

(12)

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 984 529 A2

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

08.03.2000 Patentblatt 2000/10

(21) Anmeldenummer: 99117118.2

(22) Anmeldetag: 31.08.1999

(51) Int. Cl.7: H01R 39/04

(11)

(84) Benannte Vertragsstaaten:

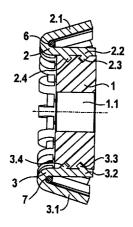
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten:

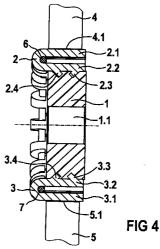
AL LT LV MK RO SI

(30) Priorität: 02.09.1998 DE 19839989

(71) Anmelder:


SIEMENS AKTIENGESELLSCHAFT 80333 München (DE)

(72) Erfinder:


- · DrexImaier, Thomas D-97076 Würzburg (DE)
- · Heim, Norbert, Dipl.-Ing. D-97228 Rottendorf (DE)
- · König, Michael, Dipl.-Ing. D-97082 Würzburg (DE)
- Redelberger, Harald, Dipl.-Ing. D-97273 Kürnach (DE)
- · Weiler, Theo D-97076 Würzburg (DE)

(54)Haken-kommutator für eine elektrische Maschine

(57)Zur Minderung des axialen Einbauraums bei gleichzeitig einfacher Fertigung sind die Kommutator-Haken (2;3) mit ihren freien, zu ihrer Verankerungsebene (2.2;3.2) in dem Kommutator abgewandten Enden als beschleifbare Lamellen (2.1;3.1) ausgebildet und nach Aufnahme, insbesondere Umschlingung, von zumindest einem Wicklungsdraht (6;7) in die Ebene der Bürstenschleiffläche (4.1;5.1) gebracht; in vorteilhafter Weise ist dabei die gesamte axiale Länge des Kommutators als Bürstenschleiffläche ausnutzbar.

FIG₃

25

Beschreibung

[0001] Die Erfindung bezieht sich auf einen Haken-Kommutator für eine elektrische Maschine gemäß Patentanspruch 1.

[0002] Bei Kommutatoren bekannter Art sind die von zur Bestromung vorgesehenen Bürsten zu beschleifenden Lamellen über den Außenumfang einer Isolierstoffnabe verteilt, mit der der Kommutator auf einer Rotorwelle gehalten ist. Die Lamellen sind an ihrer radialen Innenseite, vorzugsweise durch einstückig angeformte Krallen, in der Preßstoffmasse der Isolierstoffnabe verankert. An ihrem jeweils einem axialen Ende gehen die Lamellen randseitig zur eigentlichen Bürstenschleiffläche in Kommutator-Haken über, die zunächst von der Bürstenschleifflächen-Ebene bzw. Verankerungs-Ebene derart abstehen, daß sie mit zumindest einem Wicklungsdraht der über den Kommutator zu bestromenden Rotorwicklung umwickelbar sind und die anschließend unter Festlegung des Wicklungsdrahtes in Richtung der Ebene der Bürstenschleiffläche bzw. Verankerungsebene derart umgebogen sind, daß die ungebogenen Kommutator-Haken mit den eingefädelten Wicklungsenden einen Teil der axialen Ausdehnung der gesamten Haken-Lamellen-Anordnung bestimmen. Die für eine Bürstenschleiffläche nutzbare axiale Länge wird u.U. dadurch weiter eingeschränkt, daß ein zur Fertigungsbearbeitung notwendiges Abdrehwerkzeug nicht bis unmittelbar vor den Kommutator-Haken führbar ist.

[0003] Gemäß Aufgabe vorliegender Erfindung soll bei einfacher Fertigung der axiale Einbau des Kommutators und somit die axiale Gesamtgröße der mit dem Haken-Kommutator ausgestatteten elektrischen Maschine auf einfache Weise vermindert werden; derartige ohne Reduzierung der Motorleistung kompaktere elektrische Maschinen eignen sich insbesondere zum Auftrieb von Hydraulikpumpen in Kraftfahrzeug-Antiblockiersystemen.

[0004] Die Lösung der vorgenannten Aufgabe gelingt erfindungsgemäß durch einen Haken-Kommutator gemäß Patentanspruch 1; vorteilhafte Ausgestaltungen der Erfindung sind jeweils Gegenstand der Unteransprüche.

[0005] Durch die erfindungsgemäße Ausbildung eines Haken-Kommutators kann das gesamte freie Ende des umgebogenen Hakenende als Bürstenschleiffläche ausgenutzt und somit bei ansonsten konstant bleibender Motorleistung die elektrische Maschine um die axiale Baulänge verkürzt ausgeführt werden, die im bekannten Fall zur Festlegung und Kontaktierung des Wicklungsdrahtes an die sich axial anschließende Lamelle sowie zur Bearbeitung der Bürstenschleiffläche notwendig ist.

[0006] Zweckmäßigerweise liegt die Bürstenschleiffläche der erfindungsgemäß aus den freien Enden der Kommutator-Haken gebildeten Lamellen parallel radial zu einer Verankerungsebene mit der die Kommutator-

Haken am Umfang der Isolierstoffnabe verankerbar sind, wobei die zunächst von der Verankerungsebene abstehenden freien Enden nach Umschlingung zumindest eines Wicklungsdrahtes in die parallele Bürstenschleiffläche unter gleichzeitiger Festlegung des umschlingenden Wicklungsdrahtes umgelegt bzw. umgebogen sind.

[0007] Die Erfindung sowie weitere vorteilhafte Ausgestaltungen der Erfindung gemäß Merkmalen der Unteransprüche werden im folgenden anhand eines schematischen Ausführungsbeispiels in der Zeichnung näher erläutert; darin zeigen:

- FIG 1 einen herkömmlichen Haken-Kommutator;
- FIG 2 einen erfindungsgemäßen Kommutator mit abstehendem Hakenende ohne Wicklungsdraht;
- FIG 3 den Kommutator gemäß FIG 2 mit Wicklungsdraht:
- FIG 4 den Kommutator gemäß FIG 3 mit als Lamelle in die Ebene der Bürstenschleiffläche abgebogenem Hakenende.

[0008] FIG 1 zeigt einen herkömmlichen Kommutator mit einer Isolierstoffnabe 8 und einer radial inneren Rotor-Wellenöffnung 8.1 zur Verbindung mit einer hier nicht dargestellten Rotorwelle einer elektrischen Maschine; am Außenumfang der Isolierstoffnabe 8 sind über den Umfang verteilt in tangentialer Richtung gegeneinander isolierte, axial verlaufende Lamellen fixiert, von denen hier zwei Lamellen 9;10 im Schnitt dargestellt sind. Die Lamellen 9;10 sind über angeformte Widerhaken in der Isolierstoffnabe 8 verankert und werden von Bürsten 4;5 im Bereich ihrer Bürstenschleiffläche 4.1;5.1 bei Drehung der Rotorwelle in Umfangsrichtung beschliffen. Der außerhalb der Bürsten 4;5 liegende axiale Bereich der Lamellen 9;10 wird für Kommutator-Haken 9.1;10.1 benötigt, die als abstehende Enden zurückgebogen sind und zur Umschlingung bzw. Fixierung und Kontaktierung zumindest eines Wicklungsdrahtes 6 bzw.7 dienen. Zur Herstellung einer betriebsstörungsfreien, insbesondere durch hohe Laufruhe ausgezeichneten, Bürstenschleiffläche wird die Lamellenoberfläche bei der Fertigung des Motors abgedreht, was in FIG 1 durch einen entsprechenden radialen Absatz angedeutet ist; da das Werkzeug für diesen Abdrehvorgang nicht axial bis unmittelbar an das freie Ende des Kommutatorhakens herangeführt werden kann, ist ein axialer Abstand zu halten, der im bekannten Fall die axiale Baulänge des Kommutators zusätzlich vergrößert.

[0009] FIG 2 bis 4 zeigen jeweils einen erfindungsgemäßen Haken-Kommutator. Kommutator-Haken 2;3 sind in einer Verankerungsebene 2.2;3.2 am Umfang einer Isoierstoffnabe 1 mit einer Rotor-Wellenöffnung 1.1 über Widerhaken 2.3;2.4 bzw. 3.3;3.4 verankert und sind an ihren anderen freien Enden jeweils als Lamelle 2.1;3.1 ausgebildet. In FIG 2 steht das als Lamelle

20

25

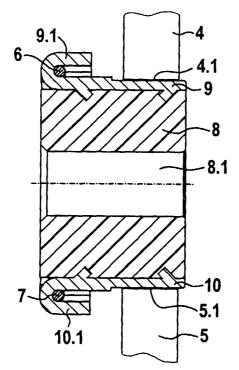
30

45

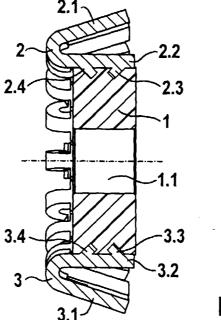
2.1;3.1 ausgebildete freie Ende der Kommutator-Haken 2;3 derart im Winkel zur Verankerungsebene 2.2;3.2, daß auf einfache Weise ein Wicklungsdraht 6;7 zur Fixierung und Kontaktierung mit der jeweiligen Lamelle 2;3 - wie in FIG 3 dargestellt - umschlingbar ist.

[0010] FIG 4 zeigt den betriebsfähigen Haken-Kommutator mit derart in die Ebene der Bürstenschleiffläche umgebogenen Lamellen 2.1;3.1, daß diese parallel zur Umfangsfläche der Isolierstoffnabe 1 verlaufen und somit von Bürsten 4;5 in ansonsten üblicher Weise beschleifbar sind.

[0011] Zweckmäßigerweise sind die als Lamellen 2.1;3.1 vorgesehenen freien Enden der Kommutator-Haken 2;3 derart ausgebildet bzw. weisen eine derartige axiale Länge auf, daß als Bürstenschleiffläche 4.1;5.1 der Bürsten 4;5 die gesamte axiale Länge der Isolierstoffnabe 1 ausnutzbar ist; auf diese Art und Weise läßt sich bei sonst gleichen Daten der elektrischen Maschine der axiale Ausseneinbauraum des Kommutators um die Länge verkürzen, die im bekannten Fall gemäß FIG 1 von den lediglich der Wicklungsdrahtfixierung Wicklungsdrahtkontaktierung und dienenden Kommutator-Haken 9.1;10.1 und für einen beim Abdrehen der Bürstenschleiffläche notwendigen Mindest-Sicherheitsabstand zum Kommutator-Haken 2;3 vorgegeben ist; ein solcher Sicherheitsabstand ist wie auch aus der Darstellung gemäß FIG 4 ersichtlich erfindungsgemäß nicht notwendig, da der Wicklungsdraht 6:7 radial unterhalb der Bürstenschleiffläche 4.1:5.1 fixierbar und die Lamellen 2.1:3.1 über ihre gesamte axiale Länge abdrehbar sind.


[0012] Ein durch die erfindungsgemäß als Lamellen ausgebildeten und abgebogenen freien Enden der Kommutator-Haken u.U. sich ergebende geringe radiale Vergrößerung des Einbauraums und dadurch u.U. notwendige Verkürzung der Bürsten bei Forderung nach konstanter radialer Bauweite wirkt sich insbesondere dann nicht aus, wenn der Kommutator für einen nur in Kurzzeitbetrieb einzusetzenden elektrischen Motorantrieb, insbesondere als Hydraulikpumpenantrieb für ein Antiblockierbremssystem, vorgesehen ist.

Patentansprüche


- 1. Haken-Kommutator für eine elektrische Maschine
 - mit über den Umfang des Kommutators verteilten, von Bürsten (4;5) beschleifbaren Lamel-
 - mit randseitig zu der Bürstenschleiffläche (4.1;5.1) und einer Verankerungsebene (2.2;3.2) der Lamellen in dem Kommutator jeweils an die Lamellen angeformten Kommutator-Haken (2;3) zur Aufnahme zumindest eines Wicklungsdrahtes (6;7);
 - mit Kommutator-Haken (2;3), die mit ihren freien, von der Verankerungsebene (2.2;3.2) abstehenden Enden, als von den Bürsten (4;5)

beschleifbare Lamellen (2.1;3.1) ausgebildet und in die Ebene der Bürstenschleiffläche (4.1;5.1) gebracht sind.

- 2. Haken-Kommutator nach Anspruch 1
 - mit jeweils nach Aufnahme, insbesondere Umschlingung, des zumindest einen Wicklungsdrahtes (6;7) in die Ebene der Bürstenschleiffläche (4.1;5.1) umbiegbaren Kommutator-Haken (2;3).
 - 3. Haken-Kommutator nach Anspruch 1 und/oder 2
 - mit einer im wesentlichen parallel zu der Verankerungsebene (2.2;3.2) vorgesehenen Ebene der Bürstenschleiffläche (4.1;5.1).
 - Haken-Kommutator nach zumindest einem der Ansprüche 1 bis 3
 - mit jeweils einer Ausbildung des freien Endes der Kommutator-Haken (2;3) im Sinne einer Lamelle (2.1;3.1) mit die Aufnahme des Wicklungsdrahtes (6;7) radial überdeckender Bürstenschleiffläche (4.1;5.1).
 - Haken-Kommutator nach zumindest einem der Ansprüche 1 bis 4
 - mit jeweils einer Ausbildung des freien Endes der Kommutator-Haken (2;3) im Sinne einer Lamelle (2.1;3.1) mit einer sich über die gesamte axiale Länge des Kommutators erstreckenden Bürstenschleiffläche (4.1;5.1).

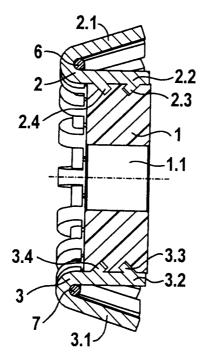
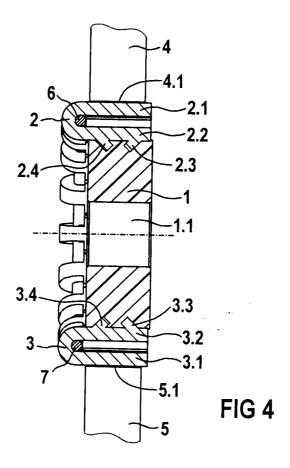



FIG 3

