dit élément
d'une surface de flanc est assigné à une épaisseur entre 0,7 et 0,9 fois ladite épaisseur
de l'élément desdites première ou seconde surface auxquelles ledit élément de ladite
surface de flanc est adjacent.
20. Méthode telle que revendiquée dans la revendication 17, dans laquelle chaque dit élément
d'une surface de flanc non adjacent à ladite première ou seconde surface est assigné
à une épaisseur étant la moyenne des épaisseurs d'éléments adjacents de ladite surface
de flanc qui ont été des épaisseurs assignées.
21. Méthode telle que revendiquée dans une quelconque des revendications précédentes dans
laquelle l'écoulement est simulé à un rapport directement proportionnel à un rapport
d'écoulement souhaité pour l'objet.
22. Méthode telle que revendiquée dans la revendication 21, dans laquelle ledit rapport
est proportionnel au rapport du volume de domaine informatique dudit objet par rapport
au volume réel dudit objet.
23. Méthode telle que revendiquée dans la revendication 22, dans laquelle ledit rapport
est principalement égal au rapport du volume de domaine informatique dudit objet par
rapport au volume réel dudit objet.
24. Méthode telle que revendiquée dans une quelconque des revendications précédentes dans
laquelle ladite méthode est exécutée avec des première et seconde représentations
respectivement desdites première et seconde surfaces comprenant respectivement des
première et seconde mailles ou réseaux, dans laquelle lesdits éléments sont des interstices
des première et seconde mailles ou réseaux.
25. Méthode telle que revendiquée dans la revendication 22, dans laquelle ladite méthode
comporte la création de première et seconde représentations.
26. Méthode telle que revendiquée soit dans la revendication 24, soit dans la revendication
25, dans laquelle ladite méthode comporte la création de représentation améliorées
desdites première et seconde surfaces, lesdits éléments étant des éléments desdites
représentations améliorées et ladite méthode étant réalisée avec lesdites représentations
améliorées.
27. Méthode telle que revendiquée dans une quelconque des revendications 24 à 26, dans
laquelle lesdites première et seconde représentation sont une représentation ou des
représentations ou une partie de celles-ci pour la stéréolithographie dudit objet.
28. Méthode telle que revendiquée dans une quelconque des revendications précédentes,
dans laquelle lesdits éléments sont triangulaires ou quadrilatères.
29. Méthode telle que revendiquée soit dans une quelconque des revendications précédentes,
dans laquelle ladite méthode comporte des corrections pour les champs de température
non-isothermes et/ou les fluides non newtoniens.
30. Méthode telle que revendiquée dans la revendication 1, comprenant :
la livraison ou la création de première et secondes représentations respectivement
desdites première et seconde surface ;
la création de première et secondes représentations améliorées respectivement desdites
première et seconde représentations ;
la réalisation de ladite méthode avec lesdites première et seconde représentation
améliorées desdites surfaces respectives, chaque élément de ladite première surface
comprenant un élément respectif de ladite première représentation améliorée et chaque
élément de ladite seconde surface comprenant un élément respectif de ladite seconde
représentation améliorée, de sorte que la correspondance de chaque élément de ladite
première surface avec un élément de ladite seconde surface comprend la correspondance
de chaque élément de ladite première représentation améliorée avec un élément de ladite
seconde représentation améliorée, ledit premier jeu des éléments correspondus comprend
des éléments correspondus de ladite première représentation améliorée, ledit second
jeu des éléments correspondus comprend des éléments correspondus de ladite première
représentation améliorée et ledit point d'injection est relié à tous les emplacements
sur lesdites première et seconde surfaces desquelles l'écoulement peut émaner de sorte
que les fronts d'écoulement résultant le long des première et seconde représentations
améliorées sont synchronisés.
31. Méthode telle que revendiquée dans la revendication 30, dans laquelle lesdites première
et seconde représentation sont une représentation ou des représentations ou une partie
de celles-ci pour la stéréolithographie dudit objet.
32. Méthode de fabrication d'un objet possédant des première et seconde surfaces généralement
opposées, comportant la simulation d'un écoulement de fluide à l'intérieur dudit objet
selon la méthode d'une quelconque des revendications précédentes.
33. Produit de programme d'ordinateur stocké sur un support lisible par ordinateur, adapté
pour entraîner l'ordinateur à réaliser les étapes de la méthode d'une quelconque des
revendications 1 à 32.
34. Support lisible par ordinateur, possédant un programme enregistré sur celui-ci, où
le programme est destiné à faire exécuter l'ordinateur une méthode définie selon une
quelconque des revendications 1 à 32.