EP 0 969 392 A2

Europdisches Patentamt

(19) 0’ European Patent Office
Office européen des brevets

(11) EP 0 969 392 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
05.01.2000 Bulletin 2000/01

(21) Application number: 99304654.9

(22) Date of filing: 15.06.1999

(51) Intcl”: GO6F 17/50

(84) Designated Contracting States:
ATBECHCYDEDKESFIFRGBGRIEITLILU
MC NL PT SE
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 23.06.1998 US 102850

(71) Applicant: LUCENT TECHNOLOGIES INC.
Murray Hill, New Jersey 07974-0636 (US)

(72) Inventors:
¢ Hardin, Ronald H.
Pataskala, Ohio 43062 (US)
¢ Kurshan, Robert Paul
New York, New York 10014 (US)

(74) Representative:
Johnston, Kenneth Graham et al
5 Mornington Road
Woodford Green Essex, IG8 OTU (GB)

(54) Constraint validity checking

(57) A method and apparatus for efficiently deter-
mining whether a set of constraints input to a verification
tool are mutually contradictory or overconstraining. A
set of constraints are mutually contradictory or overcon-
straining when they define values for system-model var-
iables and/or inputs that are inconsistent with each other
at a given state or group of states of a system-model
state machine. It has been found that when a set of con-
straints assign inconsistent values at a given state or
group of states of the system-model state space, the

verification tool will treat the given state or group of
states as a so-called non-returnable state. That is, the
verification tool will not recognize any paths from the giv-
en state or group of states to a set of reset states. As a
result, instead of having to analyze the values defined
by every constraint input to the verification tool, it can
be determined whether a set of constraints input to the
verification tool are mutually contradictory or overcon-
straining by analyzing only the constraints enabled at
the non-returnable states.

Printed by Jouve, 75001 PARIS (FR)



1 EP 0969 392 A2 2

Description

Field of the Invention

[0001] The present invention relates to the testing of
system designs, and more particularly to an apparatus
and method for checking the validity of constraints used
during formal verification.

Background of the Invention

[0002] An ongoing problem in the design of large sys-
tems is verifying that the system will behave in the man-
ner intended by its designers. One approach has been
to simply try out the system, either by building and test-
ing the system itself or by building and testing a model
of the system. Since there is no guarantee that an un-
tested system will work as expected, building the system
itself can be an expensive proposition. Thus, those
skilled in the art have migrated toward building and test-
ing a model of the system, or system model, through
software.

[0003] A system model can be said to be a computer
program or block of code that, when executed, simu-
lates the intended properties, or functions, of the sys-
tem. Basically, the system model is designed to accept
inputs, perform functions and generate outputs in the
same manner as would the actual system. To do this,
the system model uses variables, called system-model
variables, that are programmed within the code to take
on certain values depending on the values of the inputs
to the system model. That is, as different values are fed
to the system-model inputs, the system-model variables
are assigned different values that indicate how the sys-
tem model functions or behaves in response to the in-
puts. Thus, by controlling the value of the inputs to the
system model and monitoring the values of the system-
model variables, a system designer can test or observe
the behavior of the system model in response to differ-
ent sets of inputs, and determine whether the system
model exhibits, or performs, the intended behaviors or
properties of the system.

[0004] One method of testing a system model in such
a manner is called formal verification. In formal verifica-
tion, a verification tool is used to convert the system
model into a finite state machine. A finite state machine
is a set of states and state transitions which mimic the
operation of the system model in response to given sets
of inputs, or input vectors. In general, each state of a
finite state machine represents a specific assignment of
values to a set of system-model variables and/or inputs,
and thus represents a specific behavior or property of
the system model. Each state transition defines the val-
ues that a set of system-model variables and/or inputs
must take on for the state machine to transition from one
state to another state. The state machine thereby pro-
vides a roadmap of how a system model will behave (i.
e. the states the system model will enter) in response to

10

15

20

25

30

35

40

45

50

55

the values input to the system-model inputs. As a result,
once the verification tool converts the system model into
such a finite state machine, the tool can test the prop-
erties or behaviors of the system model by checking
which states the system-model state machine enters in
response to a given set of inputs.

[0005] To illustrate, conventional verification tools,
such as the verification tool described by R.P. Kurshan
in Computer Aided Verification of Coordinating Process-
es, Princeton University Press 1994, are designed to
test all the properties or behaviors of a system model by
performing a so-called full search of the system-model
state space (i.e. the set of states and state transitions
that form the system-model state machine).

[0006] Conventionally, the verification tool begins the
full search by inputting a "complete set of inputs" at a
set of initial states, or "set of reset states," of the system-
model state machine. The term "complete set of inputs"
as used herein refers to every possible set of values that
the system-model inputs can possibly assume when the
system model is in operation, in every possible se-
quence. The term "set of reset states" as used herein
refers to those states from which the system model is
designed to begin operation and/or return to after an op-
eration is completed.

[0007] As the complete set of inputs are fed to the
state machine at the set of reset states, the verification
tool identifies the values that the system-model varia-
bles and/or inputs take on, and identifies the state tran-
sitions that are enabled by those values. Once the en-
abled state transitions are identified, the verification tool
identifies the states, called "next states," to which the
state machine can transition as a result of the inputs.
Once the verification tool identifies all the next states
that are reached as a result of the inputs, it continues
the search by inputting the complete set of inputs at
each of the next states and by identifying the new set of
next states to which the state machine transitions as a
result of the inputs. This process is repeated until the
set of next states identified by the verification tool are
all states that have already been reached (i.e. identified
as next states) during the search. The set of states that
are reached during the search are hereinafter referred
to as the set of reachable states. By inputting the com-
plete set of inputs at each state of the state machine,
the set of reachable states is guaranteed to include eve-
ry state of the system-model state space. As a result,
the verification tool performing a full search is guaran-
teed to check every property or behavior of the system
model.

[0008] Insome instances, however, a system design-
er may wish to check only a portion of the properties or
behaviors of a system model. For example, in some in-
stances, the system designer may wish to check the
system-model properties that conform with a subset of
the inputs that may be possible during the operation of
the system. In such instances, it is not necessary to
search or reach all of the states of the system-model




3 EP 0969 392 A2 4

state machine, and thus it is not necessary to check the
behavior of the system-model state machine in re-
sponse to the complete set of inputs. Instead, the veri-
fication tool only needs to search or reach those states
that represent the properties or behaviors the designer
wishes to check, and thus only needs to check the be-
havior of the system-model state machine in response
to a fraction of the complete set of inputs.

[0009] One method for directing the verification tool
to check only a portion of the properties or behaviors of
the system-model is to program the verification tool with
so-called constraints. A constraint is a logical expres-
sion composed of an enabling condition and an assump-
tion. The enabling condition defines the condition that
must be true for the assumption to be invoked. The as-
sumption defines the value or values that the verification
tool shall assign to certain system-model variables and/
orinputs when the enabling condition is true. An enabled
constraint can therefore direct the verification tool to as-
sign certain values to certain system-model variables
and/or inputs, regardless of the values they are pro-
grammed to take on within the system-model.

[0010] When programmed with such a constraint, the
verification tool will be directed to recognize only those
state transitions that require the system-model variables
and/or inputs to take on values that are consistent with
the values defined by the constraints. As a result, the
verification tool will only reach those states that repre-
sent an assignment of values (i.e. values of the system-
model variables and inputs) that are consistent with the
values defined by the constraint. Thus, by carefully
choosing the values which the constraint assigns to cer-
tain system-model variables and inputs, the verification
tool can be directed to reach or search only those states
that represent the properties or behaviors which the sys-
tem-designer wishes to check.

[0011] For example, the constraint "IF(power-on)As-
sume(x=y)" will direct a verification tool to assume that
the value of system-model variable x equals the value
of system-model variable y when the enabling condition,
power_on, is true. Once enabled, the constraint will di-
rect the verification tool to only search or reach those
states or state transitions where the inputs cause the
value of system-model variable x to be equal to the value
of system-model variable y. The constraint therefore de-
fines a specific set of reachable states for the verification
tool. Thus, if the specific set of reachable states includes
all the states that represent the system-model property
being checked, the constraint is said to properly limit the
search.

[0012] Oftentimes, the system designer is required to
program the verification tool with a plurality of con-
straints in order to properly limit the search. When pro-
grammed with a plurality of constraints, the verification
tool will only search or reach the states that are consist-
ent with every value defined by every constraint enabled
in that state. Thus, it is important that the constraints
enabled in each state assign values that properly define

15

20

25

30

35

40

45

50

55

the set of reachable states.

[0013] A problem occurs, however, when the con-
straints enabled in a given state assign values that are
inconsistent with each other. Such a set of enabled con-
straints are said to be mutually-contradictory at the giv-
en state. For example, the set of constraints:
Constraint1 = IF(power_on)Assume (x=y); Constraint2
= IF(temperature>30)Assume(y=z); and Constraint3 =
IF(time>1)Assume(x#z); are mutually contradictory at
any state in which all the enabling conditions are true at
the same time. To illustrate, at a state wherein
power_on, temperature>30, and time>1 are all true,
Constraints 1-3 will direct the verification tool to assume
X =y =z # X, or x#X, which is inconsistent, and thus
mutually contradictory.

[0014] When a set of constraints are mutually contra-
dictory (i.e. assign inconsistent values) at a given state
of the search, the system-model variables and/or inputs
can not take on a set of values that would be consistent
with the values assigned by every enabled constraint at
the same time. As a result, the verification tool perform-
ing the search will not recognize any state transition
from that given state to any other state, no matter what
inputs are fed to the state machine. This means that the
verification tool will not reach or search any states be-
yond the given state in which the mutually contradictory
constraints are enabled. As a result, the verification tool
may fail to reach all the states associated with the sys-
tem-model property or behavior being checked. When
this happens the verification tool may not be able to
identify all the errors associated with the property being
checked. Thus, in order to check whether a verification
tool's report of "no error" is accurate, the system design-
er should always check whether the set of constraints
input to the verification tool are mutually contradictory.
[0015] A related and more subtle version of this prob-
lem occurs when the constraints, although not mutually
contradictory at a single state, are inconsistent with
each other in a group of states. A set of constraints are
inconsistent in a group of states when the values as-
signed by constraints enabled in the group of states di-
rect the verification tool to perpetually search only the
states in the group. When this happens, the verification
tool performing the search will not recognize any state
transition from the group of states to any other state or
group of states, no matter what inputs are fed to the state
machine. This means that the verification tool will not
reach or search any states beyond the given group of
states in which the inconsistent constraints are enabled.
As a result, the verification tool may fail to reach all the
states associated with the system-model property or be-
havior being checked, and thus the verification tool may
not be able to identify all the errors associated with the
property being checked. When this happens, the con-
straints are said to "overconstrain" the search of the sys-
tem-model state space. Thus, in addition to checking
whether a set of constraints are mutually contradictory
in a single state to determine whether a verification tool's



5 EP 0969 392 A2 6

report of "no error" is accurate, the system designer
should also check whether the set of constraints assign
inconsistent values in a group of states.

[0016] The conventional method for determining
whether a set of constraints input to a verification tool
are mutually contradictory at a single state or are incon-
sistent in a group of states is to analyze all the assump-
tions (i.e. value assignments) defined by all of the con-
straints. The object of such an analysis is to determine
whether it is possible for the values assigned by one
constraint to be inconsistent with the values assigned
by another constraint at each state and each group of
states. This requires that the values assigned by each
constraint be analyzed for consistency with the values
assigned by every other constraint at each state and
each group of states of the state machine. Since some
constraints may assign values as a function of other var-
iables and/or inputs in each state, such an analysis re-
quires a detailed understanding and/or determination of
the mathematical relationship between the system-
model variables and/or inputs, and an understanding or
determination of the set of values that the system-model
variables and/or inputs can assume in response to any
given set of inputs at each state of the system-model
state space. For systems having a large number of
states and/or a large number of variables and inputs,
such a task can be very time-consuming and can require
a large amount of computational resources.

Summary of the Invention

[0017] We have found an efficient method for deter-
mining whether a set of constraints are mutually contra-
dictory. Instead of having to analyze the values assigned
by every constraint input to the verification tool, we have
found that only the set of constraints that are enabled in
a so-called set of non-returnable states of the system-
model state space need be analyzed. The term "set of
non-returnable states" as used herein refers to a single
state or a group of states in the system-model state
space from which there is no path to the set of reset
states when the system-model variables and/or inputs
are assigned values in accordance with that defined by
the constraints input to the verification tool.

[0018] Our finding is based on the realization that
many systems are non-terminating. That is, many sys-
tems do not terminate their operation after performing a
given function, but rather can return to an initial state or
set of reset states from which they can then perform the
same or another function. For example, after making a
calculation, a calculator can return to zero (i.e. the reset
state) when the "clear" button is pressed, and thereafter
perform the same calculation or any other function of
the calculator. In view of this, we realized that when a
set of mutually contradictory or inconsistent constraints
enabled in a given state or group of states direct a ver-
ification tool to ignore all state transitions from that given
state or group of states, the set of mutually contradictory

10

15

20

25

30

35

40

45

50

55

or inconsistent constraints will have caused the verifica-
tion tool to treat the given state or group of states as a
set of non-returnable states. As aresult, we realized that
by identifying a state or group of states which a verifica-
tion tool, programmed with a set of constraints, treats
as non-returnable, one will have identified a state or
group of states in which the set of constraints may have
assigned inconsistent values. Thus, we have found that
by analyzing the values assigned by the constraints en-
abled in an identified non-returnable state or non-return-
able group of states, it can be determined whether the
set of constraints input to the verification tool are mutu-
ally contradictory or overconstraining.

[0019] In particular embodiments, the set of non-re-
turnable states or group of states are identified by first
performing a so-called forward search wherein the ver-
ification tool programmed with the set of constraints
starts at the set of reset states of the system-model state
machine and identifies all the states and group of states
that it can possibly reach by inputting the complete set
of inputs at each state. Each state and each group of
states identified during the forward search are referred
to herein as the forward search states. Once the forward
search states are identified, the verification tool then
performs a so-called reverse search wherein it identifies
all the states and group of states from which it can reach
the set of reset states by inputting the complete set of
inputs at each state. Each state and each group of states
identified during the reverse search are referred to here-
in as the reverse search states. Each state included in
the set of forward search states that is not included in
the set of reverse search states is then identified as a
non-returnable state. Since the set of forward search
states and the set of reverse search states include both
individual states and groups of states, it can be appre-
ciated that the term non-returnable state as used herein
refers to both individual states and groups of states from
which there is no return path to the set of reset states.
The values assigned by the constraints enabled in the
identified non-returnable states are then analyzed to de-
termine whether they assign values that are inconsistent
with each other. The constraints that assign values that
are inconsistent with each other in a single state are
identified as mutually contradictory constraints, and the
constraints that assign values that are inconsistent with
each other in a group of states are identified as a set of
overconstraining constraints. Thus, constraints that are
neither mutually contradictory nor overconstraining are
referred to herein as mutually consistent constraints.
[0020] Advantageously, once a set of mutually-con-
tradictory constraints and/or a set of overconstraining
constraints are identified, a system-designer can adjust
and/or eliminate the inconsistent value-assignments de-
fined by the contradictory and/or overconstraining con-
straints, and thereby increase the probability that a ver-
ification tool, programmed with the set of adjusted or
mutually consistent constraints, will accurately check
the entire portion of the state space representing the



7 EP 0969 392 A2 8

properties or behaviors that the system-designer wishes
to check.

[0021] These and other features of the invention will
become more apparent from the detailed description of
illustrative embodiments of the invention when taken
with the drawings. The scope of the invention, however,
is limited only by the claims.

Brief Description of the Drawings

[0022] FIG. 1, is a block diagram of an illustrative em-
bodiment of a method for performing a search of a sys-
tem-model state space using a verification tool pro-
grammed with a set of mutually-consistent constraints
developed in accordance with the principles of the
present invention.

[0023] FIG. 2 is a diagram of a system-model state
space forillustrating an application of the method of FIG.
1.

[0024] FIG. 3isadiagram of the forward search states
reached when a verification tool, programmed with a set
of constraints, performs a forward search of the system-
model state space shown in FIG. 2 in accordance with
the method shown in FIG. 1.

[0025] FIG.4isadiagram of the reverse search states
reached when a verification tool, programmed with a set
of constraints, performs a reverse search of the system-
model state space shown in FIG. 2 in accordance with
the method shown in FIG. 1.

[0026] FIG. 5is a block diagram of an illustrative em-
bodiment of a verification tool for performing a search
in accordance with the method shown in FIG. 1.

Detailed Description of lllustrative Embodiments of
the Invention

[0027] As stated above, one method for directing a
verification tool to check only a portion of the properties
or behaviors of a system-model is to program the veri-
fication tool with so-called constraints. A constraint is a
logical expression composed of an enabling condition
and an assumption. The enabling condition defines the
condition that must be true for the assumption to be in-
voked. The assumption defines the value or values that
the verification tool shall assign to certain system-model
variables and/or inputs when the enabling condition is
true. An enabled constraint can therefore direct the ver-
ification tool to assign certain values to certain system-
model variables and/or inputs, regardless of the values
they are programmed to take on within the system-mod-
el.

[0028] When programmed with such a constraint, the
verification tool will be directed to recognize only those
state transitions that require the system-model variables
and/or inputs to take on values that are consistent with
the values defined by the constraints. As a result, the
verification tool will only reach those states or groups of
states that represent an assignment of values (i.e. val-

10

15

20

25

30

35

40

45

50

55

ues of the system-model variables and inputs) that are
consistent with the values defined by the constraint.
Thus, by carefully choosing the values which the con-
straint assigns to certain system-model variables and
inputs, the verification tool can be directed to reach or
search only those states that represent the properties
or behaviors which the system-designer wishes to
check.

[0029] Oftentimes, the system designer is required to
program the verification tool with a plurality of con-
straints in order to properly limit the search. When pro-
grammed with a plurality of constraints, the verification
tool will only recognize a state transition from a given
state to another state when the state transition defines
a value assignment that is consistent with every value
defined by every constraint enabled in that state. Thus,
it is important that the constraints enabled in each state
assign values that properly define the set of reachable
states. A problem occurs, however, when the con-
straints enabled in a given state or a given group of
states assign values that are inconsistent with each oth-
er. Such a set of enabled constraints are said to be mu-
tually-contradictory or overconstraining at the given
state or group of states.

[0030] When a set of constraints are mutually contra-
dictory (i.e. assign inconsistent values) at a given state
of the search, the system-model variables and/or inputs
can not take on a set of values that would be consistent
with the values assigned by every enabled constraint at
the same time. As a result, the verification tool perform-
ing the search will not recognize any state transition
from that given state to any other state, no matter what
inputs are fed to the state machine. This means that the
verification tool will not reach or search any states be-
yond the given state in which the mutually contradictory
constraints are enabled. As a result, the verification tool
may fail to reach all the states associated with the sys-
tem-model property or behavior being checked. When
this happens the verification tool may not be able to
identify all the errors associated with the property being
checked. Thus, in order to check whether a verification
tool's report of "no error" is accurate, the system design-
er should always check whether the set of constraints
input to the verification tool are mutually contradictory.

[0031] Similarly, when a set of constraints are incon-
sistent with each other in a given group of states, the
system-model variables and/or inputs can not take on a
set of values that would enable the verification tool to
transition out of the group of states to any other state,
no matter what inputs are fed to the state machine dur-
ing the search. As aresult, a set of overconstraining con-
straints may prevent the verification tool from reaching
all the states associated with the system-model property
or behavior being checked. When this happens, the ver-
ification tool may not be able to identify all the errors
associated with the property being checked. Thus, in ad-
dition to checking whether a set of constraints are over-
constraining in order to determine whether a verification



9 EP 0969 392 A2 10

tool's report of "no error" is accurate, a system designer
should also check whether the set of constraints input
to the verification tool are overconstraining.

[0032] As states above, the conventional method for
determining whether a set of constraints input to a ver-
ification tool are mutually contradictory or overconstrain-
ing is to analyze all the assumptions (i.e. value assign-
ments) defined by all of the constraints. The object of
such an analysis is to determine whether it is possible
for the values assigned by one constraint to be incon-
sistent with the values assigned by another constraint.
This requires that the values assigned by each con-
straint be analyzed for consistency with the values as-
signed by every other constraint at each state and each
group of states of the state machine. Since some con-
straints may assign values as a function of other varia-
bles and/or inputs in each state, such an analysis re-
quires a detailed understanding and/or determination of
the mathematical relationship between the system-
model variables and/or inputs, and an understanding or
determination of the set of values that the system-model
variables and/or inputs can assume in response to any
given set of inputs at each state of the system-model
state space. For systems having a large number of
states and/or a large number of variables and inputs,
such a task can be very time-consuming and can require
a large amount of computational resources.

[0033] The presentinvention provides a means forre-
ducing the time and/or computational resources needed
to determine whether a set of constraints are mutually
contradictory or overconstraining. Instead of analyzing
the assumptions or value-assignments defined by every
constraint input to the verification tool, a method in ac-
cordance with the principles of the present invention re-
quires that only the values assigned by the constraints
enabled in a so-called set of non-returnable states of
the system-model state space need be analyzed. As
stated above, the term "set of non-returnable states" as
used herein refers to both individual states and groups
of states in the system-model state space from which
there is no path to the set of reset states when the sys-
tem-model variables and/or inputs are assigned values
in accordance with that defined by the constraints input
to the verification tool.

[0034] As stated above, our finding is based on the
realization that many systems are non-terminating. That
is, many systems do not terminate their operation after
performing a given function, but rather can return to an
initial state or set of reset states from which they can
then perform the same or another function. In view of
this, we realized that when a set of mutually contradic-
tory constraints or a set of overconstraining constraints
enabled in a given state or group of states direct a ver-
ification tool to ignore all state transitions from that given
state or group of states, the set of mutually contradictory
constraints or overconstraining constraints will have
caused the verification tool to treat or recognize the giv-
en state or group of states as a non-returnable state. As

10

15

20

25

30

35

40

45

50

55

a result, we realized that by identifying the states which
a verification tool, programmed with a set of constraints,
treats or recognizes as non-returnable, one will have
identified the individual states and groups of states in
which the set of constraints may have assigned incon-
sistent values. Thus, we have found that by analyzing
the values assigned by the constraints enabled in a non-
returnable state (i.e. individual states and groups of
states from which the verification tool does not recog-
nize a path to the set of reset states), it can be deter-
mined whether the set of constraints input to the verifi-
cation tool are mutually contradictory or overconstrain-
ing.

[0035] Once identified, the mutually contradictory or
overconstraining constraints can be re-defined so that
their assumptions do not assign values that are incon-
sistent with each other at any state or group of states
during a search of the system-model sate space. The
result is a set of mutually consistent constraints which
can be used by the verification tool (i.e. to perform a
search) to verify the system-model properties or behav-
iors which a designer wishes to check.

[0036] Referring now to FIG. 1, there is shown an il-
lustrative embodiment of a method 10 for performing a
search of a system-model state space using a verifica-
tion tool programmed with a set of mutually-consistent
constraints developed in accordance with the principles
of the present invention. As shown, method 10 begins
at step 11 wherein a verification tool programmed with
test constraints is used to perform a forward search of
a system-model state space. The states and groups of
states reached during the forward search are identified,
at step 12, as forward search states. The verification tool
programmed with the set of test constraints is then used,
at step 13, to perform a reverse search of the system-
model state space. The states and groups of states
reached during the reverse search are identified, at step
14, as reverse search states. At step 15 the states in-
cluded in the set of forward search states that are not
included in the set of reverse search states are identified
as non-returnable states. The constraints enabled in a
given non-returnable state (i.e. either an individual state
or a group of states) are analyzed, at step 16, to deter-
mine which of the enabled constraints defines assump-
tions or values-assignments that are inconsistent with
each other. The enabled constraints that define incon-
sistent value assignments are then re-defined, at step
17, so that they no-longer define inconsistent value as-
signments and such that the set of test constraints are
no-longer mutually contradictory or overconstraining, i.
e. they are mutually consistent. A verification tool pro-
grammed with the set of mutually consistent constraints
is then used, at step 18, to search the system-model
state space in a conventional manner.

[0037] Advantageously, method 10 enables a system
designer to make sure that the constraints used to test
given properties and/or behaviors of a system model are
mutually consistent, and thus increase the probability



11 EP 0969 392 A2 12

that a verification tool programmed with the set of mu-
tually-consistent constraints will check the entire portion
of the state space representing the properties or behav-
iors that the system-designer wishes to check. As a re-
sult, method 10 provides a means for testing properties
of a system model with less probability that the con-
straints programmed into the verification tool will cause
the verification tool to miss an error in a portion of the
system-model state space representing the behavior or
property the designer wishes to check.

[0038] Referring now to FIG. 2 there is shown a dia-
gram of a system-model state space or state machine
20 for illustrating how a conventional verification tool,
programmed with a set of constraints, will perform steps
11-18 of method 10. As shown, state machine 20 has a
set of reset states 1, states 2-5, state transitions 21-32,
and system-model inputs A and B. It should be pointed
out that even though states 2-5 are shown as individual
states in FIG. 1, each state is intended to represent both
an individual state or a group of states. Thus, the follow-
ing discussion of how a verification tool programmed
with a set of constraints will perform steps 11-18 of meth-
od 10 is intended to illustrate, for example, how both
individual states and groups of states may be identified
as non-returnable states in accordance with the princi-
ples of the present invention

[0039] In operation, starting in set of reset states 1,
state machine 20 will transition to state 2 when system-
model inputs A and B each take on a value of 1. When
in state 2, state machine 20 will transition to state 3 when
system-model inputs A and B each take on a value of
1, and transition to set of reset states 1 either when sys-
tem model input A takes on a value of 0 or when system
model input A takes on a value of 1 and system model
variable B takes on a value of 0. When in state 3, state
machine 20 will transition to state 4 when system-model
inputs A and B each take on a value of 1, transition to
state 2 when system-model inputs A and B each take
on a value of 0, and transition to set of reset states 1
either when system-model input A takes on a value of
1 and system-model input B takes on a value of 0 or
when system-model input A takes on a value of 0 and
system-model input B takes on a value of 1. When in
state 4, state machine 20 will transition to state 5 when
system-model inputs A and B each take on a value of
1, transition to state 3 when system-model inputs A and
B each take on a value of 0, and transition to set of reset
states 1 either when system-model input A takes on a
value of 0 and system-model input B takes on a value
of 1 or when system-model input A takes on a value of
1 and system-model input B takes on a value of 0. When
in state 5, state machine 20 transitions to state 4 when
system-model inputs A and B each take on a value of
0, and transitions to set of reset states 1 either when
system-model input A takes on a value of 1 or when sys-
tem-model input A takes on a value of 0 and system-
model input B takes on a value of 1.

[0040] To illustrate how a search of state machine 20

10

15

20

25

30

35

40

45

50

55

is performed in accordance with the steps of method 10,
it is assumed that the verification tool is programmed
with the following constraints:

Constraint1 = IF(state=3)ASSUME(A=B)
Constraint2 = |F(state=4)ASSUME(A=0)
Constraint3 = IF(state=4)ASSUME(B=0)
Constraint4 = IF(state=4)ASSUME(A=B)

[0041] As described above, a forward search is a
search wherein the verification tool, programmed with
the set of constraints, starts at a set of reset states of
the system-model state machine and identifies all the
states that it can possibly reach by inputting the com-
plete set of inputs at each state. Referring now to FIG.
3 there is shown a state space 36 illustrating the states
reached when a conventional verification tool pro-
grammed with the above-listed constraints performs a
forward search of state machine 20 in accordance with
step 11 of method 10. To illustrate, in performing the for-
ward search of state machine 20, the verification tool
will start at set of reset states |, input a complete set of
inputs to system-model inputs A and B, and identify the
set of next states to which state machine 20 can transi-
tion given the set of constraints. Since none of the
above-listed constraints are enabled in set of reset
states 1, the verification tool will identify state 2 as the
set of states to which state machine 20 can transition (i.
e. when system-model inputs A and B each take on a
value of 1). As aresult, the verification tool will recognize
or allow state transition 22 so that machine 20 transi-
tions to next state 2.

[0042] When in state 2, the verification tool will again
input the complete set of inputs to state machine 20 and
identify set of reset states 1 (i.e. when system-model
inputs A and B each take on a value of 0) and state 3 (i.
e. when system-model inputs A and B each take on a
value of 1) as the set of next states. Since the verification
tool has already reached or searched set of reset states
1, the verification tool will recognize and allow state tran-
sition 24 so that state machine 20 transitions to state 3.
[0043] When in state 3, the verification tool will again
input the complete set of inputs to state machine 20 and
identify set of reset states 1 (i.e. when system-model
input A=1 and B=0, or when A=0 and B=1), state 2 (i.e.
when system-model inputs A and B each take on a value
of 0) and state 4 (i.e. when system-model inputs A and
B each take on a value of 1) as the set of next states.
Since Constraint 1 directs the verification tool to assume
that system-model input A equals system-model input
B when in state 3, the verification tool will be directed to
ignore state transition 25. And, since state 2 has already
been reached or searched, the verification tool will only
recognize and allow state transition 27 so that state ma-
chine 20 transitions to state 4.

[0044] When in state 4, the verification tool will again
input the complete set of inputs to state machine 20 and
identify set of reset states 1 (i.e. when system-model



13 EP 0969 392 A2 14

input A=1 and B=0, or when A=0 and B=1), state 3 (i.e.
when system-model inputs A and B each take on a value
of 0) and state 5 (i.e. when system-model inputs A and
B each take on a value of 1) as the set of next states.
Since, however, Constraint2 and Constraint3 direct the
verification tool to assume that system-model input A
and system-model input B be assigned a value of 0 (i.
e. they are equal in value) and Constraint4 directs the
verification tool to assume that system-model inputs A
and B are not equal in value, the verification tool will not
recognize any state transition in which all the constraints
are satisfied. That is, the constraints will direct the ver-
ification tool to assume values for system-model inputs
A and B that are inconsistent with each other. As aresult,
the verification tool will not recognize any state transition
from state 4. Thus, the forward search performed in ac-
cordance with step 11 of method 10 would not reach
state 5 of state machine 20. Moreover, as shown in FIG.
3, the set of forward search states that would be identi-
fied in step 12 of method 10 includes only set of reset
states 1 and states 2-4.

[0045] The same verification tool programmed with
the above-listed constraints can perform a reverse
search of state machine 20 by identifying the states from
which the verification tool programmed with the above-
listed constraints can reach or recognize a path through
state machine 20 to set of reset states 1. Referring now
to FIG. 4 there is shown a state space 40 illustrating the
states reached when a conventional verification tool
programmed with the above-listed constraints performs
areverse search of state machine 20 in accordance with
step 13 of method 10. To illustrate, in performing the re-
verse search of state machine 20, the verification tool
will first identify each state having a direct state transi-
tion to set of reset states 1 (i.e. direct-transition states
2-5), input a complete set of inputs to system-model in-
puts A and B at each direct-transition state, and deter-
mine whether state machine 20 has a path from the di-
rect-transition states to set of reset states 1, given the
set of constraints. Since Constraintl directs the verifica-
tion tool to assume system-model input A equals sys-
tem-model input B in state 3, the verification tool will not
recognize state transition 25 of state machine 20. In ad-
dition, since Constraints 2-4 direct the verification tool
to assign inconsistent values to system-model inputs A
and B (i.e. A=0=B=A, or A#A), the verification tool will
not recognize state transition 29 of state machine 20.
As a result, the verification tool will only recognize state
transitions 22 and 32, and thus will only identify states
2 and 5 as having a direct path to set of reset states 1.
[0046] To continue the reverse search, the verification
tool will then identify those states having a direct state
transition to states 2 and 5 (i.e. indirect-transition states
3 and 4), input a complete set of inputs to system-model
inputs A and B at the identified indirect-transition states,
and determine whether state machine 20 recognizes a
path from the identified indirect-transition states to
states 2 and/or 5. To illustrate, the verification tool will

10

15

20

25

30

35

40

45

50

55

identify states 3 and 4 as having a direct transition to
states 2 and 5, respectively. When in state 3, Constraintl
will direct the verification tool to assume system-model
input A equals system-model input B. Since state tran-
sition 26 only requires that system-model inputs A and
B each take on a value of 0 (i.e. they are equal), the
verification tool will identify state 3 as having a direct
path to state 2, and thus a path in state machine 20 to
set of reset states 1. When in state 4, however, Con-
straints 2-4 will direct the verification tool to assign in-
consistent values to system-model inputs A and B (i.e.
A=0=B=#A, or A#A). As a result, the verification tool will
not recognize state transition 30 which connects state
4 to state 5 in state machine 20. Thus, the verification
tool will not recognize and path from state 4 to set of
reset states 1. Consequently, as shown in FIG. 4, the
set of reverse search states that would be identified in
step 14 of method 10 would include only set of reset
states 1 and states 2, 3 and 5.

[0047] In accordance with step 15 of method 10, the
set of non-returnable states of state machine 20 is de-
termined by identifying the states or group of states in
the set of forward search states that are not included in
the set of reverse search states. Since the set of forward
search states includes set of reset states 1 and states
2-4, and the set of reverse search states includes set of
reset states 1 and states 2, 3 and 5, the set of non-re-
turnable states in state machine 20 includes only state 4.
[0048] Once state 4 is identified as a non-returnable
state, the constraints enabled in state 4 (i.e. constraints
2-4), or the constraints enabled in the group of states
represented by state 4, are analyzed in accordance with
step 16 of method 10 to determine whether they define
value-assignments that are inconsistent with each oth-
er. Since Constraint2 and Constraint3 direct the verifi-
cation tool to assume that both system-model input A
and system-model input B have a value of 0 (i.e. they
are equal), and Constraint4 directs the verification tool
to assume that system-model input A does not equal
system-model input B, constraints 2-4 will be identified
in step 16 of method 10 as defining assumptions that
are mutually contradictory, or overconstraining in the
case of state 4 representing a group of states.

[0049] Depending on which properties or states the
system designer wishes to check, the assumptions de-
fined by any one or combination of mutually-contradic-
tory or overconstraining constraints 2-4 are changed in
accordance with step 17 of method 10, so that the con-
straints are mutually consistent. For example, if in a par-
ticular embodiment the system designer wishes to
search only states 104 of state machine 20, constraint4
can be changed to direct the verification tool to assume
that system-model variable A equals system-model var-
iable B. To illustrate constraint 4 can be changed to the
expression "IF(state=4)ASSUME(A=B)." Such a
change to constraint4 would transform constraints 1-4
into a set of mutually consistent constraints.

[0050] If a verification tool, programmed with the set



15 EP 0969 392 A2 16

of mutually consistent constraints, performs a search of
the state machine 20 in accordance with step 18 of
method 20, the verification tool will recognize every
state transition except state transition 30 which defines
the conditions for state machine 20 to transition from
state 4 to state 5. Thus, the set of mutually consistent
constraints will direct the verification tool to only check
or search the behaviors represented by states 1-4, as
desired by the system-designer.

[0051] Referring now to FIG. 5, there is shown an il-
lustrative embodiment of an apparatus 50 for performing
a search in accordance with method 10 of FIG. 1. As
shown, apparatus 50 has a verification tool 51 including
a processor 52, a search engine 58, a memory 55, a
constraint-value analyzer 53 and a value adjuster 54.
Verification tool 51 is connected to a user interface 57
and other peripherals 56.

[0052] Verification tool 51 is operable to use search
engine 58, processor 52 and memory 55 to perform a
search of a system-model state machine in a conven-
tional manner. That is, search engine 58 is operable to
feed inputs to the system-model inputs and monitor the
behavior of the state machine in response to those in-
puts in a conventional manner. Processor 52 is operable
to perform calculations and other functions required by
search engine 58 to perform the search. Memory 55 is
a conventional random access memory (RAM) operable
to store the values input by the search engine to the sys-
tem-model inputs and store the corresponding values
assumed by system-model variables and/or inputs as a
result of the inputs.

[0053] Verification tool 51 is also operable to use con-
straint-value analyzer 53 to compare the values as-
signed by each constraint enabled in a given non-return-
able state and identify the constraints that define value-
assignments that are inconsistent with each other (i.e.
mutually contradictory or overconstraining). In particular
embodiments constraint-value analyzer 53 is a compu-
ter program accessible to processor 52.

[0054] Verification tool 51 is further operable to use
value adjuster 54 to change the values assigned by mu-
tually-contradictory or overconstraining constraints so
that their value-assignments are mutually consistent. In
particular embodiments, value adjuster 54 is a computer
program accessible to processor 52.

[0055] Other peripherals 56 includes, for example, a
printer for printing out the values stored in memory 55,
and a modem for connecting verification tool 51 to, for
example, a database in which verification tool 51 can
store the results of a search by search engine 58. User
interface 57 includes, for example, a conventional key-
board and a display to enable a programmer to, for ex-
ample, control the operation of verification tool 51 and
input constraints to memory 55.

[0056] When performing the steps of method 10
shown in FIG. 1, verification tool 51 uses search engine
58 to perform both a forward search and a reverse
search of a system-model state space to identify a set

10

15

20

25

30

35

40

45

50

55

of forward search states and a set of reverse search
states, as described above. Processor 52 is then used
to identify a set of non-returnable states as the states or
groups of states included in the set of forward search
states that are not included in the set of reverse search
states. Once the set of non-returnable states is identi-
fied, processor 52 identifies the constraints enabled in
a given non-returnable state (i.e. an individual state or
a group of states that is identified as non-returnable) and
feeds the enabled constraints to constraint value ana-
lyzer 53 which identifies the constraints that define in-
consistent value-assignments as either mutually-con-
tradictory constraints in the case of the given non-re-
turnable state being an individual state, or as overcon-
straining constraints in the case of the given non-return-
able state being a group of states. The mutually-contra-
dictory constraints or overconstraining constraints are
fed to value adjuster 54 which adjusts at least one of the
constraints so that they assign values that are consist-
ent with each other, or mutually consistent. The mutually
consistent constraints are then fed back to search en-
gine 58 which performs a search of the system-model
state space. The results of the search can then be print-
ed out through other peripherals 56, stored in memory
55 and/or displayed through user interface 57.

[0057] For clarity of explanation, the embodiments of
the present invention shown in FIG.'s 1 and 5 and de-
scribed above is merely illustrative. Thus, for example,
it will be appreciated by those skilled in the art that the
block diagram shown and described in FIG. 5 herein
represents a conceptual view of illustrative circuitry em-
bodying an apparatus for performing a search in accord-
ance with the principles of the invention. Similarly, it will
be appreciated by those skilled in the art that the block
diagram shown and described in FIG. 1 herein repre-
sents a conceptual view of illustrative steps embodying
a method for performing a search of a system-model
state space with a set of mutually consistent constraints
developed in accordance with the principles of the in-
vention.

[0058] Inthe claims hereof any element expressed as
a means for performing a specified function is intended
to encompass any way of performing that function in-
cluding, for example, a) a combination of circuit ele-
ments which performs that function or b) software in any
form (including, therefore, firmware, microcode or the
like) combined with appropriate circuitry for executing
the software to perform the function. The invention de-
fined by such claims resides in the fact that the function-
alities provided by the various recited means are com-
bined and brought together in the manner in which the
claims call for. Applicant thus regards any means which
can provide those functionalities as equivalent as those
shown herein.

[0059] It will be appreciated by those skilled in the art
that they will be able to devise various arrangements
which, though not explicitly shown or described herein,
embody the principles of the present invention and thus



17 EP 0969 392 A2 18

are within its spirit and scope.

Claims

1.

A method of verifying properties of a system model,
the method comprising the steps of:

developing a set of mutually-consistent con-
straints by analyzing assumptions defined by
constraints enabled in a non-returnable state of
a state space representing the behavior of the
system model, said non-returnable state being
a state from which there is no path through the
state space to a set of reset states when a ver-
ification tool programmed with said constraints
searches said state space; and

searching the state space using a verification
tool programmed with said set of mutually-con-
sistent constraints.

2. The method of claim 1 wherein said step of devel-

oping said set of mutually-consistent constraints
comprises the steps of:

using a verification tool programmed with said
constraints, performing a forward search of
said state space to identify a set of forward
search states, said set of forward search states
being the states that said verification tool
reaches by inputting a complete set of inputs at
each state; and

using said verification tool programmed with
said constraints, performing a reverse search
of the state space to identify a set of reverse
search states, said set of reverse search states
being the states from which said verification
tool can reach the set of reset states by input-
ting said complete set of inputs at each state;
said set of non-returnable states being the dif-
ference between the set of forward search
states and the set of reverse search states.

The method of claim 2 wherein said step of devel-
oping said set of mutually-consistent constraints
further comprises the step of identifying the con-
straints, enabled in a non-returnable state, that de-
fine assumptions that are inconsistent with each
other.

The method of claim 3 wherein said step of devel-
oping said set of mutually-consistent constraints
further comprises the step of changing the assump-
tions defined by said constraints identified as incon-
sistent with each other so that they define value-
assignments that are mutually consistent with each
other when enabled at a given state of the state
space.

10

15

20

25

30

35

40

45

50

55

10

5. A method comprising the steps of:

identifying a set of non-returnable states in a
system-model state space, said set of non-re-
turnable states being states in which a verifica-
tion tool, programmed with a set of constraints,
recognizes no path to a set of reset states, said
set of reset states being states in the system
model state space states from which the sys-
tem model is designed to begin operation and
return to after an operation is completed; and

analyzing the constraints enabled in said set of
non-returnable states to determine whether
said set of constraints programmed in said ver-
ification tool are inconsistent with each other.

6. The method of claim 5 wherein said step of identi-

fying comprises the steps of:

using said verification tool programmed with
said constraints, performing a forward search
of said system-model state space to identify a
set of forward search states, said set of forward
search states being the states that said verifi-
cation tool reaches by inputting a complete set
of inputs at each state; and

using said verification tool programmed with
said constraints, performing a reverse search
of the system-model state space to identify a
set of reverse search states, said set of reverse
search states being the states from which said
verification tool reaches the set of reset states
by inputting said complete set of inputs at each
state;

said non-returnable states being the difference
between said set of forward search states and
said set of reverse search states.

The method of claim 6 wherein said step of analyz-
ing comprises the step of comparing values as-
signed by constraints enabled in said non-returna-
ble states to determine whether the values are con-
sistent with each other.

The method of claim 7 further comprising the step
of:

identifying constraints that assign inconsist-
ent values in a non-returnable state as a set of in-
consistent constraints.

The method of claim 8 further comprising the step
of:

adjusting values assigned by said set of in-
consistent constraints so that said set of constraints
are mutually consistent.

10. An apparatus comprising:



1.

12

13.

14.

15.

16.

17.

19

means for developing a set of mutually-consist-
ent constraints by analyzing assumptions de-
fined by constraints enabled in a non-returna-
ble state of a state space representing the be-
havior of the system model, said non-returna-
ble state being a state from which there is no
path through the state space to a set of reset
states when a verification tool programmed
with said constraints searches said state
space; and

a verification tool programmed with said set of
mutually consistent constraints for searching
the state space.

The apparatus of claim 10 wherein said verification
tool comprises a processor coupled to a search en-
gine, a memory, a constraint-value analyzer and a
value adjuster..

The apparatus of claim 11 further comprising a user
interface coupled to said verification tool, said user
interface including a computer keyboard and a dis-
play which enable a programmer to control an op-
eration of the verification tool.

The apparatus of claim 12 further comprising pe-
ripheral devices including a printer and a modem,
said printer and said modem being connected to
said verification tool.

The apparatus of claim 13 wherein said verification
tool is operable to perform a forward search of said
system-model state space to identify a set of for-
ward search states, said set of forward search
states being the states that said verification tool
reaches by inputting a complete set of inputs at
each state.

The apparatus of claim 14 wherein said verification
tool is further operable to perform a reverse search
of said system-model state space to identify a set
of reverse search states, said set of forward search
states being the states that said verification tool
reaches by inputting a complete set of inputs at
each state, said non-returnable states thereby be-
ing the difference between the set of forward search
states and the set of reverse search states.

The apparatus of claim 15 wherein said constraint-
value analyzer comprises means for determining
whether constraints enabled in a non-returnable
state define values that are inconsistent with each
other, said constraints that define inconsistent val-
ues being inconsistent constraints.

The apparatus of claim 16 wherein said value ad-
juster comprises means for adjusting values as-
signed by said inconsistent constraints to obtain the

10

15

20

25

30

35

40

45

50

55

11

EP 0969 392 A2

18.

19.

20.

21.

22,

20
set of mutually consistent constraints.

A method for determining whether constraints input
to a verification tool are mutually contradictory, the
method comprising the step of:

determining whether a set of values assigned
by a set of constraints enabled in a non-returnable
state of a system-model state space, during a
search performed by the verification tool, are incon-
sistent with each other, said non-returnable state
being a state in which the verification tool recogniz-
es no path to a set of reset states, said set of reset
states being states in the system model state space
states from which the system model is designed to
begin operation and to which the system model is
designed to return after an operation is completed.

The method of claim 18 wherein said step of deter-
mining comprises the steps of:

using said verification tool programmed with
said constraints, performing a forward search
of said system-model state space to identify a
set of forward search states, said set of forward
search states being the states that said verifi-
cation tool reaches by inputting a complete set
of inputs at each state; and

using said verification tool programmed with
said constraints, performing a reverse search
of the system-model state space to identify a
set of reverse search states, said set of reverse
search states being the states from which said
verification tool reaches the set of reset states
by inputting said complete set of inputs at each
state;

said non-returnable states being the difference
between said set of forward search states and
said set of reverse search states.

The method of claim 19 further comprising the step
of:

identifying constraints that assign inconsist-
ent values in a non-returnable state as a set of mu-
tually-contradictory constraints.

The method of claim 20 further comprising the step
of:

adjusting said inconsistent values to convert
said mutually contradictory constraints to mutually
consistent constraints.

A method of verifying properties of a system model,
the method comprising the step of searching a state
space representing the behavior of the system
model using a verification tool programmed with a
set of non-contradictory constraints developed by
redefining assumptions defined by test constraints
enabled in a non-returnable state of the state space,



21 EP 0969 392 A2

said non-returnable state being a state from which
there is no path through the state space to a set of
reset states when a verification tool programmed
with said test constraints searches said state space.

10

15

20

25

30

35

40

45

50

55

12



EP 0969 392 A2

FIG. 1 10

11

PERFORM A FORWARD SEARCH OF A SYSTEM-MODEL STATE SPACE USING
A VERIFICATION TOOL PROGRAMMED WITH CONSTRAINTS

!

IDENTIFY THE STATES REACHED DURING THE FORWARD SEARCH AS THE
SET OF FORWARD SEARCH STATES

l

PERFORM A REVERSE SEARCH OF THE SYSTEM-MODEL STATE SPACE USING
THE VERIFICATION TOOL PROGRAMMED WITH THE CONSTRAINTS

t

IDENTIFY THE STATES REACHED DURING THE REVERSE SEARCH AS THE
SET OF REVERSE SEARCH STATES

6

IDENTIFY THE STATES IN THE SET OF FORWARD SEARCH STATES THAT ARE
NOT INCLUDED IN THE SET OF REVERSE SEARCH STATES AS THE SET OF
NON-RETURNABLE STATES

!

ANALYZE THE CONSTRAINTS ENABLED IN A NON-RETURNABLE STATE TO
IDENTIFY THE ENABLED CONSTAINTS THAT DEFINE ASSUMPTIONS THAT
ARE MUTUALLY CONTRADICTORY

!

CHANGE AT LEAST ONE ASSUMPTION DEFINED BY AN ENABLED CONSTRAINT
IDENTIFIED AS MUTUALLY CONTRADICTORY SO THAT THE CONSTRAINTS ARE
MUTUALLY CONSISTENT

!

SEARCH THE SYSTEM-MODEL STATE SPACE USING A VERIFICATION TOOL
PROGRAMMED WITH THE SET OF MUTUALLY CONSISTENT CONSTRAINTS

13



EP 0969 392 A2

FIG. 3

/51

521

VERIFICATION TOOL

OTHER PERIPHERALS

PROCESSOR

CONSTRAINT VALUE ANALYZER

SEARCH ENGINE

53/
/54

MEMORY

VALVE ADJUSTER

351

57

USER INTERFACE

14



	bibliography
	description
	claims
	drawings

