EP 0 969 362 A2

Europdisches Patentamt

(19) 0’ European Patent Office
Office européen des brevets

(11) EP 0 969 362 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
05.01.2000 Bulletin 2000/01

(21) Application number: 99305117.6

(22) Date of filing: 29.06.1999

(51) Intcl7: GO6F 9/445

(84) Designated Contracting States:
ATBECHCYDEDKESFIFRGBGRIEITLILU
MC NL PT SE
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 30.06.1998 US 107015

(71) Applicant: SUN MICROSYSTEMS, INC.
Palo Alto, California 94303 (US)

(72) Inventors:
* Walker, William D.
Nashua, New Hampshire (US)
¢ Korn, Peter A.
Oakland, California 94619 (US)

(74) Representative: Foster, Mark Charles
Edward Evans & Co.,
Chancery House,
53-64 Chancery Lane
London WC2A 1SD (GB)

(54) System and method for automatically instantiating classes in a virtual machine

(57) Aprogram loading arrangement is used in con-
nection with a virtual machine (20) for loading programs
for processing in the virtual machine. The program load-
ing arrangement includes a program/class loader (24)
and a dependency list (26). The dependency list (26)
identifies, for each program (21) for which one or more
classes (22) are to be instantiated in the virtual machine
(20) for use during processing of the respective pro-
gram, the class or classes (22) that are to be so instan-
tiated. In response to a request to load a program for
processing in the virtual machine (20), the program/
class loader (24) initiates loading of the program. In ad-

EXECUTION
ENVIRONMENT/

dition, the program/class loader (24) determines from
the dependency list (26) whether any classes (22) are
to be instantiated for use during processing of the pro-
gram being loaded and, if so, instantiates (27) the re-
spective classes. The information in the dependency list
(26) as to which class or classes (22) are to be instan-
tiated in the virtual machine (20) when the respective
programs (25) are loaded can be provided by an oper-
ator, thereby to permit the operator to enable classes to
be instantiated (27) in the virtual machine (20) which
might not otherwise be instantiated for use during
processing of the program.

|
! l
! t
| VIRTUAL MACHINE 20 I
PROGRAMS ! |
z ‘ CONTROL !
! PROGRAM/CLASS [> 3 I
! LOADER 1
! 24 |
! 1
A)
1
\ X
UNINSTANT.
CLASSES ! PROGID 31 |
22 el !
LOADED

|
oL skAss b sa) PROGRAMS :
| 30(1) 25 !
! |
I S |
I | CLASSID 32(N) |
! 1
! 3
! §
1 OBJECTS |
FIG. 2 ! ('CLASS ,
I |DEP LIST ENTRY 30(P) iNST/Q\;ﬂCES”) ,
! I

1
| DEPENDENCY :
, LIsT26 !

— e e e e e e e e — ——

Printed by Jouve, 75001 PARIS (FR)

1 EP 0969 362 A2 2

Description

[0001] The invention relates generally to the field
ofdigital computer systems, and more particularly to ar-
rangements for loading of programs and other elements
by a virtual machine executing in such digital computer
systems. The invention particularly provides a new sys-
tem and method for, when virtual machine loads a pro-
gram for execution by the virtual machine, also enabling
it (that is, the virtual machine) to automatically instanti-
ate selected classes as objects to be used in connection
with execution of the program, even if the program is not
aware of and does not need the objects for its execution.
By having the virtual machine automatically load such
classes along with a program, the digital computer sys-
tem may provide services which the program itselfdoes
not provide, but which the digital computer system's op-
erator may wish to have provided, which, in turn, are
provided by the objects which are instantiated from the
selected classes.

BACKGROUND OF THE INVENTION

[0002] The development of inexpensive and high-
powered computer systems, such as personal comput-
ers, computer workstations and the like has led to an
increase in the availability of sophisticated computer
technology to large numbers of people, Generally, a per-
sonal computer, workstation or the like includes proces-
sor, a video display through which the computer can dis-
play information to an operator, and operator input de-
vices such as a keyboard, a pointing devices such as a
mouse or the like, which the operator can use to input
information to the computer. The development of graph-
ical user interfaces (GUI's) has made computers easier
for many to use. In a graphical user interface, the com-
puter displays information to an operator in graphical
form on a video display, and allows the operator to ma-
nipulate the displayed graphical information to control
the computer by manipulating the pointing device.
[0003] Digital computer systems execute programs in
execution environment in the form ofa virtual machine.
In some cases, it is desirable to be able to, when an
application program is loaded into a virtual machine for
processing, other elements, identified herein as "class-
es," are also loaded and instantiated as objects which
are also available for processing along with the applica-
tion program that is to be loaded. This would allow for
instantiation of object for use in processing along with
the program that is loaded, even if the program is not
aware of the existence of the instantiated classes and
was not developed for use therewith. This can be useful
in connection with, for example, use of technologies,
such as "assistive technologies" which an operator may
want to use along with programs being processed, even
if the programs themselves were not developed for use
with the respective technologies.

[0004] Assistive technologies typically are used to as-

10

15

20

25

30

35

40

45

50

55

sist operators who have various kinds of disabilities to
use computers, may need to receive notifications of
events so that they can perform an operation which can,
for example, provide a non-visual indication ofthe event.
Thus, an assistive technology which is used in connec-
tion with a graphical user interface may, when an event
occurs in connection with an object in the graphical user
interface which would typically be displayed on the dig-
ital computer system's video display to provide a visual
notification of the event to the operator, also enable
speakers to generate an audible notification of the event
to the operator. Accordingly, the assistive technology
can assist a sight-impaired person to use the computer.
To accomplish that, the assistive technology will need
to be instantiated in the virtual machine along with the
application program for events are being generated in
the graphical user interface so that it (that is, the assis-
tive technology) can receive notification of events in
connection with the graphical user interface objects.
However, the application programs which are being
loaded may not be aware of the existence of the assis-
tive technologies, and so they (that is, the application
programs) would not be able to notify the virtual machine
that it (that is the virtual machine) should load the assis-
tive technologies when it loads the application program.

SUMMARY OF THE INVENTION

[0005] Theinvention provides a new and improved ar-
rangement for use in a digital computer system for au-
tomatically instantiating selected classes in a virtual ma-
chine when a program is loaded by the virtual machine.
By having the virtual machine automatically load such
classes along with a program, the digital computer sys-
tem may provide services which the program itself does
not provide, but which the digital computer system's op-
erator may wish to have provided, which, in turn, are
provided by the objects which are instantiated from the
selected classes.

[0006] In brief summary, the invention provides a pro-
gram loading arrangement for use in connection with a
virtual machine for loading programs for processing in
the virtual machine. The program loading arrangement
includes a program/class loader and a dependency list.
The dependency list identifies, for each program for
which one or more classes are to be instantiated in the
virtual machine for use during processing ofthe respec-
tive program, the class or classes that are to be so in-
stanitated. In response to a request to load a program
for processing in the virtual machine, the program/class
loader initiates loading of the program. In addition, the
program/class loader determines from the dependency
list whether any classes are to be instantiated for use
during processing of the program being loaded and, if
s0, instantiates the respective classes. The information
in the dependency list as to which class or classes are
to be instantiated in the virtual machine when the re-
spective programs are loaded can be provided by an

3 EP 0969 362 A2 4

operator, thereby to permit the operator to enable class-
es to be instantiated in the virtual machine which might
not otherwise be instantiated for use during processing
of the program.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] This invention is pointed out with particularity
in the appended claims. The above and further advan-
tages of this invention may be better understood by re-
ferring to the following description taken in conjunction
with the accompanying drawings, in which:

FIG. 1 depicts an illustrative digital computer sys-
tem including an automatic class instantiation ar-
rangement for automatically instantiating selected
classes in avirtual machine when a program is load-
ed by the virtual machine;

FIG. 2 is a functional block diagram of an automatic
class instantiation arrangement constructed in ac-
cordance with the invention; and

FIG. 3 is a flow chart depicting operations per-
formed by the automatic class instantiation ar-
rangement depicted in FIG. 2.

DETAILED DESCRIPTION OF AN ILLUSTRATIVE
EMBODIMENT

[0008] FIG. 1 depicts an illustrative digital computer
system 10 including an event notification arrangement
for providing notification of events in connection with the
various objects and other elements of a graphical user
interface ("GUI") which normally would be displayed on
a video display device, to programs which control
processing by the digital computer systems in connec-
tion therewith. With reference to FIG. 1, the computer
system 10 in one embodiment includes a processor
module 11 and operator interface elements comprising
operator input components such as a keyboard 12A
and/or a mouse 12B (generally identified as operator in-
put element(s) 12) and operator output components
such as a video display device 13 with integral speakers
15. The illustrative computer system 10 is of the con-
ventional stored-program computer architecture.

[0009] The processor module 11 includes, for exam-
ple, processor, memory and mass storage devices such
as disk and/or tape storage elements (not separately
shown) which perform processing and storage opera-
tions in connection with digital data provided thereto.
The mass storage subsystems may include such devic-
es as disk or tape subsystems, optical disk storage de-
vices and CD-ROM devices in which information may
be stored and/or from which information may be re-
trieved. One or more of the mass storage subsystems
may utilize removable storage media which may be re-
moved and installed by an operator, which may allow

10

15

20

25

30

35

40

45

50

55

the operator to load programs and data into the digital
computer system 10 and obtain processed data there-
from. Under control of control information provided
thereto by the processor, information stored in the mass
storage subsystems may be transferred to the memory
for storage. After the information is stored in the mem-
ory, the processor may retrieve it from the memory for
processing. After the processed data is generated, the
processor may also enable the mass storage subsys-
tems to retrieve the processed data from the memory
for relatively long-term storage.

[0010] The operator input element(s) 12 are provided
to permit an operator to input information for processing
and/or control of the digital computer system 10. The
video display device 13 and speakers 15 are provided
to, respectively, display visual output information on a
screen 14, and audio output information, which are gen-
erated by the processor module 11, which may include
data that the operator may input for processing, infor-
mation that the operator may input to control processing,
as well as information generated during processing. The
processor module 11 generates information for display
by the video display device 13 using a so-called "graph-
ical user interface" ("GUI"), in which information for var-
ious applications programs is displayed using various
windows, icons and other objects. Although the compu-
ter system 10 is shown as comprising particular compo-
nents, such as the keyboard 12A and mouse 12B for
receiving inputinformation from an operator, and a video
display device 13 for displaying output information to the
operator, it will be appreciated that the computer system
10 may include a variety of components in addition to
or instead of those depicted in FIG. 1.

[0011] In addition, the processor module 11 may in-
clude one or more network or communication ports,
generally identified by reference numeral 16, which can
be connected to communication links to connect the
computer system 10 in a computer network, or to other
computer systems (not shown) over, for example, the
public telephony system. The ports enable the computer
system 10 to transmit information to, and receive infor-
mation from, other computer systems and other devices
in the network.

[0012] Generally, the digital computer system 10 ex-
ecutes a program under control of a control program,
which, in turn, provides an execution environment in the
form of a virtual machine. The invention provides an ar-
rangement in which, when the virtual machine loads the
application program processing, it (that is, the virtual
machine) also can load and instantiate additional ele-
ments, identified herein as "classes," as objects which
are also available for processing along with the applica-
tion program that is to be loaded. This arrangement al-
lows the virtual machine to instantiate classes for use in
processing along with the program that is loaded, even
if the program is not aware of the existence of the in-
stantiated classes and was not developed for use there-
with. The arrangement facilitates use oftechnologies,

5 EP 0969 362 A2 6

such as "assistive technologies" which can be used with
the virtual machine and which an operator may want to
use along with programs being processed in the virtual
machine, even if the programs themselves were not de-
veloped for use with the respective technologies.
[0013] Assistive technologies typically are used to as-
sist operators who have various kinds of disabilities to
use computers, may need to receive notifications of
events so that they can perform an operation which can,
for example, provide a non-visual indication ofthe event.
Thus, an assistive technology which is used in connec-
tion with a graphical user interface may, when an event
occurs in connection with an object in the graphical user
interface which would typically be displayed on the video
display device 13 to provide a visual notification of the
event to the operator, also enable the speakers 15 to
generate a sound when the event occurs, thereby to pro-
vide an audible notification of the event to the operator.
Thus, the assistive technology can assist a sight-im-
paired person to use the computer, but it will be appre-
ciated that, to accomplish that, the assistive technology
will need to be instantiated in the virtual machine along
with the application program for events are being gen-
erated in the graphical user interface so that it (that is,
the assistive technology) can receive notification of
events in connection with the graphical user interface
objects. However, the application programs which are
being loaded may not be aware of the existence of the
assistive technologies, and so they (that is, the applica-
tion programs) would not be able to notify the virtual ma-
chine that it (that is the virtual machine) should load the
assistive technologies when it loads the application pro-
gram.

[0014] The invention provides an arrangement, de-
scribed in connection with FIGS. 2 and 3, for enabling
a virtual machine to automatically instantiate classes,
such as assistive technologies, as objects in the virtual
machine for processing along with an application pro-
gram, when the application program is loaded in the vir-
tual machine for processing. FIG. 2 is a functional block
diagram of an automatic class instantiation arrange-
ment constructed in accordance with the invention, and
FIG. 3 is a flowchart depicting operations performed by
the arrangement depicted in FIG. 2 in connection with
the invention. With reference initially to FIG. 2, the au-
tomatic class instantiation arrangement includes a vir-
tual machine 20, which operates as an execution envi-
ronment for processing one or more application pro-
grams 21 and objects instantiated from one or more
classes 22. The virtual machine 20 includes a control
module 23, a program/class loader 24 and a dependen-
cy list 26. The control module 23, enables the program/
class loader to load respective ones of the programs 21
into the virtual machine 20, which are identified by ref-
erence numeral 25, for processing. In addition, the con-
trol module 23 can enable the program/class loader 24
to instantiate respective ones of the classes 22 in the
virtual machine as objects ("class instances") 27. After

10

15

20

25

30

35

40

45

50

55

a program 26 has been loaded in the virtual machine
20, it can be executed, also under control of the control
module 23. In addition, after an object 27 has been in-
stantiated in the virtual machine 20, it is available for
processing under control of the control module 23.
[0015] In accordance with the invention, the depend-
ency list 26 identifies, for each program which can be
loaded in the virtual machine 20, ones of the classes 22
which the program/class loader 24 is to instantiate in the
virtual machine when the respective program is loaded.
When the control module 23 enables the program/class
loader to load a program 21 in the virtual machine, the
program/class loader can scan the dependency list 26
to determine whether any classes are to be instantiated
in the virtual machine as a class instance, and, if so,
which classes. If the dependency list 26 indicates that
one or more classes are to be instantiated, the program/
class loader 24 can instantiate the classes 22, as re-
spective objects ("class instances") 27 for processing
along with the program. After the program has been
loaded and the classes identified by the dependency list
have been instantiated, the program/class loader 24 can
enable the control module 23 to begin processing the
program, in conjunction with the loaded classes.
[0016] The dependency list 26 includes one or more
entries 30(1) through 30(P) (generally identified by ref-
erence numeral 30(p), each of which is associated with
a respective one of the programs 21. Each entry 30(p)
includes a program identifier field 31 and one or more
class identifier fields 32(1) through 32(N) (generally
identified by reference numeral 32(n)). The program
identifier field 31 identifies one of the programs 21 which
can be loaded in the virtual machine 20, and each of the
class identifier fields 32(n) identifies one of the classes
22 which may be instantiated in the virtual machine.
Each of the entries 30(p), along with the contents of the
respective fields 31 and 32(n), may be established in
response to input information provided by an operator
in a conventional manner. Thus, the dependency list 26
allows the operator to indicate, when a program is load-
ed in the virtual machine 20, whether any classes 22 are
to be instantiated in the virtual machine 20 along with
the virtual machine, and ifso, which classes. It will be
appreciated that, if, when a program 21 is loaded in the
virtual machine 20, no classes 22 are to be instantiated
in the virtual machine 20 with the program 21, or if the
program 21 itself enables all of the classes 22 that the
operator wishes to have instantiated in the virtual ma-
chine 20 for use during processing of the program 21,
the operator need not enable an entry 30(p) to be es-
tablished for the program 21. However, if the operator
wishes to have a class 22 instantiated in the virtual ma-
chine 20 for use during processing of a program, but the
class 22 is not otherwise instantiated, he or she can en-
able the program/class loader 24 to instantiate the class
22 by providing an entry 30(p) for the program 21 in the
dependency list 26 and identify the program in field 31
and the class 22 in a field 32(n) in the entry 30(p).

7 EP 0969 362 A2 8

[0017] FIG. 3is a flow chart depicting operations per-
formed by the automatic class instantiation arrange-
ment depicted in FIG. 2 when, in conjunction with load-
ing of a program, automatically instantiating classes
identified in the dependency list 26. With reference to
FIG. 3, when the program/class loader 24 receives a re-
quest from the control module 23 to load a program 21
in the virtual machine 20 (step 100), it (that is, the pro-
gram/class loader 24) will initiate loading of the program
as one of the loaded programs 25 (step 101). In con-
nection with loading of the program in step 101, if the
program itself identifies one or more classes 22 that are
to be loaded along therewith, the program/class loader
24 will also load those classes in connection with step
101. In addition, the program/class loader 24 will deter-
mine whether the dependency list 26 contains an entry
30(p) whose program identifier field 31 contains a pro-
gram identification that identifies the program 21 being
loaded (step 102). If the program/class loader 24 makes
a positive determination in step 102, it will determine
which class or classes are identified in the class identi-
fier field(s) 32(n) in the entry 30(p) whose field 31 iden-
tifies the program being loaded (step 103) and instanti-
ate the identified classes as objects 27 in the virtual ma-
chine 20 (step 104). After the program/class loader 24
has loaded the program in step 101 and instantiated the
class or classes identified in the dependency list in step
104, or following step 102 if it (that is, the program/class
loader 24) makes a negative determination in that step,
it will so notify the control module 23 (step 105). Follow-
ing step 105, the control module 23 can begin process-
ing of the loaded program, along with the instantiated
classes.

[0018] The invention provides a number of advantag-
es. In particular, the invention provides an arrangement
which facilitates the automatic instantiation of classes
which an operator may wish to have available in a virtual
machine when a program is loaded, so as to allow the
operator to have available services which the program
may not otherwise provide.

[0019] It will be appreciated that a number of modifi-
cations may be made to the arrangement as described
above in connection with FIGS. | through 3. Although
the invention has been described in connection with as-
sistive technology classes, it will be appreciated that the
invention will be useful in connection with other classes
related to other types of technologies.

[0020] In addition, although the dependency list 26
has been described as including an entry 30(p) for each
program 21 which can be loaded for which a class 22 is
to be automatically instantiated, it will be appreicated
that other arrangements 26 may be used for the depend-
ency list 26. For example, if one or more classes 22 are
to be instantiated for all programs 21 which may be load-
ed, or for all programs of a particular type, the depend-
ency list 26 can include a default entry 30(d) which iden-
tifies the classes that are to be so instantiated. In addi-
tion to the default entry 30(d), the dependency list 26

10

15

20

25

30

35

40

45

50

55

can also include an entry 30(p) (p=#d) associated with
each program 21 for which classes in addition to the de-
fault classes are to be instantiated which identify the ad-
ditional classes that are to be instantiated when the re-
spective program 21 is loaded.

[0021] It will be appreciated that a system in accord-
ance with the invention can be constructed in whole or
in part from special purpose hardware or a general pur-
pose computer system, or any combination thereof, any
portion of which may be controlled by a suitable pro-
gram. Any program may in whole or in part comprise
part of or be stored on the system in a conventional man-
ner, or it may in whole or in part be provided in to the
system over a network or other mechanism for transfer-
ring information in a conventional manner. In addition, it
will be appreciated that the system may be operated
and/or otherwise controlled by means ofinformation pro-
vided by an operator using operator input elements (not
shown) which may be connected directly to the system
or which may transfer the information to the system over
a network or other mechanism for transferring informa-
tion in a conventional manner.

[0022] The foregoing description has been limited to
a specific embodiment ofthis invention. It will be appar-
ent, however, that various variations and modifications
may be made to the invention, with the attainment of
some or all of the advantages of the invention. It is the
object of the appended claims to cover these and such
other variations and modifications as come within the
true spirit and scope of the invention.

Claims

1. An arrangement for loading a program in a virtual
machine in a digital computer system comprising:

A. a dependency list that identifies at least one
class associated with said program; and

B. a program/class loader adapted to load said
program in said virtual machine, said program/
class loader further being adapted to determine
whether the dependency list identifies a class
associated with said program and, ifso, to in-
stantiate the class in the virtual machine.

2. Anarrangement as defined in claim 1, the arrange-
ment being adapted to load a selected one of a plu-
rality of programs in the virtual machine, the de-
pendency list identifying, associated with each pro-
gram for which at least one class is to be instanti-
ated in the virtual machine, one or more such class-
es.

3. An arrangement as defined in claim 2 in which the
dependency list includes at least one entry, the en-
try identifying at least one class associated with at

10.

1.

9 EP 0969 362 A2

least one program.

An arrangement as defined in claim 3 in which said
at least one entry comprises a default entry, the de-
fault entry identifying at least one class to be instan-
tiated when any ofsaid programs is loaded in the
virtual machine.

An arrangement as defined in claim 1 in which the
identification in the dependency list ofthe class as-
sociated with the program is provided by an opera-
tor of the digital computer system.

A method of loading a program in a virtual machine
in a digital computer system comprising the steps
of:

A. providing a dependency list that identifies at
least one class associated with said program;
and

B. loading said program in said virtual machine;
and

C. determining whether the dependency list
identifies a class associated with said program
and, if so, instantiating the class in the virtual
machine.

A method as defined in claim 6 for which a selected
one of a plurality of programs can be loaded in the
virtual machine, the dependency list identifying, as-
sociated with each program for which at least one
class is to be instantiated in the virtual machine, one
or more such classes.

A method as defined in claim 7 in which the depend-
ency list includes at least one entry, the entry iden-
tifying at least one class associated with at least one
program.

A method as defined in claim 8 in which said at least
one entry comprises a default entry, the default en-
try identifying at least one class to be instantiated
when any of said programs is loaded in the virtual
machine.

A method as defined in claim 6 further comprising
the step of receiving, for the dependency list, the
identification of the class associated with the pro-
gram from an operator of the digital computer sys-
tem.

A computer program product for use in connection
with a digital computer system for facilitating the
loading of a program in a virtual machine in the dig-
ital computer system, the computer program prod-
uct comprising a computer-readable medium hav-

10

15

20

25

30

35

40

45

50

55

12.

13.

14.

15.

10
ing encoded thereon:

A. a dependency list module configured to en-
able the digital computer system to maintain a
dependency list that identify at least one class
associated with said program; and

B. a program load module configured to enable
the digital computer system to load said pro-
gram in said virtual machine; and

C. a class instantiation module configured to
enable the digital computer system to deter-
mine whether the dependency list identifies a
class associated with said program and, if so,
to instantiate the class in the virtual machine.

A computer program product as defined in claim 11
for which a selected one of a plurality of programs
can be loaded in the virtual machine, the depend-
ency list module being configured to enable the dig-
ital computer system to maintain the dependency
list to identify, associated with each program for
which at least one class is to be instantiated in the
virtual machine, one or more such classes.

A computer program product as defined in claim 12
in which the dependency list module is configured
to enable the digital computer system to maintain
the dependency list to include at least one entry, the
entry identifying at least one class associated with
at least one program.

A computer program product as defined in claim 13
in which said dependency list module is configured
to enable the dependency list to include at least one
entry comprising a default entry, the default entry
identifying at least one class to be instantiated when
any of said programs is loaded in the virtual ma-
chine.

A computer program product as defined in claim 11
further comprising an operator input module config-
ured to enable the computer to receive the identifi-
cation of the class associated with the program for
the dependency list from an operator of the digital
computer system.

EP 0969 362 A2

EP 0969 362 A2

L2
(.S3ONVLSN
SSV10.)
S103rg0

I

1

14
SWVHOOHd
asavon

1514
TOH1INOD

(1)og <

<« 3| SSVIONVHOONd

9¢ 1S
AON3ION3I43d

(d)og AMINT 1S17d30

(N)ze QI SSv1D

I ——

L Al 90dd

¥e
H3avol

0Z 3NIHOVIN TVNLHIA
“/INIFWNOHIANT
, NOILNJ3IX3

¢cOIA

4

S3ISSVIO
INVLSNINN

|
I
|
l
|
|
|
|
|
|
l
|
|
|
I
I
l
1
I
l

|
!

¥4

SWVHOOHd

EP 0969 362 A2

100. PROGRAM/CLASS LOADER 24 RECEIVES A REQUEST
FROM THE CONTROL MODULE 23 TO LOAD A PROGRAM
21 IN THE VIRTUAL MACHINE 20

101. PROGRAM/CLASS LOADER 24 INITIATES LOADING
OF THE PROGRAM AS ONE OF THE LOADED PROGRAMS
25 IN VIRTUAL MACHINE 20

102. PROGRAM/CLASS LOADER 24 DETERMINES
WHETHER THE DEPENDENCY LIST 26 CONTAINS AN
ENTRY 30(P) WHOSE PROGRAM IDENTIFIER FIELD 31
CONTAINS A PROGRAM IDENTIFICATION THAT
IDENTIFIES THE PROGRAM 21 BEING LOADED

103. PROGRAM/CLASS LOADER 24 DETERMINES WHICH
CLASS OR CLASSES ARE IDENTIFIED IN THE CLASS
IDENTIFIER FIELD(S) 32(N) IN THE ENTRY 30(P) WHOSE
FIELD 31 IDENTIFIES THE PROGRAM BEING LOADED

104. PROGRAM/CLASS LOADER 24 INSTANTIATES THE
IDENTIFIED CLASS(ES) AS OBJECTS 27 IN THE VIRTUAL
MACHINE 20

105. PROGRAM/CLASS LOADER 24 NOTIFIES THE
CONTROL MODULE 23 THAT THE PROGRAM HAS BEEN
LOADED AND THAT ANY CLASSES THAT ARE TO BE
INSTANTIATED HAVE BEEN INSTANTIATED

FI1G.3

	bibliography
	description
	claims
	drawings

