[0001] The present invention relates to certain enzyme inactivators which are useful in
medicine, particularly cancer chemotherapy, especially in combination with antimetabolite
antineoplastic agents such as 5-fluorouracil (5-FU).
[0002] 5-Fluorouracil has been used in cancer chemotherapy since 1957. Sensitive tumours
include breast cancer, gastrointestinal malignancies, and cancers of the head and
neck; 5-fluorouracil is also used as a radiation sensitiser. 5-Fluorouracil is metabolised
rapidly in the liver (half life between about 8 and 20 minutes) by the enzyme dihydropyrimidine
dehydrogenase (uracil reductase). It has been reported (Cancer Research 46, 1094,
1986) that 5-(2-bromovinyl)-uracil (BVU) is an inhibitor of dihydrothymidine dehydrogenase
which both retards the metabolism of 5-fluorouracil and enhances its antitumour activity.
It has been reported that 5-(2-bromovinyl)-2'-deoxyuridine (which is metabolised
in vivo to BVU) enhances the antitumour activity of 5-fluorouracil and 5-deoxy-5-fluorouridine,
a prodrug of 5-fluorouracil (Biochemical Pharmacology 38; 2885, (1989)).
[0003] Unfortunately BVU is toxic to humans.
[0004] It has now been discovered that a group of 5-substituted uracil derivatives are inactivators
of uracil reductase; they increase the level and half life of 5-fluorouracil in plasma
and enhance the activity of 5-fluorouracil. They also reduce the normally encountered
variations of 5-fluorouracil plasma levels between subjects.
[0005] Accordingly, in a first aspect, the present invention provides a uracil reductase
inactivator which is a 5-substituted- or 5,6-dihydro-5-substituted -uracil derivative,
wherein the 5-substituent is bromo, iodo, cyano, halo-substituted C
1-4 alkyl, C
2-6 alkenyl, a 1-halo C
2-6 alkenyl group, a C
2-6 alkynyl group, a halo-substituted C
2-6 alkynyl group, or a prodrug thereof, for use in medicine, particularly for use in
cancer chemotherapy. The uracil reductase inhibitor will generally be used in conjunction
with 5-fluorouracil or a prodrug thereof.
[0006] By a C
2-6 alkynyl group is meant a straight or branched chain alkynyl group, the latter including
an alkynyl group substituted by a cycloalkyl group containing between 2 and 6 carbon
atoms in total.
[0007] The halogen substituent on the alkenyl or alkynyl group is preferably bromo, chloro
or iodo. Halo-substituted ethenyl and ethynyl groups are particularly preferred. Usually
only one halo substituent will be present.
[0008] In a further aspect, the present invention provides a uracil derivative as hereinbefore
defined for use in the manufacture of a medicament for use in cancer chemotherapy.
The medicament may also be useful for rescue from 5-fluorouracil toxicity; and together
with 5-fluorouracil or a prodrug thereof for the treatment of psoriasis or rheumatoid
arthritis, or human papilloma virus infections.
[0009] In a further aspect, the present invention provides a method for the treatment or
prophylaxis of tumours which comprises the administration of an effective amount of
uracil derivative as hereinbefore defined in the treatment of tumours in mammals,
including man. Preferably the treatment is in combination with 5-fluorouracil or a
prodrug thereof.
[0010] In a yet further aspect, the present invention provides a combination of a uracil
derivative as hereinbefore defined or prodrug thereof, and 5-fluorouracil or a prodrug
thereof.
[0011] Preferred uracil derivatives are these wherein the 5-substituent is a C
2-6 alkynyl group (optionally halo-substituted), conveniently a C
2-4 alkynyl group and preferably an ethynyl or propynyl group. In preferred 1-halo-alkenyl
and alkynyl derivatives the multiple bond is in the 1-position. Particularly preferred
inactivators of uracil reductase for use in accordance with the invention are 5-ethynyluracil
and 5-propynyluracil. Other inactivators for such use include:-
5-cyanouracil
5-bromoethynyluracil
5-(1-chlorovinyl)uracil
5-iodouracil
5-hex-1-ynyluracil
5-vinyluracil
5-trifluoromethyluracil
5-bromouracil
[0012] Uracil derivatives where the 5-substituent is a substituted or unsubstituted C
3-6 alkynyl group are novel compounds and form a further aspect of the present invention.
[0013] Prodrugs of the uracil derivatives hereinbefore defined are compounds which may be
metabolised
in vivo to give the uracil derivatives. These prodrugs may or may not have activity in their
own right but will normally have little activity. Such prodrugs include nucleoside
analogues which contain a nucleobase corresponding to the above 5-substituted uracil
compounds, for example nucleoside derivatives containing a ribose, 2'-deoxyribose,
2',3'-dideoxyribose, arabinose or other cleavable sugar portion, which may additionally
contain a 2' or 3'-substituent such as halo, eg. chloro or fluoro; alkoxy; amino or
thio. Specific examples of such nucleoside derivatives are 1-(b-D-arabinofuranosyl)-5-prop-1-ynyluracil;
and 2',3'-dideoxy-5-ethynyl-3'-flourouridine. Compounds analogous to prodrugs of 5-FU
as mentioned hereafter may in general be employed. References herein to uracil derivatives
(or uracil reductase inactivators) include reference to prodrugs thereof.
[0014] Prodrugs of 5-fluorouracil (5-FU) are compounds which are metabolised
in vivo to 5-fluorouracil and include 5-fluorouridine, 5-fluoro-2-deoxyuridine, 5-fluoro-2-deoxycytidine,
5'-deoxy-4',5-fluorouridine, 5'-deoxy-5-fluorouridine, 1-(2-tetrahydrofuranyl)-5-fluorouracil
and 1-C
1-8 alkylcarbamoyl-5-fluorouracil derivatives.
[0015] 5-FU or a prodrug thereof and the said 5-uracil derivative may be employed in combination
in accordance with the invention by administration of the components of the combination
to an appropriate subject either concomitantly, for example in a unitary pharmaceutical
formulation; or, more preferably, separately or sequentially within a sufficient time
period whereby the desired therapeutic effect of the combination is achieved. Preferably
the 5-uracil derivative is administered first, and 5-FU or a prodrug thereof administered
subsequently, advantageously from 15 mins to four days, usually 1 to 15 hours, especially
1 to 2 hours thereafter.
[0016] 5-FU or a prodrug thereof and the 5-uracil derivative may be administered respectively
for therapy by any suitable route including oral, rectal, nasal, topical (including
buccal and sublingual), vaginal and parenteral (including subcutaneous, intramuscular,
intravenous and intradermal). It will be appreciated that the preferred route will
vary with the condition and age of the recipient, the nature of the infection and
other clinical factors.
[0017] Hitherto it has not been viable to administer 5-FU orally, as it is destroyed by
uracil reductase in the gastro-intestinal tract. However, it has now been found that
if a 5- substituted uracil derivative (as hereinbefore defined) is administered prior
to oral administration of 5-FU (or a prodrug thereof), high and persistent levels
of 5-FU are obtained in the plasma, indicating that this compound is not being destroyed.
This is a further advantage of the present invention. Preferably the 5-FU is administered
within 15 mins to four days, usually 1 to 15 hours, especially 1 to 2 hours of the
5-uracil derivative.
[0018] Normally, patients exhibit a high degree of variability in 5-FU plasma concentrations
resulting from a given 5-FU dosage, which may be due to rates of 5-FU elimination
which differ from patient to patient. There may also be diurnal variations within
individual patients. The use of the 5-substituted uracil derivative according to the
present invention is found to markedly reduce this subject-to-subject variability
(see Experiment 3).
[0019] In general a suitable dose of 5-FU or a prodrug thereof will be in the range of 0.1
to 1000 mg per kilogram body weight of the recipient per day, preferably in the range
of 0.1 to 200 mg per kilogram body weight per day. If 5-FU itself is administered
the dose is preferably in the range of 0.1 to 50 mg per kilogram body weight per day
but higher doses of prodrugs of 5-FU may be administered. The dose of 5-FU or prodrug
thereof may be administered in unit dosage forms, for example, containing 5 to 3000
mg, preferably 20 to 1000 mg, active ingredient per unit dosage form.
[0020] Experiments with 5-FU suggest that a dose should be administered to achieve peak
plasma concentrations of the active compound of from about 0.01 to about 1.5 ug/ml.
[0021] The 5-uracil derivative may be administered in a dosage in the range of 0.01 to 50
mg per kilogram body weight of the recipient per day, particularly 0.01 to 10 mg/kg.
The dose is more preferably in the range of 0.01 to 0.4 mg per kilogram body weight
per day, depending on the derivative used. An alternative preferred administration
regime is 0.5 to 10 mg/kg once per week.
[0022] The desired dose is preferably presented as one, two or more sub-doses administered
at appropriate intervals throughout the day. These sub-doses may be administered in
unit dosage forms for example containing 1 to 200 mg preferably 2 to 100 mg, more
preferably 2 to 50 mg, of the 5-uracil derivative.
[0023] The uracil reductase inactivator and the 5-FU are usually employed in an appropriate
ratio to substantially reduce the natural subsisting uracil reductase level in the
subject. Such a ratio based on the respective weights of uracil reductase inactivator
and 5-FU is generally in the range 1:0.01 to 1:100, preferably in the range 1:0.1
to 1:50, and particularly in the range 1:1 to 1:10.
[0024] 5-FU or prodrug thereof and the 5-uracil derivative are preferably administered in
a pharmaceutical formulation, either in a single pharmaceutical formulation containing
both components or in separate administrations each containing one of the components
of the combinations. The 5-uracil derivative will potentiate 5-FU, so that lower doses
of 5-FU will be employed.
[0025] The present invention thus includes as a further feature a pharmaceutical formulation
comprising a 5-uracil derivative as hereinbefore defined optionally in combination
with 5-FU or a prodrug thereof together with at least one pharmaceutically acceptable
carrier or excipient.
[0026] Each carrier must be "pharmaceutically acceptable" in the sense of being compatible
with the other ingredients of the formulation and not injurious to the patient. Formulations
include those adapted for oral, rectal, nasal, topical (including buccal and sublingual),
vaginal and parenteral (including subcutaneous, intramuscular, intravenous and intradermal)
administration. The formulations may conveniently be presented in unit dosage form
and may be prepared by any methods well known in the art of pharmacy. Such methods
include the step of bringing into association the active ingredient with the carrier
which constitutes one or more accessory ingredients. In general, the formulations
are prepared by uniformly and intimately bringing into association the active ingredient
with liquid carriers or finely divided solid carriers or both, and then if necessary
shaping the product.
[0027] Formulations of the present invention adapted for oral administration may be presented
as discrete units such as capsules, cachets or tablets each containing a predetermined
amount of the active ingredient; as a powder or granules; as a solution or a suspension
in an aqueous or non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil
liquid emulsion. The active ingredient may also be presented as a bolus, electuary
or paste. Oral administration is the preferred route.
[0028] A tablet may be made by compression or moulding, optionally with one or more accessory
ingredients. Compressed tablets may be prepared by compressing in a suitable machine
the active ingredient in a free-flowing form such as a powder or granules, optionally
mixed with a binder (e.g. povidone, gelatin, hydroxypropylmethylcellulose), lubricant,
inert diluent, preservative, disintegrant (eg. sodium starch glycollate, cross-linked
povidone, cross-linked sodium caroxymethylcellulose) surface-active or dispersing
agent. Moulded tablets may be made by moulding in a suitable machine a mixture of
the powdered compound moistened with an inert liquid diluent. The tablets may optionally
be coated or scored and may be formulated so as to provide controlled release of the
active ingredient therein using, for example, hydroxypropylmethylcellulose in varying
proportions to provide the desired release profile.
[0029] Formulations for topical administration in the mouth include lozenges comprising
the active ingredient in a flavoured basis, usually sucrose and acacia or tragacanth;
pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin,
or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable
liquid carrier.
[0030] Formulations for rectal administration may be presented as a suppository with a suitable
base comprising for example cocoa butter or a salicylate.
[0031] Formulation for vaginal administration may be presented as pessaries, tampons, creams,
gels, pastes, foams or spray formulations containing in addition to the active ingredient
such carriers as are known in the art to be appropriate.
[0032] Formulations for parenteral administration include aqueous and non-aqueous isotonic
sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats
and solutes which render the formulation isotonic with the blood of the intended recipient;
and aqueous and non-aqueous sterile suspensions which may include suspending agents
and thickening agents. The formulations may be presented in unit-dose or multi-dose
sealed containers, for example, ampoules and vials, and may be stored in a freeze-dried
(lyophilized) condition requiring only the addition of the sterile liquid carrier,
for example water for injections, immediately prior to use. Extemporaneous injection
solutions and suspensions may be prepared from sterile powders, granules and tablets
of the kind previously described.
[0033] Liquid formulations including dissolved 5-uracil derivative are preferably buffered
to a pH of 7 to 11, generally 9.5 to 10.5. Preferred unit dosage formulations are
those containing a daily dose or unit, daily sub-dose, as hereinabove recited, or
an appropriate fraction thereof, of an active ingredient.
[0034] The above-mentioned 5-uracil derivatives which are employed in combination with 5-fluorouracil
or a prodrug thereof in accordance with the present invention may be prepared in conventional
manner. For example, the inactivators referred to above may be prepared by the methods
described in J. Heterocycl. Chem. 19(3) 463-4 (1982) for the preparation of 5-ethynyluracil;
J.Chem. Soc. Perkin Trans. 1(16), 1665-70 (1981) for the preparation of 5-(2-bromovinyl)uracil,
5-bromoethynyluracil and 5-(2-bromo-1-chlorovinyl)uracil; Nucleic Acid Chemistry,
Vol. 2, 927-30 (1978) for the preparation 5-cyano-uracil; Nucleic Acids Research,
1(1) 105-7 (1974) for the preparation of 5-vinyluracil; Z. Chem 17(11) 415-16 (1977)
for the preparation of 5-trifluoromethyluracil; Nucleic Acids Research 3 (10), 2845
(1976) for the preparation of 5-(1-chlorovinyl)uracil.
[0035] The above prodrug nucleoside derivatives may also be prepared in conventional manner,
for example in accordance with processes described in European Patent Specification
No. 356166 for the preparation of 3'-fluoro-2', 3'-dideoxy-5-alkynyluridine compounds,
such as 2',3'-dideoxy-5-ethynyl-3'-fluorouridine, and European Patent Specification
No.272065 for the preparation of 5-alkynyluracil arabinosides, such as 1-(b-D-arabinofuranosyl)-5-prop-1-ynyluracil.
[0036] The novel 5-C
3-6 alkynyluracil compounds referred to above, which are preferred 5-uracil derivatives
for use in accordance with the invention, may be prepared by one of the following
processes, namely:-
a) treatment of 5-C3-6 alkynyluridine compound to effect conversion thereof to be desired uracil compound;
or
b) treatment of uracil compound substituted in the 5-position by an appropriate leaving
group with a C3-6 alkyne to give the desired uracil compound.
[0037] In the above process a), conversion may be effected by enzymatic means, for example
by treatment of the uridine compound with a thymidine phosphorylase enzyme, advantageously
in a buffered medium at a pH of 6 to 8.
[0038] In the above process b), a uracil compound substituted in the 5-position by a suitable
leaving group e.g. iodo or bromo, is treated with a C
3-6 alkyne in the presence of an appropriate palladium catalyst such as bis (triphenylphosphine)
palladium (II) chloride and cuprous iodide in an amine solvent such as triethylamine.
The following Examples illustrate the present invention.
Example 1
5-Propynyluracil
[0039]
A) To a stirred solution of 2'-deoxy-5-propynyluridine (European Patent Specification
No. 272065) (20g, 75 mmol) in aqueous phosphate buffer at pH 6.84 (1250 mL) was added
purified E.coli thymidine phosphorylase (10,000 units) (T.A. Krenitsky et al, Biochemistry,
20, 3615, 1981; U.S. Patent Specification No. 4,381,344) and alkaline phosphatase
(10,000 units) [Sigma type VII-S from bovine intestinal mucosa] and the whole mixture
was incubated at 37°C for 24 hours. The resulting white precipitate was filtered,
washed with water (3 x 100 mL), ethanol (2 x 100 mL), ether (2 x 100 mL) and dried
in vacuo over phosphorus pentoxide to give the title compound.
M.pt. : 275-280°C (dec.)
1H nmr & (d6DMSO) 11.5-11.0 (bs, 2H, NH), 7.61 (1H, s, H-6), 1.95 ppm (3H, s, CH3)
Microanalysis calculated for C7H6N2O2 : C,56.00; H,4.03; N,18.66 Found : C,55.92; H,4.05; N,18.77
B) 1-Arabinofuranosyl-5-propynyluracil, (2.92 g, 20.4 mmoles), 200 ml aqueous potassium
phosphate, pH 6,8 4,000 IU thymidine phosphorylase (Krenitsky, T.A. et al Biochemistry,
20,3615,1981 and US Patent 4,381,444), 4,000 IU uridine phosphorylase (Krenitsky,
T.A. et al Biochemistry, 20,3615,1981 and US Patent 4,381,444) and 2,000 IU alkaline
phosphatase (Boehringer Mannheim) were stirred at 40°C for five days. Then 8,000 IU
of thymidine phosphorylase, 20,000 IU uridine phosphorylase, 2,000 IU alkaline phosphatase
and 30 IU acid phosphatase (Boehringer Mannheim) were added and incubationcontinued
for an additional five days. 5-Propynyluracil, being less soluble than the nucleoside,
precipitated from the reaction mixture.
The precipitate and liquid were dried in vacuo, then 5-propynyluracil was crystallized twice from hot water and vacuum dried at
room temperature to give 0.92 g (6.1 mmoles) 5-propynyluracil in 59% yield.
1H NMR & (dDMSO) 11.2 ppm (bs, 2H, 1H and 3H), 7.6 ppm (1H, s, 6H), 1.95 ppm (3H, s CH3).
CHN calculated for C7H6N2O2: C, 56.00; H, 4.03; N, 18.66 Analyzed at: C, 55.95; H, 4.03; N, 18.60.
UV spectra: in 0.1 M HCl max at 287nm and 231nm; in 50 mM potassium phosphate, pH
7.0 max at 287nm and 231nm; in 0.1 M NaOH max at 306nm and 240nm.
Mass spectrum gave peak at molecular ion weight of 151.
Example 2 (5-ethynyluracil (EU))
(a) 5-(Trimethylsilylethynyl)uracil
[0040] A solution of 5-iodouracil (8g, 30mmol) in redistilled triethylamine (500mL) and
dry DMF (10mL) was degassed with oxygen-free nitrogen for 15 minutes.
Bis(triphenylophosphine)palladium (II) chloride (0.5g), copper (I) iodide (0.5g) and
trimethylsilylacetylene (10g, 102mmol) were then added and the mixture was heated
with stirring at 50°C for 24 hours. The cooled reaction mixture was filtered, the
filtrate evaporated to dryness and the residue dissolved in dichloromethane (500mL).
The organic solution was washed with a 2% aqueous solution of disodium EDTA (3 x 250mL),
water (3 x 200mL), dried (Na
2SO4) and evaporated to dryness. The residue was triturated with ethanol to give the
first crop of the title compound. The solid filtered from the reaction mixture was
also found to contain the required product but in a more impure form and so was worked
up as above in a separate batch to give a second crop.
1H nmr & (d6DMSO) 11.75-10.85 (2H, bs, NH), 7.75 (1H, s, H-6), 0.15ppm (9H, m, SiCH3).
(b) 5-Ethynyluracil
[0041] A solution of 5-(trimethylsilylethynyl) uracil (5.3g, 24.4mmol) in 0.2M solution
of sodium methoxide in methanol (400 mL) was stirred at room temperature for 3 hours
and neutralized to pH 7 with dilute hydrochloric acid. The precipitated product was
filtered, washed with methanol and dried to give a first crop of the title compound.
The filtrates and washings were combined, evaporated to dryness and the residue crystallised
from methanol to give the second crop of product. Combination of both crops and a
further recrystallisation from ethanol gave a pure product.
M.pt. : 260°C (dec.)
1H nmr & (d6DMSO) 11.6-10.8 (2H, bs, NH), 7.8 (1H, s, H-6), 4.03 ppm (1H, s, acetylenic H)
Microanalysis calculated for C6H4N2O2 : C, 52.95; H, 2.96; N, 20.58
Found : C, 52.04; H, 2.92; N, 20.3
Example 3 (5-ethynyluracil)
a) 2,4-Dimethoxy-5-iodo-pyrimidine
[0042] A dry 1L round-bottomed flask was charged with 5-iodouracil (50 g, 0.21 mol), phosphorus
oxychloride (300 ml), and N,N-diethylaniline (6 drops). The heterogenous mixture was
heated in a 120°C oil bath under a nitrogen atmosphere for 24 hours. The phosphorus
oxychloride was distilled off (some product co-distills off). The reaction solution
was next slowly and cautiously poured over ice (1L) and solid sodium bicarbonate keeping
the internal temperature at or below -20°C. (This was accomplished by cooling in a
dry-ice acetone bath). Once the addition was complete, the reaction mixture was adjusted
to pH 7 by addition of solid sodium bicarbonate. The mixture was extracted with methylene
chloride and the organic fractions dried by passage through phase separator paper.
The crude solution of 2,4-dichloro-5-iodopyrimidine was immediately added dropwise
to a solution containing MeOH (400 ml) and sodium methoxide (28.8 g, 0.533 mol). This
addition took 1 hour. The reaction was then stirred at room temperature overnight.
The solution was neutralized with CO
2 (gas), extracted with methylene chloride, dried over anhydrous Na
2SO
4, filtered and concentrated. The crude product was adsorbed onto silica gel (100 g)
and loaded onto a 400 g silica gel flash chromatography column. The column was eluted
with 90:10 hexanes: ethyl acetate (v:v). The appropriate fractions were combined and
concentrated to a white solid as the title compound.
Yield 26.7 g (48%)
200MHZ NMR CDCl3 &=3.97 (s, 3H); 4.02 (s, 3H), 8.43 (s,1H).
b) 2,4-Dimethoxy-5-(b-trimethylsilyl)-ethynylpyrimidine
[0043] A dry 1L round-bottomed flask under a nitrogen atmosphere was charged with the product
of stage a) (26.7 g, 0.10 mol), dry methylene chloride (Aldrich, 150 mL), dry Et
3N (freshly distilled from KOH pellets, 250 mL). The system was evacuated and purged
with nitrogen several times via a Firestone valve. Trimethylsilylacetylene (21.2 mL,
0.15 mol; Aldrich) was added by syringe. Next were added bis(triphenylphosphine)palladium
(II) chloride (Aldrich 5.84 g, 8.32 mmol) and copper (I) iodide (Aldrich 4.76 g, 25
mmol). The mixture was heated in a 60°C oil bath for 2 hours, cooled and filtered
through Celite. The filtrate was concentrated
in vacuo. The residue was diluted with toluene (100 mL) and then the toluene was removed
in vacuo. The residue was taken up into methylene chloride (200 mL), filtered and the filtrate
extracted with 5% aq. ethylenediaminetetraacetic acid, disodium salt dihydrate (3
x 100 mL Aldrich), H
2O (1 x 100 mL). The organic layer was dried via passage through phase separator paper
and concentrated
in vacuo. The product was purified on a Waters Prep 500 eluting with 95:5 hexanes: ethyl acetate
(v:v). The crude product was adsorbed onto 100 g of silica gel and loaded onto a 400
g silica gel flash chromatography column. The column was eluted with 97.5:2.5 hexanes:
ethyl acetate (v:v). The appropriate fractions were combined and concentrated.
Yield 16.94 g (73%).
[0044] A 1.2 g sample of the resulting compound was bound to 6 g of silica gel and loaded
onto a 50 g flash chromatography column. The column was eluted with hexanes: ethyl
acetate 95:5 (v:v). The appropriate fractions were combined, concentrated, stripped
with CH
2Cl
2 (2 x 30 mL), and dried
in vacuo to yield 1.000 g of the title compound, m.p. 72.5-73°C
Lit. m.p. 73-74°C J. Heterocyclic Chem., 19, 463 (1982).
c) 5-(b-trimethylsilyl)ethynyluracil
[0045] A dry 3-necked round-bottomed flask under nitrogen was charged with 2,4-dimethoxy-5-(b-trimethylsilyl)ethynylpyrimidine
(6.5 g, 27.5 mmol), dry acetonitrile (120 mL Aldrich), sodium iodide (oven dried
in vacuo 80°C, is h, 12.4 g, 82.7 mmol) and chlorotrimethylsilane (10.5 mL, 82.7 mmol freshly
distilled). The mixture was heated at reflux for 3 hours and then concentrated
in vacuo. The residue was digested with a solution containing methanol (40 mL) and water
(20 mL) and the product filtered off to give 1.48 g (26%). The product was dissolved
in chloroform and the solution adsorbed onto silica gel 7 g) which was then loaded
onto a 35 g silica gel flash chromatography column. Elution with chloroform:methanol
95:5 (v:v) followed by chloroform:methanol 90:10 (v:v) and evaporation of the product-containing
fractions yielded 1.23 g of the title compound as a white solid.
d) 5-Ethynyluracil
[0046] A solution containing 5-(b-trimethylsilyl)ethynyluracil (3.85 g, 18.4 mmol) and methanol
(370 mL) was treated with a second solution containing sodium hydroxide (2.3 g, 57.5
mmol) and water (18mL). The mixture was stirred at room temperature for 2 hours and
then concentrated
in vacuo. The residue was suspended in water (35 mL) and the pH adjusted to 5 using 0.1 N
HCl. The solids dissolved and then a second precipitate formed when the pH=5. The
product was filtered, washed with H
2O, and then dried
in vacuo to give 2.3 g (92%) of 5-ethynyluracil as a light beige powder.
Microanalysis calculated for C6H4N2O2: C, 52.95: H, 2.96; N, 20.58
Found: C, 52.79; H, 3.02; N, 20.44
Example 4 (5-ethynyluridine)
a) 2',3'-5'-Tri-O-Acetyl-5-iodouridine
[0047] A dry 250 mL round-bottomed flask was charged with 5-iodouridine (10 g, 27 mmol Aldrich),
anhydrous pyridine (30 mL) and acetic anhydride (30mL). The reaction was stirred at
room temperature for 30 minutes under a nitrogen atmosphere and the solvent removed
in vacuo. The compound was diluted with toluene (2 x 50 mL) and the toluene removed
in vacuo. The product was purified on a 75 g flash chromatography column which was elated
with 90:10 (v:v) CHCl
3:MeOH. The appropriate fractions were combined and concentrated to give the title
compound as a white foam. This was used directly in the next stage.
b) 2',3',5'-Tri-O-Acetyl-5-[2-(trimethylsilyl) ethynyl]uridine
[0048] A dry 1L round-bottomed flask equipped with a reflux condenser (under N
2 atmosphere) was charged with the product of stage a) (27 mmol), dry methylene chloride
(260 mL, Aldrich) and dry triethylamine (260 mL. freshly distilled from NaOH pellets).
The system was evacuated and purged with nitrogen several times and remained under
a nitrogen atmosphere. Next was added (trimethylsilyl) acetylene (11.65 mL, 82 mmol;
Aldrich) followed by copper (I) iodide (Aldrich, 1.57 g, 8.2 mmol) and bis (triphenylphosphine)
palladium II chloride (Aldrich, 1.85 g, 2.6 mmol). The mixture was heated in a 60°C
oil bath for 30 minutes, cooled, and filtered. The filtrate was concentrated
in vacuo. The residue was taken up into CH
2Cl
2 (300 mL), filtered, washed with 5% aq. ethylenediaminetetraacetic acid, disodium
salt (2 x 75 mL), H
2O (100 mL), dried over Na
2SO
4, filtered and concentrated
in vacuo.
[0049] The resulting compound was bound to 50 g of silica gel and loaded onto a 400 g silica
gel flash chromatography column which was eluted with CHCl
3. The product fractions were combined and concentrated to yield the title compound
as light yellow foam.
Yield 13 g
300 MHz NMR CDCl3 & 8.2 (br s, NH, 1H), 7.77 (s, 1H, H6), 6.11 (d, H1',1H), 2.22 (s, 3H, OAc), 2.13
(s,3H OAc), 2.11 (s, 3H, OAc), 0.22 (s, 9H, SiMe3).
c) 5-Ethynyluridine
[0050] The product of stage b) (9.5 g, 24 mmol) was dissolved in methanol (200 mL) and diluted
with a solution containing sodium (0.8 g) and methanol (100 mL). The reaction was
stirred at room temperature for 2 hours and was then neutralized using Dowex 50W-X8
(H
+ form) resin. The resin was removed by filtering and washed with methanol. The filtrate
was concentrated
in vacuo to give 4.85 g of a beige solid. The compound was purified on a Waters Prep 500 reverse
phase C
18 column which was eluted with H
2O/MeOH 85:15 (v:v) to give 1.2 g of the title product (white solid). Impure fractions
were re-chromatographed. An additional 1.94 g of product were obtained.
Yield 49%
| Calculated: |
% C,49.25 |
%H,4.47 |
%N,10.44 |
| Found: |
% C,49,07 |
%H,4.53 |
%N,10.32 |
200 MHz NMR (DMSOd
6) & 11.60 (br s, NH, 1H), 8.36 (s, H6,1H), 5.72 (d, J = 4.3 Hz Hl', 1H), 4.01 (s,
1H, C=C-
H).
[0051] The following Examples illustrate pharmaceutical formulations in which the "Active
Ingredient" is 5-propynyluracil, 5-ethynyluracil or other uracil reductase inactivator
as mentioned above; or mixtures thereof with 5-fluorouracil.
Example 5
Tablet Formulations
[0053] The following formulation 5D was prepared by direct compression of the admixed ingredients.
The lactose used is of the direct compression type.
| Formulation 5D |
mg/tablet |
| Active ingredient |
5 |
| Lactose |
155 |
| Avicel PH 101 |
100 |
| |

|
[0054] The following formulation 5E is a controlled release tablet and is prepared by wet
granulation of the ingredients (except magnesium stearate) with a solution of the
povidone, followed by drying of the granules, addition of the magnesium stearate and
compression.
| Formulation 5E |
mg/tablet |
| Active ingredient |
5 |
| Hydroxypropylmethylcellulose (Methocel K4M Premium) |
110 |
| Lactose, B.P. |
50 |
| Povidone, B.P. |
28 |
| Magnesium stearate |
7 |
| |

|
Example 6
Capsule Formulations
[0056] The Macrogol 4000, B.P. is melted and the active ingredient dispersed therein. The
thoroughly mixed melt is then filled into a two-part hard gelatin capsule.
Example 7
Injectable Formulation
[0057]
| Active ingredient |
10mg |
| Sterile, pyrogen free pyrophosphate buffer (pH 10), q.s. to |
10ml |
[0058] The active ingredient is dissolved in most of the phosphate buffer (35-40°C), then
made up to volume and filtered through a sterile micropore filter into a 10 ml amber
glass vial (type 1) and sealed with a sterile closure and overseal.
Example 8
Suppository Formulation
[0059]
| |
mg/suppository |
| Active ingredient, 63um* |
10 |
| Hard fat, B.P. (Witepsol H15-Dynamit Noble 1) |
1790 |
| |

|
| *The active ingredient is used as a powder wherein at least 90% of the particles are
of 63 um or less. |
[0060] Our-fifth of the Witepsol H15 is melted in a steam-jacketed pan at 45°C maximum.
The active ingredient is sifted through a 200 um sieve and added to the molten base
with mixing, using a silverson fitted with a cutting head, until a smooth dispersion
is achieved. Maintaining the mixture at 45°C, the remaining Witepsol H15 is added
to the suspension and stirred to ensure a homogeneous mix. The entire suspension is
passed through a 250 um stainless steel screen and, with continuous stirring, is allowed
to cool to about 40°C. At a temperature of 38°C to 40°C 1.80 g of the mixture is filled
into suitable plastic moulds. The suppositories are allowed to cool to room temperature.
[0061] Certain Experiments were carried out into the effectiveness of 5-substituted uracils
according to the invention.
Experiment 1
Determination of Uracil Reductase Inactivation
[0062] Uracil reductase (1 micromolar) (dihydropyrimidine dehydrogenase, EC 1.3.1.2) purified
from bovine liver was incubated with 100 micromolar inactivator and 5mM dithiothreitol
(enzyme reductant) at 37° for 30 minutes in 0.05 M Tris-HCl at pH 8.0. The enzyme
and inactivator were diluted 100-fold into the assay buffer, which contained 200 micromolar
NADPH, 200 micromolar thymine and 1mM dithiothreitol in Tris-HCl at pH 8.0. The velocity
of the enzyme was determined spectrophotometrically. These velocities have been corrected
for NADPH oxidase activity, which was less than 10% of the rate of thymine-dependent
oxidation of NADPH. The % inactivation of the enzyme was equal to 100% minus the percent
of enzymatic activity remaining. Enzyme incubated without inhibitor was stable under
these conditions. Parenthetical values are the relative first-order rate constants
for inactivation of enzyme determined from similar experiments where the fractional
activity was measured as a function of the time of incubation of 50 micromol inactivator
with enzyme.
[0063] The results are given below:-
| Compound |
% Inactivation |
| 5-ethynyluracil |
100 (100) |
| 5-cyanouracila |
100 (14) |
| 5-propynyluracil |
100 (8) |
| 5-bromoethynyluracil |
100 (8) |
| 5-(1-chlorovinyl)uracil |
100 (5) |
| 5-iodouracil |
100 (4) |
| 5-hex-1-ynyluracila |
90 |
| 5-vinyluracila,b |
86 |
| 5-trifluoromethyluracil |
75 |
| 5-bromouracil |
75 |
| a The inhibition was reversible since enzyme treated with this derivative slowly regained
activity after a 100-fold dilution into the assay mixture. |
| b These nucleobases were generated in situ by treating the respective nucleosides
with 40 units/ml of thymidine phosphorylase in 35 mM potassium phosphate for 20 minutes
prior to addition to uracil reductase. The parent nucleosides were not inactivators. |
[0064] The effectiveness of 5-ethynyluracil (EU) was investigated and is reported in the
following Experiments 2 to 4 and Figures wherein
- Figure 1
- shows increased levels of uracil and thymine at a time of four hours following various
oral EU doses in rats; and
- Figure 2
- shows that EU increased plasma levels of 5-fluorouracil (5-FU). Mice were dosed either
orally (p.o.) or interperitoneally (i.p.) with 5-FU. 5-ethynyluracil (EU) at 2mg/kg
was dosed i.p. 90 minutes prior to the 5-FU.
Experiment 2
Inactivation of uracil reductase (in vivo)
[0065] Mice, rats, dogs and monkeys dosed with small amounts of 5-ethynyluracil (EU) rapidly
developed greatly elevated plasma uracil and thymine levels. The maximum effect occurred
at about 0.1 mg/kg p.o. in rats, at 0.5 to 1 mg/kg s.c. in mice, and at approximately
1 mg/kg intravenously (i.v.) in dogs and probably represents total inactivation of
uracil reductase. These doses elevated mouse, dog, and rat plasma uracil from about
3 uM to about 50-60 uM. Plasma uracil decreased to normal over 24 hr (half-life =
10hr). Figure 1 shows the increased plasma levels of uracil and thymine in the rat
at a time of 4 hours following various oral doses of 5-ethynyluracil, due to inactivation
of uracil reductase. The ED
50 equals 0.01 mg/kg.
Experiment 3
Effect on plasma-FU level
[0066] Mice and rats pretreated with 5-ethynyluracil (EU) and then dosed with FU sustained
higher plasma levels of FU than mice not pretreated (Figure 2). In addition, the usual
variability in plasma FU in rats orally dosed with FU at 50 mg/kg was eliminated by
EU pretreatment. The AUC of the plasma FU concentration-time curves were 41, 126 and
68 (ave = 78 ± 55%) versus 417, 446 and 426 (ave = 430 ± 3%) for nonpretreated and
EU pretreated rats, respectively.
Experiment 4
Potentiation of the antitumor activity of 5-fluorouracil (5-FU) in mice by 5-Ethynyluracil
(EU).
[0067] Colon 38 tumor was implanted in mice on day zero. Mice (8 per group) were treated
with 5-FU on days one through nine with the doses indicated in Table 2 EU was dosed
i.p. at 2 mg/kg 30 minutes prior to 5-FU dosing where indicated.
Table 2
| % Mice Tumor Free on Day 17 |
| Dose 5-FU (mg/kg) |
FU i.p. plus EU |
FU i.p. |
FU p.o.plus EU |
FU p.o. |
| 0.25 |
0 |
|
|
|
| 0.5 |
25 |
|
0 |
|
| 1 |
12.5 |
|
25 |
|
| 2 |
37.5 |
|
37.5a |
|
| 3 |
100 |
|
|
|
| 4 |
100 |
|
|
|
| 10 |
|
0 |
|
0 |
| 15 |
|
12.5 |
|
12.5 |
| 20 |
|
12.5 |
|
12.5 |
| 25 |
|
--- |
|
12.5 |
| 30 |
|
87.5a |
|
12.5 |
| a One non-tumor related death occurred in these groups |