(19)
(11) EP 0 982 799 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
01.03.2000  Patentblatt  2000/09

(21) Anmeldenummer: 99202591.6

(22) Anmeldetag:  09.08.1999
(51) Internationale Patentklassifikation (IPC)7H01Q 9/04, H01Q 1/24
(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 17.08.1998 DE 19837266

(71) Anmelder:
  • Philips Corporate Intellectual Property GmbH
    52064 Aachen (DE)

    DE 
  • Koninklijke Philips Electronics N.V.
    5621 BA Eindhoven (NL)

    FR GB IT 

(72) Erfinder:
  • Heinrichs, Frank Philips Corp.Intellec.Prop. GmbH
    22335 Hamburg (DE)
  • Schlenker,Tilman Philips Corp.Intellec. Prop.GmbH
    22335 Hamburg (DE)

(74) Vertreter: Volmer, Georg, Dipl.-Ing. 
Philips Corporate Intellectual Property GmbH, Habsburgerallee 11
52064 Aachen
52064 Aachen (DE)

   


(54) Dielektrische Resonatorantenne


(57) Die Erfindung bezieht sich auf eine dielektrische Resonatorantenne DRA (4) mit einer elektrisch leitenden Schicht in einer Symmetrieebene. Um bei einer dielektrischen Resonatorantenne (4) eine bessere Kopplung an eine Zuleitung (9, 10, 11) zu schaffen, wird vorgeschlagen, daß in der Symmetrieebene wenigstens ein, von der elektrisch leitenden Schicht isolierter, elektrischer Kontakt vorgesehen ist, und daß die elektrische Schicht und der elektrische Kontakt zur Verbindung der dielektrischen Resonatorantenne (4) mit wenigstens einer Zuleitung (9, 10, 11) für ein zu sendendes oder zu empfangenes Signal vorgesehen sind. Auf diese Weise entstehen in einer Ebene zwei fest mit der dielektrischen Resonatorantenne (4) verbundene elektrische Kontakte, durch die die Antenne (4) auf einer Platine (PCB) (8) in der bekannten SMD-Technik (Verlöten auf der Oberfläche der Platine) montiert werden kann. Damit wird eine deutlich bessere Einkopplung der Leistung in die Antenne (4) erreicht.
Außerdem betrifft sich die Erfindung noch einen Sender und Empfänger mit einer dielektrischen Resonatorantenne (4) mir einer elektrisch leitenden Schicht in einer Symmetrieebene sowie auf ein Mobilfunkgerät mit einer solchen Antenne (4).




Beschreibung


[0001] Die Erfindung betrifft eine dielektrische Resonatorantenne (DRA) mit einer elektrisch leitenden Schicht in einer Symmetrieebene.

[0002] Außerdem bezieht sich die Erfindung noch auf einen Sender und Empfänger mit einer dielektrischen Resonatorantenne mit einer elektrisch leitenden Schicht in einer Symmetrieebene sowie auf ein Mobilfunkgerät mit einer solchen Antenne.

[0003] Dielektrische Resonatorantennen (DRA) sind als miniaturisierte Antennen aus Keramik oder einem anderen Dielektrikum für Mikrowellenfrequenzen bekannt. In einem dielektrischen Resonator, dessen Dielektrikum mir einer Dielektrizitätszahl von εr >> 1 von Luft umgeben ist, besitzt dieser ein diskretes Spektrum von Eigenfrequenzen und Eigenmoden. Im Gegensatz zu einem Resonator, der bei Vermeidung von Abstrahlungsverlusten eine sehr hohe Güte aufweist, steht bei einer Resonatorantenne die Abstrahlung von Leistung im Vordergrund. Da keine leitenden Strukturen als strahlendes Element verwendet werden, kann sich der Skineffekt nicht negativ auswirken. Daher weisen solche Antennen niedrige ohmsche Verluste bei hohen Frequenzen auf. Durch die Verwendung von Materialien mit hoher Dielektrizitätszahl kann weiterhin ein kompakter, miniaturisierter Aufbau erreicht werden. In der Figur 1 ist eine solche DR-Antenne 1 in da als beispielhaft betrachteten Grundform dargestellt. Neben der Form als Quader sind auch andere Formen möglich, wie zum Beispiel zylinder- oder kugelförmige Geometrien. Dielektrische Resonatorantennen sind resonante Bauteile, die nur in einem schmalen Band um eine ihrer Resonanzfrequenzen arbeiten. Das Problem der Miniaturisierung einer Antenne ist äquivalent dazu, die Arbeitsfrequenz bei gegebenen Antennenabmessungen zu erniedrigen. Deshalb wird die niedrigste Resonanz (TEz111-Mode) verwendet. Diese Mode besitzt eine Ebene, in der die Tangentialkomponente des elektrischen Feldes verschwindet, die Symmetrieebene 2 genannt wird. Wenn die Antenne in der Symmetrieebene 2 halbiert und eine elektrisch leitfähige Fläche 3 angebracht wird (beispielsweise eine Metallplatte), bleibt die Resonanzfrequenz gleich der einer Antenne mit den ursprünglichen Abmessungen. Dies ist in der Figur 2 dargestellt. Eine weitere Miniaturisierung kann bei dieser Antenne mittels eines Dielektrikums mit hoher Dielektrizitätszahl εr erzielt werden. Dabei wird vorzugsweise ein Material mir geringen dielektrischen Verlusten ausgewählt.

[0004] Eine solche dielektrische Resonatorantenne wird in dem Artikel

Dielectric Resonator Antennas -A review and general design relations for resonant frequency and bandwidth", Rajesh K. Mongia und Prakash Barthia, Intern. Journal of Microwave and Millimeter-wave Computer-aided Engineering, Vol. 4, No. 3, 1994, Seiten 230-247 beschrieben. Dabei wird ein Überblick über die Moden und die Strahlungscharakteristik für verschiedene Formen, wie zylindrische, kugelförmige und rechtwinklige DRA's gegeben. Es werden für unterschiedliche Formen die möglichen Moden und Symmetrieebenen gezeigt (siehe Figur 4, 5, 6 und Seite 240, linke Spalte, Zeilen 1-21). In der Figur 9 und der zugehörigen Beschreibung wird insbesondere eine quaderförmige dielektrische Resonatorantenne beschrieben. Mittels einer Metallfläche in der x-z-Ebene bei y=0 oder der y-z-Ebene bei x=0 kann die ursprüngliche Struktur halbiert werden, ohne die Feldverteilung oder andere Resonanzcharakteristika für die Tez111-Mode zu verändern (Seite 244, rechte Spalte, Zeilen 1-7). Die DRA wird über eine Zuleitung mit Mikrowellenleistung angeregt, indem sie in das Streufeld in der Nähe einer Mikrowellenleitung (beispielsweise eine Microstripleitung oder das Ende einer Koaxialleitung) eingebracht wird.

[0005] Bei dieser Art der Einkopplung der Leistung ist die für einen guten Wirkungsgrad notwendige Impedanzanpassung der dielektrischen Resonatorantenne an die Zuleitung schwierig, da die Anpassung stark von der Position der Antenne zur Zuleitung abhängt. Die Abweichung der relativen Position der Antenne zur Zuleitung schwankt aber insbesondere bei einer automatischen Fertigung sehr stark.

[0006] Die Aufgabe der Erfindung besteht darin, bei einer dielektrischen Resonatorantenne eine bessere Kopplung an eine Zuleitung zu schaffen.

[0007] Die Aufgabe wird dadurch gelöst, daß in der Symmetrieebene wenigstens ein, von der elektrisch leitenden Schicht isolierter, elektrischer Kontakt vorgesehen ist, und daß die elektrische Schicht und der elektrische Kontakt zur Verbindung der dielektrischen Resonatorantenne mir wenigstens einer Zuleitung für ein zu sendendes oder zu empfangenes Signal vorgesehen sind. Auf diese Weise entstehen in einer Ebene zwei fest mir da dielektrischen Resonatorantenne verbundene elektrische Kontakte, die zur Einkopplung da Leistung mit der DRA verbunden werden können. Eine erfindungsgemäße Antenne kann mit anderen Komponenten auf einer Platine (PCB) in der bekannten SMD-Technik (Verlöten auf der Oberfläche der Platine) montiert werden. Diese SMD-fähige DRA kann fest mit den Zuleitungen auf der Platine verlötet werden, wodurch eine deutlich bessere Einkopplung als beim Einbringen in das Streufeld einer Zuleitung erzielt wird. Die Impedanzanpassung hängt wesentlich weniger von der genauen Positionierung der Antenne auf der Platine ab, als beim Einkoppeln in ein Streufeld, bei dem die Anpassung stark vom Abstand der Antenne von der Zuleitung abhängt.

[0008] Bei einer vorteilhaften Ausführungsform ist jeweils eine Metallschicht zur Bildung der elektrisch leitenden Schicht in der Symmetrieebene und des elektrischen Kontaktes vorgesehen. Metallschichten eignen sich aufgrund ihrer guten Fertigungseigenschaften und elektrischen Leitfähigkeit gut zur Realisierung der Verbindung mit einer Zuleitung.

[0009] In einer weiteren Ausgestaltung ist eine Metallschicht auf einer an die Symmetrieebene angrenzenden Seite der DRA zur Verbindung mit dem elektrischen Kontakt in der Symmetrieebene vorgesehen. Auf diese Weise wird mit der Erweiterung durch die Metallschicht eine besonders gute Anregung der dielektrischen Resonatorantenne erreicht. Beispielsweise kann bei einer quaderförmigen Antenne mit der Symmetrieebene als Grundfläche der elektrische Kontakt auf einer angrenzenden Stirnseite angebracht werden. Dabei wird die Metallschicht über die Kante auf die Grundfläche durchgeführt, so daß in der Symmetrieebene ein Lötpunkt entsteht, der für die Oberflächenmontage verwendet werden kann. Dieser Lötpunkt ist natürlich von der elektrisch leitenden Schicht isoliert, was vorzugsweise durch Aussparen einer kleinen Fläche beim Metallisieren der Symmetrieebene geschieht. Dabei ist vorteilhafterweise eine Silberpaste zur Bildung der Metallschicht durch Einbrennen in das Material der DRA vorgesehen.

[0010] In einer bevorzugten Weiterbildung ist als Material für die dielektrische Resonatorantenne eine Keramik aus (Ba, Nd, Gd)TiO3 vorgesehen. Dieses keramische Material weist alle wichtigen Eigenschaften für die dielektrische Resonatorantenne wie hohe Dielektrizitätszahl, niedrige dielektrische Verluste und einen niedrigen dielektrischen Temperaturkoeffizienten auf.

[0011] Weitere vorteilhafte Ausgestaltungen sind in den übrigen Ansprüchen enthalten.

[0012] Weiterhin wird die Aufgabe der Erfindung noch durch einen Sender und einen Empfänger sowie ein Mobilfunkgerät gelöst, bei dem in der Symmetrieebene der Antenne wenigstens ein, von der elektrisch leitenden Schicht isolierter, elektrischer Kontakt vorgesehen ist, und die elektrische Schicht und der elektrische Kontakt zur Verbindung der dielektrischen Resonatorantenne mit wenigstens einer Zuleitung für ein zu sendendes oder zu empfangenes Signal vorgesehen sind.

[0013] Im folgenden soll ein Ausführungsbeispiel der Erfindung anhand von Zeichnungen näher erläutert werden. Dabei zeigen
Figur 1:
eine dielektrische Resonatorantenne,
Figur 2:
eine halbierte dielektrische Resonatorantenne mit einer elektrisch leitenden Schicht in einer Symmetrieebene,
Figur 3:
eine dielektrische Resonatorantenne mit elektrischen Kontakten gemäß der Erfindung für eine Oberflächenmontage und
Figur 4:
eine auf eine Platine montierte Antenne gemäß der Erfindung.


[0014] In der Figur 3 ist eine dielektrische Resonatorantenne (DRA) 4 mit einer metallischen Schicht 5 in einer Symmetrieebene dargestellt. Weiterhin besitzt der Keramikquader der DRA 4 eine zweite Metallisierung 6 an einer Stirnseire. Die zweite Metallisierung 6 besitzt einen Lötpunkt 7, der sich in der Symmetrieebene elektrisch isoliert von der Metallschicht 5 befindet. Der Lötpunkt 7 bildet den zusätzlichen elektrischen Kontakt in der Symmetrieebene. Dazu wird zunächst die Symmetrieebene, in der die Tangentialkomponente des elektrischen Feldes der gewünschten Eigenmode (niedrigste Resonanz bei TEz111-Mode) verschwindet, mit einer fest mit dem Dielektrikum verbundenen Metallisierung versehen. Dies geschieht vorzugsweise mit einer Silberpaste, die in die Keramik eingebrannt wird. Die zweite Metallisierung 6 an der Stirnseire wird auf die gleiche Weise angebracht. Diese Metallisierungen 5,6,7 erlauben eine Oberflächenmontage (Surface Mount Device, SMD), also das flache Auflöten elektronischer Komponenten auf einer Platine (Printed Circuit Board PCB) mittels eines Wellen-Lötbades oder eines Reflow-Prozesses.

[0015] In der Figur 4 ist eine mit Metallisierungen 5 und 6 versehene DRA 4 dargestellt, die in Oberflächenmontagetechnik auf eine Platine 8 mit einer koplanaren Streifenleitung 9, 10, 11 verlötet wurde. Die Metallisierung 6 auf der Stirnseite wird dabei am nach der Montage nicht mehr zu sehenden Lötpunkt 7 mit einer Zuleitung 9 elektrisch verbunden. Die Metallisierung der Symmetrieebene 5 wird an zwei Lötpunkten mit den auf Masse liegenden Flächen 10 und 11 der koplanaren Leitung 9, 10 11 verbunden. Eine so montierte Antenne 4 weist eine gute Kopplung mit der Zuleitung 9, 10, 11 mit einer sehr guten Impedanzanpassung auf (Return-Loss von -35dB), wodurch ein sehr guter Wirkungsgrad erreicht wird. Die guten Werte für die Impedanzanpassung sind unempfindlich gegen Schwankungen in der genauen Form und Größe der Metallisierungen und der Position der Antenne auf der Platine 8.

[0016] Damit werden folgende Vorteile erreicht. Die Antenne 4 wird fest mit den Leiterbahnen 9, 10, 11 der Zuführungsplatine 8 verlötet. Das Verlöten geschieht flach auf der Oberfläche der Platine, also in der als Fertigungstechnik der Elektronikindustrie bekannten SMD-Technik. Damit kann die Montage der Antenne 4 mit anderen Bauteilen kombiniert werden. Weiterhin weist eine derart montierte DRA 4 eine sehr gute Impedanzanpassung an die Zuleitung 9, 10, 11 auf, die unempfindlich gegen Ungenauigkeiten in der Positionierung der DRA 4 ist. Die beschriebene DRA 4 kann vorzugsweise durch einen Quader der Abmessungen 15x5x6mm3 aus einer (Ba, Nd, Gd)TiO3 Keramik realisiert werden. Dieses Material ist Hochfrequenz geeignet, hat eine Dielektrizitätszahl von er=85, niedrige dielektrische Verluste von

und einen niedrigen dielektrischen Temperaturkoeffizienten von τε = -30ppm/°C (NP0-Charakteristik). Die Metallisierungen 5 und 6 werden mittels einer Silberpaste hergestellt, die bei einer Temperatur von 700°C eingebrannt wird, so daß eine geschlossene, hoch leitfähige metallische Schicht entsteht. Die Microstripleitung 9, 10, 11 kann auf einem Standard Platinensubstrat 8 mit einem Wellenwiderstand von 50 Ω realisiert werden. Die Arbeitsfrequenz einer solchen DRA 4 liegt bei 2,1 GHz, so daß sie insbesondere für Anwendungen im Mobilfunkbereich geeignet ist.


Ansprüche

1. Dielektrische Resonatorantenne (DRA) (4) mit einer elektrisch leitenden Schicht (5) in einer Symmetrieebene (2),
dadurch gekennzeichnet,

daß in der Symmetrieebene (2) wenigstens ein, von der elektrisch leitenden Schicht (5) isolierter, elektrischer Kontakt (7) vorgesehen ist und

daß die elektrische Schicht (5) und der elektrische Kontakt (7) zur Verbindung der dielektrischen Resonatorantenne (4) mit wenigstens einer Zuleitung (9, 10, 11) für ein zu sendendes oder zu empfangenes Signal vorgesehen sind.


 
2. Dielektrische Resonatorantenne (DRA) (4) nach Anspruch 1,
dadurch gekennzeichnet,

daß jeweils eine Metallschicht zur Bildung der elektrisch leitenden Schicht (5) in der Symmetrieebene (2) und des elektrischen Kontaktes (7) vorgesehen ist.


 
3. Dielektrische Resonatorantenne (DRA) (4) nach Anspruch 1,
dadurch gekennzeichnet,

daß eine Metallschicht (6) auf einer an die Symmetrieebene (2) angrenzenden Seite der DRA (4) zur Verbindung mit dem elektrischen Kontakt (7) in der Symmetrieebene (2) vorgesehen ist.


 
4. Dielektrische Resonatorantenne (DRA) (4) nach Anspruch 2,
dadurch gekennzeichnet,

daß eine Silberpaste zur Bildung der Metallschicht (5, 7) durch Einbrennen in das Material der DRA (4) vorgesehen ist.


 
5. Dielektrische Resonatorantenne (DRA) (4) nach Anspruch 1,
dadurch gekennzeichnet,

daß als Material für die dielektrische Resonatorantenne (4) eine Keramik aus (Ba, Nd, Gd)TiO3 vorgesehen ist.


 
6. Dielektrische Resonatorantenne (DRA) (4) nach Anspruch 1,
dadurch gekennzeichnet,

daß die elektrische Schicht (5) und der elektrische Kontakt (7) zur Verbindung der dielektrischen Resonatorantenne (4) mit wenigstens einer koplanaren Streifenleitung (9, 10, 11) vorgesehen sind.


 
7. Dielektrische Resonatorantenne (DRA) (4) nach Anspruch 1,
dadurch gekennzeichnet,

daß die dielektrische Resonatorantenne (4) die geometrische Form eines rechtwinkligen Quaders mit zwei Stirnseiten, zwei Seitenflächen, Grundfläche und Deckfläche besitzt.


 
8. Dielektrische Resonatorantenne (DRA) (4) nach Anspruch 7,
dadurch gekennzeichnet,

daß die Symmetrieebene (2) zur Bildung der Grundfläche vorgesehen ist und der elektrische Kontakt (7) auf einer Stirnseite aufgebracht ist.


 
9. Sender mit einer dielektrischen Resonatorantenne (DRA) (4) mit einer elektrisch leitenden Schicht (5) in einer Symmetrieebene (2),
dadurch gekennzeichnet,

daß in der Symmetrieebene (2) wenigstens ein, von der elektrisch leitenden Schicht (5) isolierter, elektrischer Kontakt (7) vorgesehen ist und

daß die elektrische Schicht (5) und der elektrische Kontakt (7) zur Verbindung der dielektrischen Resonatorantenne (4) mit wenigstens einer Zuleitung (9, 10, 11) für ein zu sendendes Signal vorgesehen sind.


 
10. Empfänger mit einer dielektrischen Resonatorantenne (DRA) (4) mit einer elektrisch leitenden Schicht (5) in einer Symmetrieebene (2),
dadurch gekennzeichnet,

daß in der Symmetrieebene (2) wenigstens ein, von der elektrisch leitenden Schicht (5) isolierter, elektrischer Kontakt (7) vorgesehen ist und

daß die elektrische Schicht (5) und der elektrische Kontakt (7) zur Verbindung der dielektrischen Resonatorantenne (4) mit wenigstens einer Leitung (9, 10, 11) für ein zu empfangenes Signal vorgesehen sind.


 
11. Mobilfunkgerät mit einer dielektrischen Resonatorantenne (DRA) (4) mit einer elektrisch leitenden Schicht (5) in einer Symmetrieebene (2),
dadurch gekennzeichnet,

daß in der Symmetrieebene (2) wenigstens ein, von der elektrisch leitenden Schicht (5) isolierter, elektrischer Kontakt (7) vorgesehen ist und

daß die elektrische Schicht (5) und der elektrische Kontakt (7) zur Verbindung der dielektrischen Resonatorantenne (4) mit wenigstens einer Zuleitung (9, 10, 11) für ein zu sendendes oder zu empfangenes Signal vorgesehen sind.


 




Zeichnung