(19)
(11) EP 0 988 387 B9

(12) CORRECTED EUROPEAN PATENT SPECIFICATION
Note: Bibliography reflects the latest situation

(15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see
Description

(48) Corrigendum issued on:
28.02.2007 Bulletin 2007/09

(45) Mention of the grant of the patent:
11.10.2006 Bulletin 2006/41

(21) Application number: 98922831.7

(22) Date of filing: 28.05.1998
(51) International Patent Classification (IPC): 
C12N 15/67(2006.01)
C12N 15/83(2006.01)
C12N 5/10(2006.01)
(86) International application number:
PCT/FI1998/000445
(87) International publication number:
WO 1998/055636 (10.12.1998 Gazette 1998/49)

(54)

RECOMBINANT CONSTRUCT FOR ENHANCEMENT OF GENE EXPRESSION IN PLANTS

REKOMBINANTES KONSTRUKT FÜR EINE ERHÖHTE EXPRESSION VON GENEN IN PFLANZEN.

CONSTRUCTION DE RECOMBINAISON PERMETTANT D'AMELIORER L'EXPRESSION GENIQUE CHEZ LES PLANTES


(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

(30) Priority: 02.06.1997 FI 972325

(43) Date of publication of application:
29.03.2000 Bulletin 2000/13

(73) Proprietors:
  • Atabekov, Joseph
    Moscow 117311 (RU)
  • Korpela, Timo
    20500 Turku (FI)
  • Dorokhov, Yurii
    Moscow 117321 (RU)
  • Morozov, Sergey
    Moscow, 153458 (RU)

(72) Inventors:
  • Atabekov, Joseph
    Moscow 117311 (RU)
  • Korpela, Timo
    20500 Turku (FI)
  • Dorokhov, Yurii
    Moscow 117321 (RU)
  • Morozov, Sergey
    Moscow, 153458 (RU)

(74) Representative: Hartz, Nikolai et al
Wächtershäuser & Hartz Patentanwälte Weinstrasse 8
80333 München
80333 München (DE)


(56) References cited: : 
EP-A- 0 573 767
WO-A-91/13994
WO-A-94/26912
US-A- 5 633 447
EP-A- 0 672 754
WO-A-93/03143
WO-A-96/12028
   
  • THE EMBO JOURNAL, Volume 16, No. 12, 1997, SUSAN M. ANGELL et al., "Consistent Gene Silencing in Transgenic Plants Expressing a Replicating Potato Virus X RNA", pages 3675-3684.
  • PROC. NATL. ACAD. SCI. U.S.A., Volume 94, May 1997, VIDADI YUSIBOV et al., "Antigens Produced in Plants by Infection with Chimeric Plant Viruses Immunize Against Rabies Virus and HIV-1", pages 5784-5788.
  • FEBS, Volume 336, December 1993, MASASHI MORI et al., "mRNA Amplification System by Viral Replicase in Transgenic Plants", pages 171-174.
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] This invention is related to molecular biology and biotechnology exploiting plant genetic engineering by recombinant DNA technology.

[0002] This invention describes a DNA construct based on viral sequences which are capable of activating or increasing the expression of a gene in recombinant DNA-containing tissue. The envention is useful for increasing the expression of a gene, derived from heterologous plant species, or has non-plant origin. The invention will facilitate in the genetic engineering to express proteins of interest or express novel plant phenotypes of economic or investigative value. Specifically, the invention relates to a method of expressing a gene sequence in plant cells or in a plant. The invention also relates to a recombinant DNA molecule for said method and to a eukaryotic cell transformed with the DNA molecule.

Background of the invention



[0003] Structurally polycistronic RNAs of many plant and animal viruses belonging to so-called Sindbis-like supergroup are functionally monocistronic: only the 5'- proximal gene can be translated by eukaryotic ribosomes. All the internal translationally silent genes are expressed from subgenomic RNAs (sgRNA) produced by transcription of the minus-copy of the full-length genomic RNA from internal sites - subgenomic promoters (sgPr). All RNA viruses produce during their replicative cycle the virus-specific RNA-dependent RNA polymerase (replicase) which is essential for the synthesis of various species of viral RNA. The replicase gene is localized 5'-proximally within the monopartite genomes of the members of Sindbis-like viruses (e.g. tobacco mosaic virus, TMV, potato virus X, PVX, brome mosaic virus, BMV), i.e. represent the only translatable gene of the polycistronic genome (for a review, see Bruening et al. (1979) In "Molecular Biology of Plants", Academic Press, New York-London, pp.241-272). Specific cis-acting sequences within the minus-copy of the genomic RNA are required for synthesis of sgRNAs. The multifunctional nature of replicase allows it to recognize these internal sequences (sgPrs) to synthesize sgRNAs by partial transcription of the negative-strand RNA. This mechanism has been clearly established for some plant viruses in vitro (Miller et al. (1985) Nature 313, 68-70) and in vivo (Gargouri et al. (1989) Virology 171, 386-393).

[0004] It has been shown that the chimeric TMV (Donson et al. (1991) Proc.Natl.Acad.Sci.USA 88, 7204-7208) and PVX (Chapman et al. 1992) Plant J. 2, 549-557; Hammond-Kosack et al. (1995) Mol.Plant-Microbe Int. 8, 181-185) vectors could be constructed by insertion of the foreign genes downstream of a sgPr that permits the expression of introduced genes from appropriate sgRNA. This means that viral replicase can recognize the sgPr at different positions within recombinant minus-strand. Moreover, viral replicase expressed from the integrated cDNAs in transgenic plants can replicate viral RNAs and produce subgenomic RNAs (Leiser et al, (1992) Proc.Natl.Acad.Sci.USA 89, 9136-9140). Thus, it could be presumed that the replicase will be able to act in trans to recognize in vivo the specific sgPr not only in full-length viral genome but also in the short chimeric minus-sense RNA transcripts carrying a foreign gene (in antisense orientation). This could result in producing the respective sgRNA by the mechanism adapted for viral sgRNA synthesis.

[0005] Contrary to the majority of eukaryotic mRNAs several viral and cellular mRNAs are translated by alternative-internal ribosome entry mechanism that bypasses the normal cap recognition step and 5'-nontranslated sequence scanning. In particular, the genome of crucifer tobamoviruses (crTMV) (Dorokhov et al. (1994) FEBS Letters 350, 5-8) contains two cis-acting sequences mediating internal ribosome entry and translation of the 3'-proximal genes of crTMV RNA. These elements can be used in constructing functionally dicistronic or polycistronic eukaryotic mRNAs. In this invention we found that these elements can be expoited in certain conditons for the expression at translational level of more than one reporter gene within a polycistronic mRNA in eukaryotic cells.

[0006] The complete nucleotide sequence of the PVX genome has been reported for Russian (Skryabin et al. (1988a) Nucleic Acid Res. 16, 10929-10930) and several other strains (for example, see Querci et al. (1993) J.Gen.Virol. 74, 2251-2255.). The PVX genome contains five ORFs coding for the 165kDa replicase, three movement proteins (MPs) (25kDa, 12kDa and 8kDa) and coat protein (CP) (Fig.1). The replicase protein is translated directly from the genomic RNA, and its expression is controlled by the 5'-untranslated genomic leader sequence (αβ-sequence). The αβ-leader has been shown to enhance strongly the translation of foreign genes both in vitro (Smirnyagina et al, (1991) Biochimie 73, 587-598) and in vivo (Tomashevskaya et al. (1993) J.Gen.Virol. 74, 2717-2724). The separate sgRNAs are produced in PVX infection for the MPs and CP expression which are 3'-coterminal with the genomic RNA (Fig. 1) (Morozov et al. (1991) J.Gen. Virol. 72, 2039-2043). The precise borders of the PVX sgPrs are unknown, however, it has been experimentally shown that the 81 nt sequence including 15 5'-terminal nucleotides of the PVX CP gene and 66 nt upstream sequence is active in vivo as sgPr (Chapman et al. (1992) Plant J. 2, 549-557). Recently the PVX-based vectors with this engineered 81-nt-long sgPr was used for the transient expression of the pathogene elecitor gene and plant defence genes (Rommens et al. (1995) Plant Cell 7, 249-257). US 5,633,447 describes a DNA construct having a subgenomic promoter of a positive strand RNA virus and a gene of interest in negative sense orientation. Using of plant RNA viruses for the introduction and expression of non-viral foreign genes in plants has been demonstrated by the cited references above as well as by French et al. (1986) (Science 231, 1294-1297). However, all these viral vectors have been capable of autonomous replication in plant cells, thus, providing a risk for cell pathogenesis in a manner typical for wild type virus. Another disadvantage of self-replicating RNA vectors is that they are not stable for the maintenance of non-viral sequences (Donson et al. (1991) Proc.Natl.Acad.Sci.USA 88, 7204-7208).

[0007] While there are distinct needs for improving expression of foreign proteins, such as industrial enzymes, medical drugs and so on in plants, there exists several technical problems. First of all, the expression levels of protein in plants are not adequate. The present invention was aimed to overcome these drawbacks.

Summary of the Invention.



[0008] The invention provides a method of expressing a gene sequence to be expressed in plant cells or in a plant according to claim 1. The invention also provides a recombinant DNA molecule according to claim 12 and a eucaryotic cell according to claim 13.

[0009] The present invention focuses on the super-expression of foreign genes in transgenic cells by to combining within a single cDNA construct and respective RNA transcript, several trans- and cis-acting genetic elements of viral origin which will act in concert to trigger the following functional events: a) the primary chimeric continuous RNA transcript is produced by the transformed cells from plant-expressible promoter (35S promoter) (Fig.2); b) RNA replicase produced by direct translation of the 5'-proximal gene of a single continuous primary transcript will synthesize secondary monocistronic (Fig.3A) (or dicistronic (Fig.3B)) mRNA as a result of the transcription from sgPr sequence. Expression of the 5'-proximal gene of these mRNAs will be enhanced by the αβ-leader. Translation of the 5'-distal gene of dicistronic mRNA (Fig.3B) will be promoted by internal ribosome entry site (IRES) sequence derived from crTMV tobamovirus mentioned above; c) it is probable that at least part of RNA transcripts originated from sgPr will include at their 3'-end the minus copy of RNA replicase gene and genomic promoter for plus-RNA synthesis (Fig 3 A and B). It can be expected that RNA replicase produced in transgenic cell will bind with the 3'-terminal sequence of this RNA (genomic promoter) producing upon transcription the RNA molecules carrying the plus-polarity replicase gene at the 5'-end. Translation of these mRNAs will result in production of additional replicase in transgenic plant (Fig.4).

Brief Description of the Figures



[0010] 

Fig.1. Schematic representation of the PVX genome. The corresponding subgenomic RNAs are shown.

Fig.2(A). Schematic representation of expression activating element 1. The 35S and CaMV PAS indicate cauliflower mosaic virus 35S promoter and polyadenylation sequence, respectively. PL indicates polylinker. (+) and (-) indicate PVX-derived sequences which are identical and complementary the PVX virion RNA sequences, respectively.

Fig.2(B). Schematic representation of expression activating element 2. The 35S and CaMV PAS indicate cauliflower mosaic virus 35S promoter and polyadenylation sequence, respectively. (+) and (-) indicate PVX-derived sequences which are identical and complementary the PVX virion RNA sequences, respectively. NPT indicates NPTII gene.

Fig. 2(C). Schematic representation of expression activating element 3. The 35S and CaMV PAS indicate cauliflower mosaic virus 35S promoter and polyadenylation sequence, respectively. (+) and (-) indicate PVX-derived sequences which are identical and complementary the PVX virion RNA sequences, respectively. NPT indicates NPTII gene. IRES indicates internal ribosome entry site of crucifereae tobamovirus. 2-5A POL and αβ-indicate mammalian 2'-5' oligoadenylate syntethase gene and potato virus X αβ-genomic leader sequence, respectively.

Fig.2(D). Schematic representation of the primary transcript of expression activating element 2. Abbreviation are used as in Fig.2(B).

Fig.2(E). Schematic representation of the primary transcript of expression activating element 3. Abbreviation are used as in Fig.2(C).

Fig.3(A). Schematic representation of the secondary transcript of expression activating element 2. Abbreviations are used as in Fig. 2(C).

Fig. 3(B). Schematic representation of the secondary transcript of expression activating element 3. Abbreviations are used as in Fig. 2(C).

Fig. 4(A). Schematic representation of the tertiary transcript of expression activating element 2. Abbreviations are used as in Fig. 2(B).

Fig. 4(B). Schematic representation of the tertiary transcript of expression activating element 3. Abbreviations are used as in Fig. 2(C).


Detailed Description of the Invention



[0011] The following definitions are provided to remove ambiguities in the intent or scope of their usage. Expression refers to the transcription and translation of a gene so that a protein is synthesized. Super-expression means the expression at least several-fold higher than the expression in normal conditions. Promoter refers to the sequence at the 5' end of a structural gene which directs the initiation of DNA transcription. Promoter sequences are necessary to drive the expression of the downstream gene(s). Eukaryotic (including plant-specific) promoters generally contain the TATA box about 10-35 bp 5' to the transcription start site. 35S promoter refers to a plant-expressible cauliflower mosaic virus promoter providing the TATA box and other sequences responsible for maximum efficiency of transcription. This promoter could also serve as a transcriptional recombinant promoter for gene expression in monocotyledonous plants (Last et al., European Patent Application EP 0 459 643 A2 (91304205.7) and plant anaerobic regulatory element (Peacock et al., European Patent Application EP 0 278 658 A2 (No. 88 300 852.6).

[0012] DNA segments and new strategies for increasing the expression of desired genes in plants are disclosed in this invention. The first of these expression segments represents a unique transcription module (under the control of plant-specific promoter) comprising a PVX replicase gene at the 5'-proximal position (in sense orientation) followed by sgPr of PVX (in anti-sense orientation) fused to a polylinker sequence. The second element contains additional translational enhancer of PVX (αβ-leader sequence) placed between sgPr and polylinker providing to the higher level of gene expression. The third element contains in addition to the second element an internal ribosomal entry site (IRES) to create dicistronic mRNAs capable of co-expressing the gene of interest which can be placed under the αβ-enhancer and IRES-controlled selectable marker gene, thus, significantly simplifying selection of proper transgenic plant lines. The expression activating elements described and DNA molecules containing them are useful as a method for enhanced expression of the genes in any plant tissue.

[0013] It has been proposed recently a process for production of an exogenous gene or its product in a plant cell which comprises: inserting into a genome of a plant; a) cDNA of replicase gene from RNA plant virus, and b) cDNA of a recombinant virus genomic RNA in which nucleotide moiety at and after ATG downsream from the original translation initiation codon (the first ATG counted from the 5'-end) in the cDNA of CP gene is replaced with a desired exogenous gene; or inoculating a plant cell including cDNA of replicase gene of a plant virus with RNA synthesized from the cDNA of recombinant virus genomic RNA (Mori et al., EPO Patent application EP 0573767 A1. In contrast to the present invention for expression of an exogenous gene, the cited application suggested to employ two cDNA constructions: cDNA of replicase gene and a recombinant virus genomic RNA where exogenous gene is present instead of natural CP gene. This approach is cumbersome and difficult to put into practice because it requires double plant cell transformation. In the present invention only one plant cell transformation is required.

[0014] Viral subgenomic promoter for the heterologous gene expression was used by Gerlach et al. (PCT WO 91/13994), who have proposed a nucleic acid sequence comprising; (a) a transcriptional promoter; (b) a heterologous gene sequence operably linked to said transcriptional promoter; and (c) a sgPr ligated to the heterologous gene sequence. The proposed cDNA construction contains heterogenous gene in antisense orientation but does not the include the viral-derived replicase gene in contrast to the present invention.

[0015] Thus, the particular advantages of the present invention over the prior art of super-expression of proteins are: 1) higher yields; 2) easier methods of the protein detection and isolation; 3) the production of proteins not only in laboratory, but also in industrial conditions.

[0016] Viral sgPrs (including those of PVX) in viral RNA genomes contain a set of consensus sequences specific for a particular virus group (see, for example, Solovyev et al, (1994) J.Gen.Virol. 75, 259-267). All known sgPrs are operating only at RNA level. Anti-sense orientation of RNA segments refers to the RNA complementary to the mRNA being translated. Chimeric sequence or construct refers to a nucleotide sequence derived from at least two heterologous parts. Production of genetically modified plant tissue expressing a protein of interest under the control of a expression activating element and an upstream plant-specific promoter combines the specific points of the present disclosure with a variety of techniques and expedients known in the art. In most instances, alternative methods exist for each stage of the overall process. The choice of the methods depends on variables such as of the vector system for the introduction and stable maintenance of the expression activating element plant-specific promoter polyadenylation signal, the plant species to be modified and the desire regeneration strategy, the RNA polymerase gene, sgPr and the particular gene of interest to be used. For instance, although the starting point for obtaining the expression activating element is exemplified in the present application by the PVX RNA replicase gene, carefully selected other replicase genes from different plant viruses may be used as well. Accordingly, subgenomic promoter sgPr of 25K protein gene (Fig.1) of the coat protein gene might be replaced by other related promoters.

[0017] It is important to emphasize that the expression system can be exploited in very different conditions including growing of plants in the field or growing plant in climatic chamber or algae cells and other plant cells in fermentors.

[0018] One application of the invention is to localize the synthesised proteins in vacuoles, cytoplasm or intercellular space by using a proper signal peptide sequence to translocate the proteins in the desired place.

[0019] This invention could be applied for super-expression of different proteins: a) the animal RNA-binding protein to achieve nonspecific resistance to different DNA- and RNA-containing viruses; b) normal and defective plant virus-derived CP, movement protein or replicase for providing plant virus resistance; c) plant proteins such as thaumatin; d) essential amino acid-rich proteins improving nutritional value of plant crops; e) medical useful proteins such as antibodies and interferon; f) enzymes such as amylases, cellulases, proteases, lipases.

[0020] It should be understood also that there may be minor sequence variations within sequences utilized or disclosed in the present invention. These variations may be determined by standard techniques. As improved means are developed for the stable insertion of foreign genes in plant cells and for manipulating the modified cells, those of ordinary skill in the art will be able to select among these alternative steps to achieve a desired result. Techniques for in vitro culture and eventual regeneration into whole plants may include steps for selecting and detecting transformed plant cells (see below, EXAMPLES). Such alternative means including also electroporation, particle gun bombardment, microinjection and direct DNA transformation as well as preferred embodiment, i.e. using T-DNA containing vectors and agrobacterial-mediated transformation.

[0021] The techniques of the present invention will significantly expand the range of plant cells into which expression activating elements can be introduced. A principal feature of the present invention in its preferred embodiment is the recombinant plasmid having an inserted plant-specific promoter and polyadenylation signal directing the transcription of viral replicase gene (in sense orientation) and heterologous gene(s) of interest (in anti-sense orientation) whose expression is directed by transcription activation from viral sgPr and by translational activation from PVX αβ-sequence (Fig.2-4). It has been determind that translational activation is the most effective when gene of interest is placed immediately 3' to the αβ-sequence in the respective translatable transcript (Fig.3). To avoid significant differences in the rates of expression of genes of interest in different plant lines, the selective marker gene under the control of IRES can be inserted on the 3' side of the transcript.

[0022] The following reasoning is provided for illustrative purposes only and is not intended to limit the scope of the invention. In the transgenic plant, the single cDNA construct directs the synthesis of respective primary RNA transcript controlled by 35S promoter and polyadenylation signal (PAS) of cauliflower mosaic virus (Odell et al. (1985) Nature 313, 810-812) (Fig.2C). The primary chimeric RNA transcript includes the PVX replicase gene at the 5' end (Fig.2E). RNA replicase produced by direct translation of the 5'-proximal gene of a single continuous primary transcript synthesizes secondary dicistronic mRNA as a result of the transcription from sgPr sequence (Fig.3B). Expression of the 5'-proximal gene (mammalian 2'-5' oligoadenylate synthetase gene; Truve et al. (1993) Biotechnology 11, 1048-1052) of this dicistronic mRNA will be enhanced by the αβ-leader (Tomashevskaya et al. (1993) J.Gen.Virol. 74, 2717-2724). Translation of the 5'-distal gene (selective marker NPTII gene) of dicistronic mRNA (Fig.3B) will be promoted by IRES derived from crTMV tobamovirus (Dorokhov et al. (1994) FEBS Letters 350, 5-8). As a result transformed shoots expressing the secondary transcript (Fig. 3B) could be easily selected by growing on the kanamycin-containing media. The respective kanamycin-resistant plants will produce also 2'-5' oligoadenylate synthetase (Fig. 3B) conferring them the resistance to virus infection (Truve et al. (1993) Biotechnology 11, 1048-1052). It can be expected that the PVX RNA replicase produced in transgenic cell will bind with the 3'-terminal sequence of the secondary RNA (Fig. 3B) representing the PVX genomic promoter for plus-RNA synthesis producing after transcription the RNA molecules carrying the plus-polarity replicase gene at the 5'-end (Fig.4). Translation of these mRNAs will result in production of additional replicase in transgenic plant.

EXAMPLES



[0023] These examples describe the cloning, plant cell electroporation, particle gun bombardment and assay strategy for studying GUS gene regulation and expression mediated by PVX sgPr and replicase.

Example 1. Construction, of plasmids containing the PVX replicase gene. GUS gene and PVX sgPr



[0024] Standard molecular biological techniques were carried out according to Maniatis et al. (1982) Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. All plasmids utilized in the invention can be prepared according to the directions of the Specification by a person of ordinary skill in the art without undue experimentation employing materials readily available in the art.

[0025] The full-length PVX cDNA clone pBS118 (Morozov et al. (1990). Biochimie 72, 677-684) was used for PCR amplification of RdRp gene with PVX specific primers PVXpo15 (corresponding to the residues 1-24 of PVX genome) and PVXpo13 (corresponding to residues 4421-4451 and including artificial KpnI site at the 5' terminus). The resulting PCR fragment was cleaved by MunI and KpnI and ligated to EcoRI-KpnI-cleaved pRT 101 (Topfer et al. (1987). Nucleic Acids Res. 15, 5890), to give pRTX-Pol. The pBS118 clone was also used for PCR-mediated amplification of PVX sgPr. The reaction was directed by the primers PVX-SGXba (corresponding to the residues 5241-5265 of PVX genome) and PVX-SGNco (complementary to the residues 5625-5651 and including artificial Nco1 site at the 5' terminus). The plasmid pTZ-G12 - derivative of pTZ18R (Zelenina et al. (1992). FEBS Letters 296, 267-270) was used for PCR-amplification of β-glucuronidase (GUS) gene. The reaction was directed by universal reverse sequencing primer and the primer (24-mer) complementary to the 3' end of GUS gene and including artificial Kpn1 site. Then, the PCR products corresponding to PVX sgPr and GUS gene were cleaved with NcoI and ligated to each other. The ligation product corresponding to the fusion of sgPr-GUS gene was isolated from agarose gel, cleaved with Xba1 and Kpn1 and ligated to Xba1-Kpn1-cleaved pRTX-Pol, to give pRTX-PSG.

Example 2. Protoplast isolation and culture.



[0026] Isolation of the mesophyll protoplasts from barley leaves, was carried out according to Zelenina et al. (1992) (FEBS Lett. 296, 276-270). Protoplasts were washed in 0.375M mannitol, 10mM MES, pH 5.8, 205mM NaCl, 3.5 KCI, 9.4mM MgSO4, 8.4mM MgCl2, 3.4mM CaCl2, and 0.875mM NaHCO3. The protoplasts were again sedimented, washed, sedimented and resuspended in TBS9 (Tris 3.63 g/l, CaCl2.2H2O 876 mg/l, NaCl 8.78 mg/l, mannitol 50g/l, pH 9.0) at concentration of 2x106 protoplasts/ml.

Example 3. Electroporation of protoplasts



[0027] Immediately before electroporation, 100 µl of protoplast suspension was added to a tube containing 5 µl of plasmid DNA dissolved in 5 µl of 10mM Tris HCl, pH 8.0, 1 mM Na2EDTA. The mixture was transferred to an electroporation chamber (2mm between electrodes) and three pulses of 275V (1375 V/cm), with a pulse width of 5ms and a delay of 100ms, were applied between electrodes from a 24µF capacitor. After allowing the protoplasts to recover for 5 seconds, the protoplast suspention was pipetted back into a microfuge tube to which 600 µl washing solution was added. The tubes were spun gently (<100g) for 5 minutes, the supernatants removed and protoplasts resuspended in 1 ml of M-S culture medium. The protoplast suspension were transferred to 35 mm petri dishes which were sealed in parafilm and incubated at 25°C in the dark to allow expression of the GUS gene.

Example 4. Assay of US gene expression in electroporated protoplasts



[0028] After incubation for 44 to 48 hours, 400 µl washing solution (0.3M mannitol, 156mM NaCl, 3.5mM KCl, 9.4mM MgSO4, 8.4mM MgCl2, 3.4mM CaCl2, 0.9mM NaHCO3, pH6.0) was added to each dish and each protoplast sample was gently pipetted into a microfuge tube. The tubes were centrifuged at 100xg for 8 minutes and supernatant was discarded. Protoplats pellets were either stored at -80°C until required or used immediately. Each pellet was resuspended, with the aid of a vortex mixer, in 250 µl extraction buffer (Jefferson et al. (1987) Plant Molecular Biology Report 5, 387-405). The samples were sonicated on ice for 5 seconds using a Labsonic 1510 sonicator set at 55W, equipped with a microtip probe. Debris was pelleted by centrifugation in a microfuge for 1 minute and the clear supernatant was assayed for total protein using a Bio-Rad kit according to the manafacturer's recomendations. For each set of constructs the fluorometric GUS assay (Jefferson et al. (1987) Plant Molecular Biology Report 5, 387-405) was performed on an aliquot of the supernatant containing a fixed amount of total protein in the range of 5 to 50 µg dissolved in 100 µl lysis buffer. A further 100 µl extraction buffer containing 2mM 4-methyl-umbelliferyl-β-D-glucuronid (MUG) was added, the mixture was vortexed briefly and incubated at 37°C for a fixed time in the range of 20 to 160 minutes. The reaction was stopped by the addition of 1000 µl 0.2M Na2CO3 and fluorescence at 455nm was measured using a Perkin-Elmer Spectrofluorimeter set at an exitation wavelength of 365nm.

Example 5. Particle gun bombardment and testing GUS activity in plants.



[0029] Particle gun bombardment was performed using flying disk method (for example, see Daniell (1993) (Methods in Enzymology 217, 537-557) with high-pressure helium-based apparatus PDS-1000 (Bio-Rad). Briefly, for each series of shots, DNA was precipitated on tungsten particles with calcium chloride and ethanol after the addition, while vortexing, of 10 µl of plasmid DNA (at 0.5-1.5 mg/ml to 6 mg of tungsten particles suspended in 100 µl of 50% glycerol, and then tungsten particles kept in suspension in cold 95% ethanol (90 mg/ml). After sonication 5 µl of this mixture was placed immediately on each plastic flying disk and used for bombardment when the particles had dried. A detached leaf of Nicotiana benthamiana (15-30 mm size) was placed in the center of a plastic Petri dish and bombarded on a solid support at a target distance of 7 cm. Bombardment was done with a pulse of 1350 kPa helium gas in a vacuum chamber.

[0030] Inoculated leaves were sampled 24 to 72 hrs after bombardment. PVX replicase and sgPr activity was monitored by histochemical detection of GUS expression described (Jefferson et al. (1987) Plant Molecular Biology Report 5, 387-405). Samples were infiltrated in the colorimetric GUS substrate, modified (De Block and Debrouwer (1992) Plant J. 2, 261-266) to limit the diffusion of the intermediate products of the reaction: 0.115 M phosphate buffer, pH 7.0, containing 5-bromo-4-chloro-3-indolyl-β-D-glucuronide (X-Gluc) 600 µg/ml; 3mM potassium ferricyanide; 10mM EDTA. After incubation overnight at 37° C, the leaves fixed in 70% ethanol and examined by light microscopy.


Claims

1. Method of expressing a gene sequence to be expressed in plant cells or in a plant, comprising introducing into plant cells a recombinant DNA molecule, said recombinant DNA molecule comprising:

(a) a transcriptional promoter;

(b) a virus-derived replicase gene located 3' to the transcriptional promoter;

(c) a gene sequence to be expressed;

(d) a subgenomic promoter sequence ligated to the gene sequence to be expressed;

wherein
the replicase gene sequence is in an orientation which on transcription gives a primary RNA transcript having said replicase gene sequence in positive sense orientation; and
the gene sequence to be expressed and the subgenomic promoter sequence are in an orientation which on transcription gives a primary RNA transcript having said gene sequence to be expressed and said subgenomic promoter sequence in negative sense orientation.
 
2. The method according to claim 1, wherein the transcriptional promoter is a eukaryotic promoter.
 
3. The method according to claim 2, wherein said transcriptional promoter is a plant specific promoter of a plant virus.
 
4. The method according to any one of claims 1 to 3, wherein the replicase gene is a plant specific replicase gene of a plant virus.
 
5. The method according to any one of claims 1 to 4, wherein said subgenomic promoter sequence is a plant specific subgenomic promoter of plant viral origin which is capable of interacting with a replicase expressed from said replicase gene.
 
6. The method according to any one of claims 1 to 5, wherein the gene sequence to be expressed encodes a desired polypeptide product selected from the group consisting of: antibiotics, toxins, hormones, enzymes, microbial proteins, and animal proteins.
 
7. The method according to any one of claims 1 to 5, wherein said gene sequence to be expressed encodes a polypeptide product that interferes with virus infection or that modifies a property selected from the group consisting of: phenotype, sterility, salt tolerance, virus susceptibility, drought tolerance, acidity, and colour of a plant; or said polypeptide product produces a detectable signal.
 
8. The method according to any one of claims 1 to 7, which additionally comprises a gene encoding a selectable marker that confers antibiotic resistance, herbicide resistance, colour change, or which encodes a polypeptide capable of reacting with a substrate to produce a detectable signal.
 
9. The method according to any one of claims 1 to 8, containing between said replicase gene and said gene sequence to be expressed a further gene sequence to be expressed under the control of an internal ribosome entry site (IRES), whereby said further gene sequence to be expressed and said IRES are in an orientation which on transcription gives a primary RNA transcript having said further gene sequence to be expressed and said IRES in negative sense orientation.
 
10. The method according to any one of claims 1 to 9, which additionally comprises the αβ leader sequence of PVX virus as a translation-enhancing nucleotide sequence, that is located between the transcription initiation site of the subgenomic promoter sequence and the 5' end of the gene sequence to be expressed.
 
11. The method according to any one of claims 1 to 10, wherein the replicase gene, the gene sequence to be expressed and the subgenomic promoter sequence are transcribed under the action of said transcriptional promoter to give a primary transcript which is capable of being transcribed under the action of the replicase expressed from said replicase gene and said subgenomic promoter to give a secondary transcript.
 
12. A recombinant DNA molecule as defined in any one of claims 1 to 10.
 
13. A eukaryotic cell transformed with the recombinant DNA molecule according to claim 12.
 


Ansprüche

1. Methode zur Expression einer in Pflanzenzellen oder in einer Pflanze zu exprimierenden Gensequenz, umfassend das Einführen eines rekombinanten DNA-Moleküls in Pflanzenzellen, wobei das rekombinante DNA-Molekül umfasst:

(a) einen Transkriptionspromotor,

(b) ein 3' zum Transkriptionspromotor befindliches von einem Virus abgeleitetes Replicasegen,

(c) eine zu exprimierende Gensequenz,

(d) eine subgenomische Promotorsequenz, die an die zu exprimierende Gensequenz gebunden ist,

worin
die Replicase-Gensequenz eine Orientierung aufweist, die bei der Transkription ein primäres RNA-Transkript ergibt, das die Replicase-Gensequenz in Positivsinn-Orientierung aufweist; und
die zu exprimierende Gensequenz und die subgenomische Promotorsequenz in einer Orientierung sind, die bei der Transkription ein primäres RNA-Transkript ergibt, das die zu exprimierende Gensequenz und die subgenomische Promotorsequenz in Negativsinn-Orientierung aufweist.
 
2. Methode nach Anspruch 1, worin der Transkriptionspromotor ein eukaryotischer Promotor ist.
 
3. Methode nach Anspruch 2, worin der Transkriptionspromotor ein pflanzenspezifischer Promotor eines Pflanzenvirus ist.
 
4. Methode nach einem der Ansprüche 1 bis 3, worin das Replikatgen ein pflanzenspezifisches Replicase-Gen eines Pflanzenvirus ist.
 
5. Methode nach einem der Ansprüche 1 bis 4, worin die subgenomische Promotorsequenz ein pflanzenspezifischer subgenomischer Promotor eines pflanzenviralen Ursprungs ist, der dazu fähig ist, mit einer aus dem Replicase-Gen exprimierten Replicase in Wechselwirkung zu treten.
 
6. Methode nach einem der Ansprüche 1 bis 5, worin die zu exprimierende Gensequenz ein gewünschtes Polypeptid-Produkt kodiert, das ausgewählt ist aus der Gruppe bestehend aus: Antibiotika, Toxine, Hormone, Enzyme, mikrobielle Proteine und tierische Proteine.
 
7. Methode nach einem der Ansprüche 1 bis 5, worin die zu exprimierende Gensequenz ein Polypeptid-Produkt kodiert, das eine Virusinfektion beeinflusst oder das eine Eigenschaft modifiziert, die ausgewählt ist aus der Gruppe bestehend aus: Pheno-Typ, Sterilität, Salztoleranz, Virusanfälligkeit, Dürre-Toleranz, Azidität und Farbe einer Pflanze; oder das Polypeptid-Produkt ein bestimmbares Signal erzeugt.
 
8. Methode nach einem der Ansprüche 1 bis 7, die zusätzlich ein Gen umfasst, das einen selektierbaren Marker kodiert, der Antibiotika-Resistenz, Herbizid-Resistenz, Farbveränderung verleiht, oder das ein Polypeptid kodiert, das fähig ist, mit einem Substrat unter Bildung eines bestimmbaren Signals zu reagieren.
 
9. Methode nach einem der Ansprüche 1 bis 8, die zwischen dem Replicase-Gen und der zu exprimierenden Gensequenz eine weitere unter der Kontrolle einer internen Ribosomen-Eingangsposition (IRES) zu exprimierende Gensequenz enthält, wobei die weitere zu exprimierende Gensequenz und IRES eine Orientierung aufweisen, die bei der Transkription ein primäres RNA-Transkript ergibt, das eine weitere zu exprimierende Gensequenz und IRES in Negativsinn-Orientierung aufweist.
 
10. Methode nach einem der Ansprüche 1 bis 9, die zusätzlich die αβ-Leader-Sequenz von PVX-Virus als Translations-verstärkende Nucleotid-Sequenz umfasst, die sich zwischen der Transkriptions-Initiierungsposition der subgenomischen Promotorsequenz und dem 5'-Ende der zu exprimierenden Gensequenz befindet.
 
11. Methode nach einem der Ansprüche 1 bis 10, worin das Replicase-Gen, die zu exprimierende Gensequenz und die subgenomische Promotorsequenz unter der Wirkung des Transkriptionspromotors transkribiert werden, um ein primäres Transkript zu ergeben, das dazu fähig ist, unter der Wirkung der aus dem Replicase-Gen exprimierten Replicase und dem subgenomischen Promotor transkribiert zu werden, um ein sekundäres Transkript zu ergeben.
 
12. Rekombinantes DNA-Molekül, wie in einem der Ansprüche 1 bis 10 definiert.
 
13. Eukaroytische Zelle, transformiert mit dem rekombinanten DNA-Molekül nach Anspruch 12.
 


Revendications

1. Méthode pour exprimer une séquence génique qui doit être exprimée dans des cellules végétales ou dans une plante, comprenant l'introduction dans des cellules végétales d'une molécule d'ADN recombinant, ladite molécule d'ADN recombinant comprenant :

(a) un promoteur de transcription ;

(b) un gène de réplicase issu d'un virus, situé en 3' par rapport au promoteur de transcription ;

(c) une séquence génique qui doit être exprimée ;

(d) une séquence de promoteur sous-génomique ligaturée à la séquence génique qui doit être exprimée ;

dans laquelle
la séquence du gène de réplicase est dans une orientation qui, lors de la transcription, donne un transcrit d'ARN primaire ayant ladite séquence du gène de réplicase dans une orientation de sens positif ; et
la séquence génique qui doit être exprimée et la séquence du promoteur sous-génomique sont dans une orientation qui, lors de la transcription, donne un transcrit d'ARN primaire ayant ladite séquence génique qui doit être exprimée et ladite séquence du promoteur sous-génomique dans une orientation de sens négatif.
 
2. Méthode selon la revendication 1, dans laquelle le promoteur de transcription est un promoteur eucaryote.
 
3. Méthode selon la revendication 2, dans laquelle ledit promoteur de transcription est un promoteur spécifique des plantes issu d'un virus végétal.
 
4. Méthode selon l'une quelconque des revendications 1 à 3, dans laquelle le gène de réplicase est un gène de réplicase spécifique des plantes, d'un virus végétal.
 
5. Méthode selon l'une quelconque des revendications 1 à 4, dans laquelle ladite séquence du promoteur sous-génomique est un promoteur sous-génomique spécifique des plantes, d'origine virale végétale qui est capable d'interagir avec une réplicase exprimée à partir dudit gène de réplicase.
 
6. Méthode selon l'une quelconque des revendications 1 à 5, dans laquelle la séquence génique qui doit être exprimée code pour un produit polypeptidique souhaité choisi dans le groupe composé des : antibiotiques, toxines, hormones, enzymes, protéines microbiennes, et protéines animales.
 
7. Méthode selon l'une quelconque des revendications 1 à 5, dans laquelle ladite séquence génique qui doit être exprimée code pour un produit polypeptidique qui interfère avec une infection virale ou qui modifie une propriété choisie dans le groupe composé de : phénotype, stérilité, tolérance au sel, sensibilité aux virus, tolérance à la sécheresse, acidité, et couleur d'une plante ; ou ledit produit polypeptidique produit un signal détectable.
 
8. Méthode selon l'une quelconque des revendications 1 à 7, qui comprend de plus un gène codant pour un marqueur sélectionnable qui confère la résistance aux antibiotiques, la résistance aux herbicides, un changement de couleur, ou qui code pour un polypeptide capable de réagir avec un substrat pour produire un signal détectable.
 
9. Méthode selon l'une quelconque des revendications 1 à 8, contenant entre ledit gène de réplicase et ladite séquence génique qui doit être exprimée une autre séquence génique qui doit être exprimée sous le contrôle d'un site d'entrée ribosomique interne (IRES), de telle façon que ladite autre séquence génique qui doit être exprimée et ledit IRES sont dans une orientation qui, lors de la transcription, donne un transcrit d'ARN primaire ayant ladite autre séquence génique qui doit être exprimée et ledit IRES dans une orientation de sens négatif.
 
10. Méthode selon l'une quelconque des revendications 1 à 9, qui comprend de plus la séquence de tête αβ du virus PVX en tant que séquence nucléotidique renforçant la traduction, qui est située entre le site d'initiation de la transcription de la séquence du promoteur sous-génomique et l'extrémité 5' de la séquence génique qui doit être exprimée.
 
11. Méthode selon l'une quelconque des revendications 1 à 10, dans laquelle le gène de réplicase, la séquence génique qui doit être exprimée et la séquence du promoteur sous-génomique sont transcrits sous l'action dudit promoteur de transcription pour donner un transcrit primaire qui est capable d'être transcrit sous l'action de la réplicase exprimée à partir dudit gène de réplicase et dudit promoteur sous-génomique pour donner un transcrit secondaire.
 
12. Molécule d'ADN recombinant telle que définie dans l'une quelconque des revendications 1 à 10.
 
13. Cellule eucaryote transformée avec la molécule d'ADN recombinant selon la revendication 12.
 




Drawing