(19)
(11) EP 0 987 493 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
22.03.2000  Patentblatt  2000/12

(21) Anmeldenummer: 98810922.9

(22) Anmeldetag:  16.09.1998
(51) Internationale Patentklassifikation (IPC)7F23D 23/00, F23D 17/00, F23D 14/82, F23D 14/02
(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(71) Anmelder: ABB RESEARCH LTD.
8050 Zürich (CH)

(72) Erfinder:
  • Haffner, Ken
    5400 Baden (CH)
  • Höbel, Matthias, Dr.
    5400 Baden (CH)
  • Ruck, Thomas
    5507 Mellingen (CH)

   


(54) Brenner für einen Wärmeerzeuger


(57) Bei einem Brenner zum Betrieb einer Brennkammer besteht dieser im wesentlichen aus einem Drallerzeuger (100), einem dem Drallerzeuger nachgeschalteten Uebergangsstück und einem diesem Uebergangsstück nachgeschalteten Mischrohr. Uebergangsstück und Mischrohr bilden die Mischstrecke (220) des Brenners und sind stromauf eines Brennraumes (30) angeordnet. Im unteren Bereich des Mischrohres ist ein Pilotbrennersystem (300) angeordnet, welches bei minimierten Schadstoff-Emissionen unter anderen eine Stabilisation der Flammenfront, insbesondere in den transienten Lastbereichen bildet. Ein im Brenner angebrachter Sensor (400) erfasst ein Zurückschlagen der Flamme (80), worauf unmittelbar mindestens temporär die Brennstoffmenge dieser Flamme reduziert und gleichzeitig die Brennstoffmenge der Pilotbrenner erhöht wird, dergestalt, dass die Gesamtbrennstoffmenge und somit die Turbinenleistung konstant gehalten werden. Mit dieser Vorkehrung wird eine Zerstörung des Brenners verhindert.




Beschreibung

Technisches Gebiet



[0001] Die vorliegende Erfindung betrifft einen Brenner für einen Wärmeerzeuger gemäss Oberbegriff des Anspruchs 1. Sie betrifft auch ein Verfahren zum Betrieb eines solchen Brenners.

Stand der Technik



[0002] Herkömmlicherweise werden die Brenner von Gasturbinen im Vormischbetrieb gefahren. Solche Vormischbrenner sind aus EP-B1-0 321 809 und aus DE-195 47 913.0 bekanntgeworden. Durch die stromauf gelegene Brennstoffeindüsung bei solchen Vormischbrennern wird der Brennstoff mit der Luft vorgemischt, bevor die Verbrennung stattfindet. Dadurch wird innerhalb des Brenners ein zündfähiges Gemisch für die weitere Verbrennung bereitgestellt. Im allgemeinen lässt sich feststellen, dass solche zur neuen Generation gehörende Brenner etliche Vorteile bieten, so eine stabile Flammenposition, tiefere Schadstoff-Emissionen (Co, UHC, NOx), eine Minimierung der Pulsationen, einen vollständigen Ausbrand, die Abdeckung eines grosseren Betriebsbereiches, eine gute Querzündung zwischen den verschiedenen Brennern, insbesondere bei gestufter Lasterstellung, bei welcher die Brenner untereinander interdependent betrieben werden, eine Anpassung der Flamme an die entsprechende Brennkammergeometrie, eine kompakte Bauweise, eine verbesserte Mischung der Strömungsmedien, einen verbessertem "Patternfaktor" der Temperaturverteilung in der Brennkammer, d.h. einen ausgeglichenen Temperaturprofil der Brennkammerströmung.

[0003] Treten indessen während des Betriebes nicht voraussehbare Störungen auf, so kann dies zu einer Unstabilität der Flamme führen. Kann sich dann die einmal zurückgesprungene innerhalb des Brenners stabilisieren, brennt sie als Diffusionsflamme mit sehr hoher Temperatur, ca. 1900°C. Innerhalb kurzer Zeit in der Grössenordnung von 10 bis max, 30 Sekunden, überhitzt der Brenner und wird zerstört. Die nachfolgenden Turbinenschaufeln werden dann möglicherweise beschädigt; in jedem Fall muss die Gasturbine gestoppt, inspiziert und repariert werden, was zu immensen Kosten führt.
Es hat sich gezeigt, dass insbesondere bei Prototyp-Gasturbinen mit neuer Brenntechnologie oder der Verbrennung von wasserstoffhaltigen Brennstoffen (MBtu- oder LBtu-Gase) besteht diesbezüglich ein hohes Risiko.

Darstellung der Erfindung



[0004] Hier will die Erfindung Abhilfe schaffen. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einem Brenner und einem Verfahren der eingangs genannten Art Vorkehrungen vorzuschlagen, durch welche eine Stabilisierung der Flamme im Brenner maximiert wird.

[0005] Erfindungsgemäss wird vorgeschlagen, die Brenner an passender Stelle mit einem kompakten berührungslosen Flammwächter zu versehen.

[0006] Die wesentlichen Vorteile der Erfindung sind darin zu sehen, dass der im Brenner angebrachte Sensor ein Zurückschlagen der Flamme meldet. Daraufhin wird die Premix-Brennstoffmenge reduziert und gleichzeitig die Pilot-Brennstoffmenge erhöht, so dass die Gesamtbrennstoffmenge und somit die Turbinenleistung konstant bleibt. Durch die eine Reduktion, also der Premix-Brennstoffmenge vermag sich die zurückgeschlagene Flamme nicht mehr im Brenner zu stabilisieren, sie wird unweigerlich aus dem Brenner herausgespült. Dadurch lässt sich die Zerstörung des Brenners verhindern.

[0007] Ein solcher Sensor oder Flammwächter lässt sich Hilfe von hochtemperaturfesten Glasfasern realisieren. Die fasern werden so angeordnet, dass ihr Kontrollfeld die gefärdete Bereiche erfasst, nicht jedoch die normal brennende Pilot- und Premix-Flamme. Der UV-Anteil (ca 300-330 nm) der vom Sensor erfassten Strahlung wird mit geeigneten Filtern spektral analysiert. Ueber das Verhältnis der Intensität bei verschiedenen Wellenlängen kann ein Flashback im Brenner innerhalb von Millisekunden erkannt werden. Besteht die Brennkammer aus einer Anzahl von Brennern, so lässt sich durch eine geeignete Datenerfassung feststellen, bei welchem Brenner der Flammenrückschlag stattgefunden hat, und es können geeignete Massnahmen zur Behebeung der Ursachen getroffen werden.

[0008] Vorteilhafte und zweckmässige Weiterbildungen der erfindungsgemässen Aufgabenlösung sind in den weiteren Ansprüchen gekennzeichnet.

[0009] Im folgenden werden anhand der Zeichnungen Ausführungabeispiele der Erfindung näher erläutert Alle für das unmittelbare Verständnis der Erfindung unwesentlichen Merkmale sind fortgelassen worden. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen. Die Strömungsrichtung der Medien ist mit Pfeilen angegeben.

Kurze Bezeichnung der Zeichnungen



[0010] Es zeigt:
Fig. 1
eine schematische Ansicht eines Brenners, mit eingebautem Sensor,
Fig. 2
einen Brenner mit stattgefundenem Flashback und mit nachfolgender Stabilisierung der Flamme im Brenner,
Fig. 3
einen schematischen Ablauf der Brennstoff-Steuerung über die Zeit bei einem Flammenrückschlag,
Fig. 4
einen integralen Schnitt durch einen als Vormischbrenner ausgelegten Brenner mit einer Mischstrecke stromab eines Drallerzeugers sowie mit Pilotbrennern,
Fig. 5
eine schematische Darstellung des Brenners gemäss Fig. 1 mit Disposition der zusätzlichen Brennstoff-Injektoren,
Fig. 6
einen aus mehreren Schalen bestehenden Drallerzeuger in perspektivischer Darstellung, entsprechend aufgeschnitten,
Fig. 7
einen Querschnitt durch einen zweischaligen Drallerzeuger,
Fig. 8
einen Querschnitt durch einen vierschaligen Drallerzeuger,
Fig. 9
eine Ansicht durch einen Drallerzeuger, dessen Schalen schaufelförmig profiliert sind,
Fig. 10
eine Ausgestaltung der Uebergangsgeometrie zwischen Drallerzeuger und Mischstrecke und
Fig. 11
eine Abrisskante zur räumlichen Stabilisierung der Rückströmzone.

Wege zur Ausführung der Erfindung, gewerbliche Verwendbarkeit



[0011] Fig. 1 zeigt eine schematiische Uebersicht eines Vormischbrenners, wobei die Ausbildung eines solchen Brenners in den Fig. 4-11 detailliert beschrieben wird. Grundsätzlich besteht dieser Vormischbrenner aus einem Drallerzeuger 100, aus einer diesem Drallerzeuger nachgeschalteten Mischstrecke 220, wobei in den der Mischstrecke 220 nachgeschalteten Brennraum 30 ein System von Pilotbrennern 300 mit entsprechenden Pilotflammen 70 wirkt. Diese Fig. 1 erfüllt in Verbindung mit Fig. 2 lediglich die Aufgabe, darzulegen, wie das Zurückschlagen 81 der Premixflamme, die hier durch die Rückströmblase 50 dargestellt ist, durch Sensoren 400 erfasst wird, und augenblicklich Abhilfe-Massnahmen eingeleitet werden. Dabei wird stets beobachtet, dass es zu einer Rückzündung von dem Brennraum 30 zu den Brennstoffinjektoren 116 kommt. Eine Stabilisierung dieser rückgezündeten Flamme 80 im Bereich der Brennstoffinjektoren 116 ist sodann nicht mehr zu umgehen, wobei dann eine Diffusionsflamme mit sehr hohen Temperaturen von ca. 1900°C entsteht. Diese Flamme führt innerhalb weniger Sekunden zwangsläufig zu einer Zerstörung des Brenners. Mindestens ein Sensor 400 wird unmittelbar strömab der Brennstoffinjektoren 116 plaziert, und soll weder die Premixflamme 50 noch die Pilotflammen 70, sondern einzig die gefährdeten Bereiche erfassen. Ein solcher Sensor 400 besteht vorzugsweise aus hochtemperaturfesten Glasfasern, welche so angeordnet werden, dass ihr Blickwinkel 402 eben die allein die gefährdeten Bereiche erfasst. Die vom Sensor erfassten Strahlung wird weitergeleitet 401 und mit geeigneten Filtern spektral analysiert. Ueber das Verhältnis der Intensitäten bei verschiedenen Wellenlängen kann ein Flammenrückschlag im Brenner innerhalb von Millisekunden erkannt werden. Durch eine geeignete Datenerfassung lässt sich feststellen, bei welchem Brenner im Verbund der Flammenrückschlag stattgefunden hat, wobei dann gezielt geeignete Massnahme zur Behebung der Ursache getroffen werden können.

[0012] Fig. 3 zeigt, welche Massnahmen im Nachgang eines Flammenrückschlages eingeleitet werden. Bei der Meldung, dass ein Zurückschlagen 81 der Flamme erfolgt ist, greift unmittelbar eine Regelung 82 auf die Brennstoffmenge für die Premix-Flamme 50 ein, welche nach bestimmten Kriterien sofort reduziert wird. Gleichzeitig greift eine zweite Regelung 83 ein, welche die Brennstoffmenge für das Pilotbrennersystem 300, also für die Pilotflamme 70, erhöht. Ziel dieser gegenläufige Brennstoffzuführung ist es, die Turbinenleistung konstant zu halten. Durch die Reduktion der Brennstoffmenge für die Premixflamme 50 kann sich die zurückgeschlagene Flamme nicht mehr im Brenner stabiliseren, sie wird aus dem Brenner herausgespült, wodurch die zwangsläufig Zerstörung des Brenners sicher verhindert wird. Aus dieser Fig. 3 geht der qualitative Ablauf der Brennstoff-Regelung über die Zeit hervor, wobei bei den Extrempunkten dieser Steuerung die Herausspülung 84 der zurückgeschlagene Flamme stattfindet.

[0013] Dieses Verfahren zur unmittelbaren Eruierung eines Flammenrückschlages lässt sich bei allen auf Drallströmung aufgebauten Vormischbrennern anwenden, unabhängig wie der Brenner geometrisch aufgebaut ist, und unabhängig auf welcher Art und Weise die Drallströmung erzeugt wird. Insbesondere lässt sich dieses Verfahren auf den Vormischbrenner gemäss EP-B1-0 321 809 anwenden, wobei diese Druckschrift einen integrierenden Bestandteil vorliegender Beschreibung bildet.

[0014] Fig. 4 zeigt den Gesamtaufbau eines durch Drallströmung betreibbaren Brenners. Anfänglich ist ein Drallerzeuger 100 wirksam, dessen Ausgestaltung in den nachfolgenden Fig. 5-8 noch näher gezeigt und beschrieben wird. Es handelt sich bei diesem Drallerzeuger 100 um ein kegelförmiges Gebilde, das mehrfach von einem tangential einströmenden Verbrennungsluftstromes 115 beaufschlagt wird. Die sich hierein bildende Strömung wird anhand einer stromab des Drallerzeugers 100 vorgesehenen Uebergangsgeometrie nahtlos in ein Uebergangsstück 200 übergeleitet, dergestalt, dass dort keine Ablösungsgebiete auftreten können. Die Konfiguration dieser Uebergangsgeometrie wird unter Fig. 10 näher beschrieben. Dieses Uebergangsstück 200 ist abströmungsseitig der Uebergangsgeometrie durch ein Mischrohr 20 verlängert, wobei beide Teile die eigentliche Mischstrecke 220 bilden. Selbstverständlich kann die Mischstrecke 220 aus einem einzigen Stück bestehen, d.h. dann, dass das Uebergangsstück 200 und das Mischrohr 20 zu einem einzigen zusammenhängenden Gebilde verschmelzen, wobei die Charakteristiken eines jeden Teils erhalten bleiben. Werden Uebergangsstück 200 und Mischrohr 20 aus zwei Teilen erstellt, so sind diese durch einen Buchsenring 10 verbunden, wobei der gleiche Buchsenring 10 kopfseitig als Verankemngsfläche für den Drallerzeuger 100 dient. Ein solcher Buchsenring 10 hat darüber hinaus den Vorteil, dass verschiedene Mischrohre eingesetzt werden können. Abströmungsseitig des Mischrohres 20 befindet sich der eigentliche Brennraum 30 einer Brennkammer, welche hier lediglich durch ein Flammrohr versinnbildlicht ist. Die Mischstrecke 220 erfüllt weitgehend die Aufgabe, dass stromab des Drallerzeugers 100 eine definierte Strecke bereitgestellt wird, in welcher eine perfekte Vormischung von Brennstoffen verschiedener Art erzielt werden kann. Diese Mischstrecke, also vordergründig das Mischrohr 20, ermöglicht des weiteren eine verlustfreie Strömungsführung, so dass sich auch in Wirkverbindung mit der Uebergangsgeometrie zunächst keine Rückströmzone oder Rückströmblase bilden kann, womit über die Länge der Mischstrecke 220 auf die Mischungsgüte für alle Brennstoffarten Einfluss ausgeübt werden kann. Diese Mischstrecke 220 hat aber noch eine andere Eigenschaft, welche darin besteht, dass in ihr selbst das Axialgeschwindigkeits-Profil ein ausgeprägtes Maximum auf der Achse besitzt, so dass eine Rückzündung der Flamme aus der Brennkammer an sich unterbunden bleiben sollte. Allerdings ist es richtig, dass bei einer solchen Konfiguration diese Axialgeschwindigkeit zur Wand hin abfällt. Um Rückzündung auch in diesem Bereich möglichst zu unterbinden, wird das Mischrohr 20 in Strömungs- und Umfangsrichtung mit einer Anzahl regelmässig oder unregelmässig verteilter Bohrungen 21 verschiedenster Querschnitte und Richtungen versehen, durch welche eine Luftmenge in das Innere des Mischrohres 20 strömt, und entlang der Wand im Sinne einer Filmlegung eine Erhöhung der Durchfluss-Geschwindigkeit induzieren. Diese Bohrungen 21 können auch so ausgelegt werden, dass sich an der Innenwand des Mischrohres 20 mindestens zusätzlich noch eine Effusionskühlung einstellt. Eine andere Möglichkeit eine Erhöhung der Geschwindigkeit des Gemisches innerhalb des Mischrohres 20 zu erzielen, besteht darin, dass dessen Durchflussquerschnitt abströmungsseitig der Uebergangskanäle 201, welche die bereits genannten Uebergangsgeometrie bilden, eine Verengung erfährt, wodurch das gesamte Geschwindigkeitsniveau innerhalb des Mischrohres 20 angehoben wird. In der Figur verlaufen diese Bohrungen 21 unter einem spitzen Winkel gegenüber der Brennerachse 60. Des weiteren entspricht der Auslauf der Uebergangskanäle 201 dem engsten Durchflussquerschnitt des Mischrohres 20. Die genannten Uebergangskanäle 201 überbrücken demnach den jeweiligen Querschnittsunterschied, ohne dabei die gebildete Strömung negativ zu beeinflussen.

[0015] Wenn die gewählte Vorkehrung bei der Führung der Rohrströmung 40 entlang des Mischrohres 20 einen nicht tolerierbaren Druckverlust auslöst, so kann hiergegen Abhilfe geschaffen werden, indem am Ende dieses Mischrohres ein in der Figur nicht gezeigter Diffusor vorgesehen wird. Am Ende des Mischrohres 20 schliesst sich sodann eine Brennkammer 30 (Brennraum) an, wobei zwischen den beiden Durchflussquerschnitten ein durch eine Brennerfront 70 gebildeter Querschnittssprung vorhanden ist. Erst hier bildet sich eine zentrale Flammenfront mit einer Rückströmzone 50, welche gegenüber der Flammenfront die Eigenschaften eines körperlosen Flammenhalters aufweist. Bildet sich innerhalb dieses Querschnittssprunges während des Betriebes eine strömungsmässige Randzone, in welcher durch den dort vorherrschenden Unterdruck Wirbelablösungen entstehen, so führt dies zu einer verstärkten Ringstabilisation der Rückströmzone 50. Danebst darf nicht unerwähnt bleiben, dass die Erzeugung einer stabilen Rückströmzone 50 auch eine ausreichend hohe Drallzahl in einem Rohr erfordert. Ist eine solche zunächst unerwünscht, so können stabile Rückströmzonen durch die Zufuhr kleiner stark verdrallter Luftströmungen am Rohrende, beispielsweise durch tangentiale Oeffnungen, erzeugt werden. Dabei geht man hier davon aus, dass die hierzu benötigte Luftmenge in etwa 5-20% der Gesamtluftmenge beträgt. Was die Ausgestaltung der Brennerfront 70 am Ende des Mischrohres 20 zur Stabilisierung der Rückströmzone oder Rückströmblase 50 betrifft, wird auf die Beschreibung unter Fig. 8 verwiesen. Auf die Möglichkeit bei einem Flammenrückschlag einzugreifen, wird auf die Ausführungen unter Fig. 1-3 verwiesen.

[0016] Konzentrisch zum Mischrohr 20, im Bereich seines Auslaufes, wird ein Pilotbrennersystem 300 vorgesehen. Dieses besteht aus einer inneren Ringkammer 301, in welche ein Brennstoff, vorzugsweise ein gasförmiger Brennstoff 303 einströmt. Nebengeordnet zu dieser inneren Ringkammer 301 ist eine zweite Ringkammer 302 disponiert, in welche eine Luftmenge 304 einströmt. Beide Ringkammern 301, 302 weisen individuell gestaltete Durchgangsöffnungen auf, dergestalt, dass die einzelnen Medien 303, 304 funktionsbedingt in eine gemeinsame nachgeschaltete Ringkammer 308 strömen. Die Ueberleitung des gasförmigen Brennstoffes 303 von der Ringkammer 301 in die nachgeschaltete Ringkammer 308 wird durch eine Anzahl in Umfangsrichtung angeordneter Oeffnungen 309 bewerkstelligt. Die Durchgangsgeometrie dieser Oeffnungen 309 ist so gestaltet, dass der gasförmige Brennstoff 303 mit einem grossen Vermischungspotential in die nachgeschaltete Ringkammer 308 einströmt. Die andere Ringkammer 302 schliesst mit einer gelochten Platte 305 ab, wobei die hier vorgesehenen Bohrungen 310 so gestaltet sind, dass die dort durchströmende Luftmenge 304 eine Prallkühlung auf die Bodenplatte 307 der nachgeschalteten Ringkammer 308. Diese Bodenplatte hat die Funktion eines Hitzeschutzbleches gegenüber der kalorischen Belastung aus dem Brennraum 30, so dass diese Prallkühlung hier äusserst effizient ausfallen muss. Diese Luft vermischt sich nach vollzogener Kühlung innerhalb dieser Ringkammer 308 mit dem hinzuströmenden gasförmigen Brennstoff 303 aus den Oeffnungen 309 der stromauf angeordneten Ringkammer 301, bevor dieses Gemisch dann durch eine Anzahl brennraumseitig angeordneter Bohrungen 306 in den Brennraum 30 abströmt. Das hier ausströmende Gemisch brennt als vorgemischte Diffusionsflamme mit minimierten Schadstoff-Emissionenen und bildet sonach je Bohrung 306 einen in den Brennraum 30 wirkenden Pilotbrenner, welcher einen stabilen Betrieb gewährleistet.

[0017] Durch die luftdurchströmte nebengeordnete Ringkammer 302 wird eine Zündvorrichtung 311 durchgeleitet, welche in der nachgeschalteten Ringkammer 308 die Zündung des sich dort bildenden Gemisches bewerkstelligt. Zum einen braucht es für diese Durchleitung der Zündvorrichtung 311 keine weiteren konstruktiven Massnahmen, und zum anderen wird diese Zündvorrichtung 311 ständig durch die dort ohnehin strömende Luft 304 gekühlt. Dies ist sehr wichtig, da beim Einsatz eines Glühzündstiftes an der Spitze Temperaturen von ca. 1000°C erreicht werden. Da aber für den hier vorgeschlagene Betrieb nur eine geringe Spannung, dafür hoher Strom erforderlich ist, entfällt mithin die Anfälligkeit der Zündvorrichtung gegen Kondenwasseraussscheidungen. Durch die Anordnung des Glühzündstiftes, wobei der Einsatz einer Zündkerze ebenfalls möglich ist, innerhalb des Brenners ist die jeweilige Zündvorrichtung 311 thermisch gering belastet, womit keiner zusätzlichen Kühlung bedarf und Leckagen werden dadurch auch vermieden.

[0018] Fig. 5 zeigt eine schematische Ansicht des Brenners gemäss Fig. 4, wobei hier insbesondere auf die Umspülung einer zentral angeordneten Brennstoffdüse 103 (Vgl. Fig. 6) und auf die Wirkung von Brennstoff-Injektoren 170 hingewiesen wird. Die Wirkungsweise der restlichen Hauptbestandteile des Brenners, nämlich Drallerzeuger 100 und Uebergangsstück 200 werden unter den nachfolgenden Figuren näher beschrieben. Die Brennstoffdüse 103 wird mit einem beabstandeten Ring 190 ummantelt, in welchem eine Anzahl in Umfangsrichtung disponierter Bohrungen 161 gelegt sind, durch welche eine Luftmenge 160 in eine ringförmige Kammer 180 strömt und dort die Umspülung der Brennstofflanze vornimmt. Diese Bohrungen 161 sind schräg nach vorne angelegt, dergestalt, dass eine angemessene axiale Komponente auf der Brennerachse 60 entsteht. In Wirkverbindung mit diesen Bohrungen 161 sind zusätzliche Brennstoff-Injektoren 170 vorgesehen, welche eine bestimmte Menge vorzugsweise eines gasförmigen Brennstoffes in die jeweilige Luftmenge 160 eingeben, dergestalt, dass sich im Mischrohr 20 eine gleichmässige Brennstoffkonzentration 150 über den Strömungsquerschnitt einstellt, wie die Darstellung in der Figur versinnbildlichen will. Genau diese gleichmässige Brennstoffkonzentration 150, insbesondere die starke Konzentration auf der Brennerachse 60 sorgt dafür, dass sich eine Stabilisierung der Flammenfront am Ausgangs des Brenners einstellt, insbesondere beim Einsatz einer zentralen Eindüsung mit flüssigem Brennstoff, womit aufkommende Brennkammerpulsationen vermieden werden.

[0019] Um den Aufbau des Drallerzeugers 100 besser zu verstehen, ist es von Vorteil, wenn gleichzeitig zu Fig. 6 mindestens Fig. 7 herangezogen wird. Im folgenden wird bei der Beschreibung von Fig. 6 nach Bedarf auf die übrigen Figuren hingewiesen.

[0020] Der erste Teil des Brenners nach Fig. 4 bildet den nach Fig. 6 gezeigten Drallerzeuger 100. Dieser besteht aus zwei hohlen kegelförmigen Teilkörpern 101, 102, die versetzt zueinander ineinandergeschachtelt sind. Die Anzahl der kegelförmigen Teilkörper kann selbstverständlich grösser als zwei sein, wie die Figuren 5 und 6 zeigen; dies hängt jeweils, wie weiter unten noch näher zur Erläuterung kommen wird, von der Betriebsart des ganzen Brenners ab. Es ist bei bestimmten Betriebskonstellationen nicht ausgeschlossen, einen aus einer einzigen Spirale bestehenden Drallerzeuger vorzusehen. Die Versetzung der jeweiligen Mittelachse oder Längssymmetrieachsen 101b, 102b (Vgl. Fig. 7) der kegeligen Teilkörper 101, 102 zueinander schafft bei der benachbarten Wandung, in spiegelbildlicher Anordnung, jeweils einen tangentialen Kanal, d.h. einen Lufteintrittsschlitz 119, 120 (Vgl. Fig. 7), durch welche die Verbrennungsluft 115 in Innenraum des Drallerzeugers 100, d.h. in den Kegelhohlraum 114 desselben strömt. Die Kegelform der gezeigten Teilkörper 101, 102 in Strömungsrichtung weist einen bestimmten festen Winkel auf. Selbstverständlich, je nach Betriebseinsatz, können die Teil-körper 101, 102 in Strömungsrichtung eine zunehmende oder abnehmende Kegelneigung aufweisen, ähnlich eines Diffusor oder Konfusor. Die beiden letztgenannten Formen sind zeichnerisch nicht erfasst, da sie für den Fachmann ohne weiteres nachempfindbar sind. Die beiden kegeligen Teilkörper 101, 102 weisen je einen zylindrischen ringförmigen Anfangsteil 101a auf Im Bereich dieses zylindrischen Anfangsteils ist die bereits unter Fig. 2 erwähnte Brennstoffdüse 103 untergebracht, welche vorzugsweise mit einem flüssigen Brennstoff 112 betrieben wird. Die Eindüsung 104 dieses Brennstoffes 112 fällt in etwa mit dem engsten Querschnitt des durch die kegeligen Teilkörper 101, 102 gebildeten Kegelhohlraumes 114 zusammen. Die Eindüsungskapazität und die Art dieser Brennstoffdüse 103 richtet sich nach den vorgegebenen Parametern des jeweiligen Brenners. Die kegeligen Teilkörper 101, 102 weisen des weiteren je eine Brennstoffieltung 108, 109 auf welche entlang der tangentialen Lufteintrittsschlitze 119, 120 angeordnet und mit Eindüsungsöffnungen 117 versehen sind, durch welche vorzugsweise ein gasförmiger Brennstoff 113 in die dort durchströmende Verbrennungsluft 115 eingedüst wird, wie dies die Pfeile 116 versinnbildlichen wollen. Diese Brennstoffleitungen 108, 109 sind vorzugsweise spätestens am Ende der tangentialen Einströmung, vor Eintritt in den Kegelhohlraum 114, angeordnet, dies um eine optimale Luft/Brennstoff-Mischung zu erhalten. Bei dem durch die Brennstoffdüse 103 herangeführten Brennstoff 112 handelt es sich, wie erwähnt, im Normalfall um einen flüssigen Brennstoff, wobei eine Gemischbildung mit einem anderen Medium, beispielsweise mit einem rückgeführten Rauchgas, ohne weiteres möglich ist. Dieser Brennstoff 112 wird unter einem vorzugsweise sehr spitzen Winkel in den Kegelhohlraum 114 eingedüst. Aus der Brennstoffdüse 103 bildet sich sonach ein kegeliges Brennstoffspray 105, das von der tangential einströmenden rotierenden Verbrennungsluft 115 umschlossen und abgebaut wird. In axialer Richtung wird sodann die Konzentration des eingedüsten Brennstoffes 112 fortlaufend durch die einströmenden Verbrennungsluft 115 zu einer Vermischung Richtung Verdampfung abgebaut. Wird ein gasförmiger Brennstoff 113 über die Oeffnungsdüsen 117 eingebracht, geschieht die Bildung des Brennstoff/Luft-Gemisches direkt am Ende der Lufteintrittsschlitze 119, 120. Ist die Verbrennungsluft 115 zusätzlich vorgeheizt, oder beispielsweise mit einem rückgeführten Rauchgas oder Abgas angereichert, so unterstützt dies nachhaltig die Verdampfung des flüssigen Brennstoffes 112, bevor dieses Gemisch in die nachgeschaltete Stufe strömt, hier in das Uebergangsstück 200 (Vgl. Fig. 4 und 10). Die gleichen Ueberlegungen gelten auch, wenn über die Leitungen 108, 109 flüssige Brennstoffe zugeführt werden sollten. Bei der Gestaltung der kegeligen Teilkörper 101, 102 hinsichtlich des Kegelwinkels und der Breite der tangentialen Lufteintrittsschlitze 119, 120 sind an sich enge Grenzen einzuhalten, damit sich das gewünschte Strömungsfeld der Verbrennungsluft 115 am Ausgang des Drallerzeugers 100 einstellen kann. Allgemein ist zu sagen, dass eine Verkleinerung der tangentialen Lufteintrittsschlitze 119, 120 die schnellere Bildung einer Rückströmzone bereits im Bereich des Drallerzeugers begünstigt. Die Axialgeschwindigkeit innerhalb des Drallerzeugers 100 lässt sich durch eine entsprechende unter Fig. 2 (Pos. 160) näher beschriebene Zuführung einer Luftmenge erhöhen bzw. stabilisieren. Eine entsprechende Drallerzeugung in Wirkverbindung mit dem nachgeschalteten Uebergangsstück 200 (Vgl. Fig. 4 und 10) verhindert die Bildung von Strömungsablösungen innerhalb des dem Drallerzeuger 100 nachgeschalteten Mischrohr. Die Konstruktion des Drallerzeugers 100 eignet sich des weiteren vorzüglich, die Grösse der tangentialen Lufteintrittsschlitze 119, 120 zu verändern, womit ohne Veränderung der Baulänge des Drallerzeugers 100 eine relativ grosse betriebliche Bandbreite erfasst werden kann. Selbstverständlich sind die Teilkörper 101, 102 auch in einer anderen Ebene zueinander verschiebbar, wodurch sogar eine Ueberlappung derselben vorgesehen werden kann. Es ist des weiteren möglich, die Teilkörper 101, 102 durch eine gegenläufig drehende Bewegung spiralartig ineinander zu verschachteln. Somit ist es möglich, die Form, die Grösse und die Konfiguration der tangentialen Lufteintrittsschlitze 119, 120 beliebig zu variieren, womit der Drallerzeuger 100 ohne Veränderung seiner Baulänge universell einsetzbar ist.

[0021] Aus Fig. 7 geht unter anderen die geometrische Konfiguration von wahlweise vorzusehenden Leitbleche 121a, 121b hervor. Sie haben Strömungseinleitungsfunktion, wobei diese, entsprechend ihrer Länge, das jeweilige Ende der kegeligen Teilkörper 101, 102 in Anströmungsrichtung gegenüber der Verbrennungsluft 115 verlängern. Die Kanalisierung der Verbrennungsluft 115 in den Kegelhohlraum 114 kann durch Oeffnen bzw. Schliessen der Leitbleche 121a, 121b um einen im Bereich des Eintritts dieses Kanals in den Kegelhohlraum 114 plazierten Drehpunkt 123 optimiert werden, insbesondere ist dies vonnöten, wenn die ursprüngliche Spaltgrösse der tangentialen Lufteintrittsschlitze 119, 120 dynamisch verändert werden soll, beispielsweise um eine Aenderung der geschwindigkeit der Verbrennungsluft 115 zu erreichen. Selbstverständlich können diese dynamische Vorkehrungen auch statisch vorgesehen werden, indem bedarfsmässige Leitbleche einen festen Bestandteil mit den kegeligen Teilkörpern 101, 102 bilden.

[0022] Fig. 8 zeigt gegenüber Fig. 4, dass der Drallerzeuger 100 nunmehr aus vier Teilkörpern 130, 131, 132, 133 aufgebaut ist. Die dazugehörigen Längssymmetrieachsen zu jedem Teilkörper sind mit der Buchstabe a gekennzeichnet. Zu dieser Konfiguration ist zu sagen, dass sie sich aufgrund der damit erzeugten, geringeren Drallstärke und im Zusammenwirken mit einer entsprechend vergrösserten Schlitzbreite bestens eignet, das Aufplatzen der Wirbelströmung abströmungsseitig des Drallerzeugers im Mischrohr zu verhindern, womit das Mischrohr die ihm zugedachte Rolle bestens erfüllen kann.

[0023] Fig. 9 unterscheidet sich gegenüber Fig. 8 insoweit, als hier die Teilkörper 140, 141, 142, 143 eine Schaufelprofilform haben, welche zur Bereitstellung einer gewissen Strömung vorgesehen wird. Ansonsten ist die Betreibungsart des Drallerzeugers die gleiche geblieben. Die Zumischung des Brennstoffes 116 in den Verbrennungsluftstromes 115 geschieht aus dem Innern der Schaufelprofile heraus, d.h. die Brennstoffleitung 108 ist nunmehr in die einzelnen Schaufeln integriert. Auch hier sind die Längssymmetrieachsen zu den einzelnen Teilkörpern mit der Buchstabe a gekennzeichnet.

[0024] Fig. 10 zeigt das Uebergangsstück 200 in dreidimensionaler Ansicht. Die Uebergangsgeometrie ist für einen Drallerzeuger 100 mit vier Teilkörpern, entsprechend der Fig. 5 oder 6, aufgebaut. Dementsprechend weist die Uebergangsgeometrie als natürliche Verlängerung der stromauf wirkenden Teilkörper vier Uebergangskanäle 201 auf wodurch die Kegelviertelfläche der genannten Teilkörper verlängert wird, bis sie die Wand des Mischrohres schneidet. Die gleichen Ueberlegungen gelten auch, wenn der Drallerzeuger aus einem anderen Prinzip, als den unter Fig. 4 beschriebenen, aufgebaut ist. Die nach unten in Strömungsrichtung verlaufende Fläche der einzelnen Uebergangskanäle 201 weist eine in Strömungsrichtung spiralförmig verlaufende Form auf welche einen sichelförmigen Verlauf beschreibt, entsprechend der Tatsache, dass sich vorliegend der Durchflussquerschnitt des Uebergangsstückes 200 in Strömungsrichtung konisch erweitet Der Drallwinkel der Uebergangskanäle 201 in Strömungsrichtung ist so gewählt, dass der Rohrströmung anschliessend bis zum Querschnittssprung am Brennkammereintritt noch eine genügend grosse Strecke verbleibt, um eine perfekte Vormischung mit dem eingedüsten Brennstoff zu bewerkstelligen. Ferner erhöht sich durch die oben genannten Massnahmen auch die Axialgeschwindigkeit an der Mischrohrwand stromab des Drallerzeugers. Die Uebergangsgeometrie und die Massnahmen im Bereich des Mischrohres bewirken eine deutliche Steigerung des Axialgeschwindigkeitsprofils zum Mittelpunkt des Mischrohres hin, so dass der Gefahr einer Frühzündung entscheidend entgegengewirkt wird.

[0025] Fig. 11 zeigt die bereits angesprochene Abrisskante, welche am Brenneraustritt gebildet ist. Der Durchflussquerschnitt des Rohres 20 erhält in diesem Bereich einen Uebergangsradius R, dessen Grösse grundsätzlich von der Strömung innerhalb des Rohres 20 abhängt. Dieser Radius R wird so gewählt, dass sich die Strömung an die Wand anlegt und so die Drallzahl stark ansteigen lässt. Quantitativ lässt sich die Grösse des Radius R so definieren, dass dieser > 10% des Innendurchmessers d des Rohres 20 beträgt. Gegenüber einer Strömung ohne Radius vergrössert sich nun die Rückströmblase 50 gewaltig. Dieser Radius R verläuft bis zur Austrittsebene des Rohres 20, wobei der Winkel β zwischen Anfang und Ende der Krümmung < 90° beträgt. Entlang des einen Schenkels des Winkels β verläuft die Abrisskante A ins Innere des Rohres 20 und bildet somit eine Abrissstufe S gegenüber dem vorderen Punkt der Abrisskante A, deren Tiefe > 3 mm beträgt. Selbstverständlich kann die hier parall zur Austrittsebene des Rohres 20 verlaufende Kante anhand eines gekrümmten Verlaufs wieder auf Stufe Austrittsebene gebracht werden. Der Winkel β', der sich zwischen Tangente der Abrisskante A und Senkrechte zur Austrittsebene des Rohres 20 ausbreitet, ist gleich gross wie Winkel β. Die Vorteile dieser Ausbildung dieser Abrisskante gehen aus EP-0 780 629 A2 unter Dem Kapitel "Darstellung der Erfindung" hervor. Eine weitere Ausgestaltung der Abrisskante zum selben Zweck lässt sich mit brennkammerseitigen torusähnlichen Einkerbungen erreichen. Diese Druckschrift ist einschliessend des dortigen Schutzumfanges was die Abrisskante betrifft ein integrierender Bestandteil vorliegender Beschreibung.

Bezugszeichenliste



[0026] 
10
Buchsenring
20
Mischrohr, Teil der Mischstrecke 220
21
Bohrungen, Oeffnungen
30
Brennkammer, Brennraum
40
Strömung, Rohrströmung im Mischrohr, Hauptströmung
50
Rückströmzone, Rückströmblase, Premixflamme
60
Brennerachse
70
Pilotflamme
80
Flamme im Brenner
81
Flammenrückschlag
82
Regelung Brennstoff für die Premixflamme
83
Regelung Brennstoff für die Pilotflamme
84
Ausspülung der Flamme aus dem Brenner
100
Drallerzeuger
101, 102
Kegelförmige Teilkörper
101a
Ringförmiger Anfangsteil
101b, 102b
Längssymmetrieachsen
103
Brennstoffdüse
104
Brennstoffeindüsung 105 Brennstoffspray (Brennstoffeindüsungsprofil)
108, 109
Brennstoffieitungen
112
Flüssiger Brennstoff
113
Gasförmiger Brennstoff
114
Kegelhohlraum
115
Verbrennungsluft (Verbrennungsluftstrom)
116
Brennstoff-Eindüsung aus den Leitungen 108, 109
117
Brennstoffdüsen, Brennstoffinjektoren
119, 120
Tangentiale Lufteintrittsschlitze
121a, 121b
Leitbleche
123
Drehpunkt der Leitbleche
130, 131, 132, 133
Teilkörper
131a, 131a, 132a, 133a
Längssymmetrieachsen
140, 141, 142, 143
Schaufelprofilförmige Teilkörper
140a, 141a, 142a, 143a
Längssymmetrieachsen
150
Brennstoffkonzentration
160
Luftmenge, Mischluft
161
Bohrungen, Oeffnungen
170
Brennstoff-Injektoren
180
Ringförmige Luftkammer
190
Ring
200
Uebergangsstück, Teil der Mischstrecke 220
201
Uebergangskanäle
220
Mischstrecke
300
Pilotbrennersystem
301
Innere Ringkammer
302
Nebengeordnete Ringkammer
303
Gasförmiger Brennstoff
304
Luftmenge
305
Gelochte Platte
306
Bohrungen in den Brennraum, Pilotbrenner
307
Hitzeschutzblech
308
Nachgeschaltete Ringkammer
309
Oeffnungen der inneren Ringkammer
310
Löcher für Prallkühlung des Hitzeschutzbleches
311
Zündvorrichtung
400
Sensor
401
Weiterleitung der sensorischen Erfassung
402
Blickwinkel des Sensors



Ansprüche

1. Brenner zum Betrieb eines Wärmeerzeugers, wobei der Brenner stromauf des Brennraumes aus mindestens einer Vormischstrecke besteht, welche Vormischstrecke Mittel zur Erzeugung einer Drallströmung von Verbrennungsluft aufweist und in welche Vormischstrecke mit mindestens einem Brennstoffinjektor ausgestattet ist, dadurch gekennzeichnet, dass stromab des Brennstoffinjektors mindestens ein Sensor angeordnet ist, welcher ein Zurückschlagen der Premixflamme aus dem Brennraum ins Innere des Brenners feststellt und eine Brennstoffregelung auslöst.
 
2. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Brenner im wesentlichen aus einem Drallerzeuger für einen Verbrennungsluftstrom, aus Mitteln zur Eindüsung mindestens eines Brennstoffes in den Verbrennungsluftstrom zur Bildung einer Premixflamme besteht, wobei stromab des Drallerzeugers eine Mischstrecke angeordnet ist, welche innerhalb eines ersten Streckenteils in Strömungsrichtung eine Anzahl Uebergangskanäle zur Ueberführung einer im Drallerzeuger gebildeten Strömung in ein stromab dieser Uebergangskanäle nachgeschaltetes Mischrohr aufweist, dass im unteren Bereich des Mischrohres (20) mit Wirkung in den dem Mischrohr (20) nachgeschalteten Brennraum (30) ein Pilotbrennersystem (300) angeordnet ist.
 
3. Brenner nach Anspruch 2, dadurch gekennzeichnet, dass der Drallerzeuger (100) aus mindestens zwei hohlen, kegelförmigen, in Strömungsrichtung ineinandergeschachtelten Teilkörpern (101, 102; 130, 131, 132, 133; 140, 141, 142, 143) besteht, dass die jeweiligen Längssymmetrieachsen (101b, 102b; 130a, 131a, 132a, 133a; 140a, 141a, 142a, 143a) dieser Teilkörper gegeneinander versetzt verlaufen, dergestalt, dass die benachbarten Wandungen der Teilkörper in deren Längserstreckung tangentiale Kanäle (119, 120) für einen Verbrennungsluftstromes (115) bilden, und dass im von den Teilkörpern gebildeten Innenraum (114) mindestens eine Brennstoffdüse (103) wirkbar ist.
 
4. Brenner nach Anspruch 2, dadurch gekennzeichnet, dass das Pilotbrennersystem (300) gekühlt ist und mit mindestens einer Zündvorrichtung (311) betreibbar ist.
 
5. Brenner nach Anspruch 2, dadurch gekennzeichnet, dass das Pilotbrennersystem (300) aus mindestens zwei medienführenden Kammern (301, 302) und aus einer weiteren gemeinsamen nachgeschalteten Kammer (308) besteht, dass in dieser nachgeschalteten Kammer (308) die Medien (303, 304) aus den beiden anderen Kammern (301, 302) mischbar sind, und dass die nachgeschaltete Kammer (308) Mittel zur Bildung von in den Brennraum (30) wirkenden vom Gemisch der beiden Medien (303, 304) betreibbaren Pilotbrennern (306) aufweist.
 
6. Brenner nach den Ansprüchen 2 und 5, dadurch gekennzeichnet, dass durch die medienführenden Kammern (301, 303) ringförmig und nebengeordnet ausgebildet sind, dass durch die erste Ringkammer (301) ein gasförmiger Brennstoff (303) und durch die zweite Ringkammer (302) eine Luftmenge (304) strömen, dass in der zweiten Ringkammer (302) Mittel (305) eingebaut sind, durch welche die dort strömende Luft (304) eine Prallkühlung auf ein endseitig des Pilotbrennersystems (300) angeordnetes Hitzeschutzblech (307) bewerkstelligt, und dass die Zündvorrichtung (311) durch die zweite Ringkammer (302) herangeleitet ist.
 
7. Brenner nach Anspruch 6, dadurch gekennzeichnet, dass das Mittel zur Bildung der Prallkühlung eine in der nebengeordneten Ringkammer (302) bodenbildende gelochte Platte (305) ist.
 
8. Brenner nach Anspruch 2, dadurch gekennzeichnet, dass die Brennerfront des Mischrohres (20) zur nachgeschalteten Brennraum (30) mit einer Abrisskante (A) ausgebildet ist.
 
9. Brenner nach Anspruch 2, dadurch gekennzeichnet, dass die Anzahl der Uebergangskanäle (201) in der Mischstrecke (220) der Anzahl der vom Drallerzeuger (100) gebildeten Teilströme entspricht.
 
10. Brenner nach Anspruch 2, dadurch gekennzeichnet, dass das den Uebergangskanälen (201) nachgeschaltete Mischrohr (20) in Strömungs- und Umfangsrichtung mit Oeffnungen (21) zur Eindüsung eines Luftstromes ins Innere des Mischrohres (20) versehen ist.
 
11. Brenner nach Anspruch 2, dadurch gekennzeichnet, dass stromab der Mischstrecke (220) eine Brennkammer (30) angeordnet ist, dass zwischen der Mischstrecke (220) und der Brennkammer (30) ein Querschnittssprung vorhanden ist, der den anfänglichen Strömungsquerschnitt der Brennkammer (30) induziert, und dass sich im Bereich dieses Querschnittssprunges eine Premixflamme mit einer Rückströmzone (50) bildet.
 
12. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die Vormischstrecke stromauf des Brennraumes (30) aus einem Drallerzeuger besteht (100), welcher Drallerzeuger aus mindestens zwei hohlen, kegelförmigen, in Strömungsrichtung ineinandergeschachtelten Teilkörpern (101, 102; 130, 131, 132, 133; 140, 141, 142, 143) besteht, dass die jeweiligen Längssymmetrieachsen (101b, 102b; 130a, 131a, 132a, 133a; 140a, 141a, 142a, 143a) dieser Teilkörper gegeneinander versetzt verlaufen, dergestalt, dass die benachbarten Wandungen der Teilkörper in deren Längserstreckung tangentiale Kanäle (119, 120) für einen Verbrennungsluftstromes (115) bilden, und dass im von den Teilkörpern gebildeten Innenraum (114) mindestens eine Brennstoffdüse (103) wirkbar ist.
 
13. Brenner nach den Ansprüchen 2 oder 12, dadurch gekennzeichnet, dass im Bereich der tangentialen Kanäle (119, 120) in deren Längserstreckung weitere Brennstoffinjektoren (117) angeordnet sind.
 
14. Brenner nach Anspruch 15, dadurch gekennzeichnet, dass die Teilkörper (140, 141, 142, 143) im Querschnitt eine schaufelförmige Profilierung aufweisen.
 
15. Verfahren zum Betrieb eines Brenners nach den Ansprüchen 1 und 2 oder 1 und 12, dadurch gekennzeichnet, dass durch den im Brenner angebrachten Sensor (400) ein Zurückschlagen der Flamme erfasst wird, dass darauf mindestens temporär die Brennstoffmenge dieser Flamme reduziert und gleichzeitig die Pilot-Brennstoffmenge erhöht wird, dergestalt, dass die Gesamtbrennstoffmenge und somit die Turbinenleistung konstant gehalten werden.
 




Zeichnung




























Recherchenbericht