| (19) |
 |
|
(11) |
EP 1 010 185 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
02.11.2005 Bulletin 2005/44 |
| (22) |
Date of filing: 12.02.1998 |
|
| (51) |
International Patent Classification (IPC)7: H01B 13/00 |
| (86) |
International application number: |
|
PCT/GB1998/000438 |
| (87) |
International publication number: |
|
WO 1998/036425 (20.08.1998 Gazette 1998/33) |
|
| (54) |
MINERAL INSULATED CABLE
MINERALISOLIERTES KABEL
CABLE A ISOLANT MINERAL
|
| (84) |
Designated Contracting States: |
|
FR GB IT |
| (30) |
Priority: |
12.02.1997 GB 9702827
|
| (43) |
Date of publication of application: |
|
21.06.2000 Bulletin 2000/25 |
| (73) |
Proprietor: Tyco Thermal Controls UK Limited |
|
Merseyside L34 5TJ (GB) |
|
| (72) |
Inventors: |
|
- DEEGAN, Edward
Liverpool L7 0LP (GB)
- FREESTONE, James
Danville, IN 46122 (US)
- GRIFFITHS, Carl
N. Powys SY22 6YR (GB)
|
| (74) |
Representative: Skone James, Robert Edmund |
|
GILL JENNINGS & EVERY,
Broadgate House,
7 Eldon Street London EC2M 7LH London EC2M 7LH (GB) |
| (56) |
References cited: :
GB-A- 2 056 158
|
GB-A- 2 243 941
|
|
| |
|
|
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] This invention relates to the manufacture of mineral insulated electrical cables,
that is to say, cables which comprise at least one elongate electrical conductor and
a surrounding metal sheath, the or each elongate conductor being insulated from the
sheath, and from any other conductor, by means of compacted mineral insulating powder.
[0002] Such cables have been manufactured for many years, and are widely employed for example
where performance may be needed at high temperatures for indefinite periods, such
as in systems intended to operate during fires. The cables were originally manufactured
by a so-called 'vertical-fill' process in which the conductors are inserted into a
vertically oriented metal tube, and mineral insulant is poured into the tube while
compacting it, to form a cable preform. The cable preform is then subjected to a number
of die drawing and annealing operations to reduce its cross-sectional area by about
99%, thereby to form the finished cable. In recent years, manufacturing economics
have required a move to continuous processes, at least for the more commonly sold
sizes of cable. One such process is described in EP-A-0 384 778, in which a strip
of metal and one or more elongate conductors are transported along their length and
the strip is continuously formed into a tube that encloses the or each conductor,
opposed longitudinally extending edges of the strip are welded together, mineral insulant
is inserted into the tube to form a cable preform, and the cable preform is subjected
to one or more reduction operations in which its diameter is reduced to form the cable.
Reduction operations have traditionally been performed in the 'vertical-fill' method
by pulling the cable preform through a number of dies, the steps being separated by
annealing stages. In the continuous process, the die reduction stage is replaced by
banks of shaped rollers arranged in pairs about the cable preform, alternate roller
pairs in each bank being arranged at 90° to one another, so that the cross-sectional
area of the preform is reduced by about 40 to 70 percent as it passes through each
bank of rollers. An annealing stage is located between the banks of rollers and after
the last bank of rollers. Typically, the drawing stage will comprise three banks of
rollers, each with 14 pairs of rollers, and three annealing stages. Whichever process
is used, annealing temperatures lying in the range of 450 to 650°C are normally employed,
depending on the speed of the cable preform through the annealing stage. GB-A-2056158
discloses a mineral insulated cable, the mineral insulator being impregnated with
heat-resisting silicone oil.
[0003] While such processes are generally satisfactory, it would be preferred if the cable
could be rendered more resistant to moisture ingress, for example at the ends of the
cable, or in the region of any damage to the cable sheath. According to one aspect,
the present invention provides a method of forming a mineral insulated cable as claimed
in claim 1.
[0004] The method according to the invention enables the manufacture of a mineral insulated
cable in which the intrinsic hydrophilic nature of the mineral insulant is removed,
so that moisture ingress at the ends of the cable or in the event of damage to the
sheath is prevented. Furthermore, rendering the mineral insulant hydrophobic according
to the process of the present invention does not affect the flowability of the mineral
insulant powder (before compaction by the drawing stage) to any significant extent,
so that the cable can be manufactured by a dry-filling process (i.e. by a process
in which the mineral insulant is introduced into the tube as a free-flowing powder,
as distinct from processes in which the mineral insulant is formed into a paste),
for example by the "vertical-fill" or continuous process as described above.
[0005] The method according to the invention is preferably conducted so that the cable preform
does not reach a temperature exceeding 400°C and especially not exceeding 380°C during
the annealing steps, since to high annealing temperatures will degrade the polymerised
silicone coating on the mineral insulant. Annealing temperatures quoted herein are
the temperatures reached by the mineral insulant in the cable preforms rather than
the annealing furnace temperatures, since the temperature reached by the cable preforms
will depend
inter alia on the dwell time in the furnace. However, the annealing temperature is preferably
at least 350°C. The annealing temperatures employed in the process according to the
present invention are significantly lower than those employed conventionally, for
example in the region of 575°C, in order to prevent any degradation of the polymerised
silicone in the mineral insulant.
[0006] The silicone oil is preferably purely aliphatic, and is preferably a medium molecular
weight aliphatic silicone. The silicone oil is added to the mineral insulant during
the coating step to an amount of not more than 5%, by weight (based on the total weight
of the mineral insulant and the silicone oil). A relatively low quantity such as this
is used in order to reduce or prevent any gas evolution from the end of the cable
or from any damaged portion of the cable sheath during prolonged exposure to fire.
Preferably the silicone oil is employed in an amount of not more than 2% by weight
and especially not more than 1% by weight. However, the silicone oil is normally employed
in an amount of at least 0.2% by weight since quantities significantly below this
may not provide sufficient hydrophobic nature to the mineral insulant, and more preferably
at least 0.5% by weight (all percentages being based on the total weight of the mineral
insulant and the silicone oil). Normally the quantity of silicone oil used will be
0.75% by weight.
[0007] The process according to the present invention, at least in its broadest aspect,
is applicable to the production of mineral insulated cables employing any mineral
insulant, for example magnesium oxide, alumina or boron nitride. However, materials
such a magnesium oxide have the disadvantage, at least in some applications where
the cable is intended to carry signals instead of, or in addition to electrical power,
that the relative permitivity (ε
r) of the mineral insulant is relatively high (in the region of 4.6 for magnesium oxide)
with the result that the capacitance of the cable is relatively high and its characteristic
impedance relatively low. In view of this, it is preferred, at least in some cases,
for the mineral insulant to have a relatively low relative permitivity, for example
of not more than 3. Thus, preferably, at least a major part of the mineral insulant
comprises amorphous silica (which has a relative permitivity in the region of about
2.3). In such a case, the mineral insulant more preferably comprises at least 80%
by weight amorphous silica, most preferably at least 90% by weight silica, and especially
substantially entirely silica (based on the total inorganic content). If other mineral
insulants are employed in addition to the amorphous silica, conventional mineral insulants
such as magnesium oxide, alumina and boron nitride may be employed, preferably magnesium
oxide.
[0008] As one example of a process for forming a mineral insulated cable according to the
invention, particulate amorphous (fused) silica mineral insulant, is mixed for about
15 to 20 minutes with 0.75% by weight medium weight silicone oil (DC 1107 sold by
Dow Corning), and the coated silica is heat treated for one hour at 150°C in order
to polymerise the silicone oil and drive off any hydrogen gas generated during the
polymerisation. A length of a mineral insulated cable preform is then formed by a
"vertical-fill" method in which a copper tube of 50 to 60 mm diameter is held vertically
and a solid copper conductor is held inside the tube by means of a die at the bottom
of the conductors so that it is spaced from the tube. The coated mineral insulant,
which is freely-flowable after polymerisation of the silicone oil, is introduced into
the tube an packed down at the bottom by vertical oscillation of the die. As more
mineral insulant is introduced into the tube, the die rises, and introduction of the
insulant is terminated when the die reaches the top of the tube. The cable preform
so formed is then subjected to a number of drawing steps in which the preform is pulled
through dies of decreasing diameter so that the diameter of the preform is reduced
from the original 50 to 60 mm down to about 5 mm (about 30 die drawing steps). After
each two to three draws, the preform is annealed at 375°C for about one hour.
[0009] According to another aspect, the invention provides a mineral insulated cable as
claimed in claim 10.
[0010] Preferred materials, designs and compositions for the cable are as described above.
[0011] Although the cables have been described only with reference to one sheath, it is
quite possible for the cable to include more than one sheath, for example to be in
the form of a triax cable.
1. A method of forming a mineral insulated cable which comprises the steps of:
(i) coating a particulate mineral insulant with not more than 5% by weight of an uncured
silicone oil based on the total weight of the mineral insulant and the silicone oil.;
(ii) subjecting the coated mineral insulant to a heat-treatment step in order at least
partly to polymerise the silicone oil and to allow any hydrogen evolved during the
polymerisation to be removed;
(iii) introducing the resulting mineral insulant into a metal tube that contains one
or more elongate conductors that extend along the length thereof to form a cable preform,
the or each conductor being isolated from the tube and from any other conductor that
may be present by means of the mineral insulant; and
(iv) subjecting the cable preform to a plurality of drawing and annealing steps, whereby
the preform is reduced in diameter, the annealing steps being such that the cable
preform does not reach a temperature exceeding 450°C.
2. A method as claimed in claim 1, wherein the cable preform does not reach a temperature
exceeding 400°C during the annealing steps.
3. A method as claimed in claim 1 or claim 2, wherein at least a major part of the mineral
insulant comprises a mineral having a relative permitivity of not more than 3.
4. A method as claimed in claim 3, wherein at least a major part of the mineral insulant
comprises amorphous silica.
5. A method as claimed in any one of claims 1 to 4, wherein the mineral insulant includes
not more than 2% by weight of silicone oil.
6. A method as claimed in claim 5, wherein the mineral insulant includes not more than
the 1% by weight of silicone oil.
7. A method as claimed in any one of claim 1 to 6, wherein the mineral insulant includes
at least 0.2% by weight of silicone oil.
8. A method as claimed in claim 7, wherein the mineral insulant includes at least 0.5%
by weight of silicone oil.
9. A method as claimed in any one of claims 1 to 8, wherein the silicone oil is an aliphatic
silicone oil.
10. A mineral insulated cable, which comprises a metal tube, one or more elongate conductors
located within the tube and which extend along the length of the tube, and mineral
insulant that fills the tube and which isolates the or each conductor from the tube
and (where more than one conductor is present) from one another, wherein the mineral
insulant comprises particles that are coated with not more than 5% by weight of a
polymerised silicone oil based on the total weight of the mineral insulant and the
silicone oil.
11. A cable as claimed in claim 10, wherein the mineral insulant has a relative permitivity
of not more than 3.
12. A cable as claimed in claim 10 or claim 11, wherein at least a major part of the mineral
insulant comprises amorphous silica.
13. A cable as claimed in any one of claims 10 to 12, wherein the mineral insulant includes
not more than 2% by weight of the polymerised silicone oil.
14. A cable as claimed in any one of claims 10 to 13, wherein the mineral insulant includes
at least 0.5% by weight of the polymerised oil.
1. Verfahren zum Bilden eines mineralisolierten Kabels, umfassend:
(i) Beschichten eines besonderen mineralischen Isolierstoffs mit nicht mehr als 5
Gewichtsprozent eines unvernetzten Silikonöls, basierend auf dem Gesamtgewicht des
mineralischen Isolierstoffs und des Silikonöls,
(ii) Unterziehen des beschichteten mineralischen Isolierstoffs einem Wärmebehandlungsschritt,
damit das Silikonöl mindestens teilweise polymerisiert wird und ein beliebiger Wasserstoff,
der während der Polymerisation entsteht, entfernt werden kann;
(iii) Einführen des sich ergebenden mineralischen Isolierstoffs in ein Metallrohr,
das einen oder mehrere verlängerte Leiter umfasst, die sich entlang seiner Länge erstrecken,
um eine Kabelvorform zu bilden, wobei der oder jeder Leiter mittels des mineralischen
Isolierstoffs gegen das Rohr und gegen jeden Leiter isoliert ist / sind, der vorhanden
sein kann; und
(iv) Unterziehen der Kabelvorform mehreren Zieh- und Temperschritten, wobei die Vorform
im Durchmesser verringert wird, wobei die Temperschritte so sind, dass die Kabelvorform
keine Temperatur erreicht, die die 450 °C übersteigt;
2. Verfahren nach Anspruch 1, wobei die Kabelvorform während der Temperschritte keine
Temperatur erreicht, die über 400 °C liegt.
3. Verfahren nach Anspruch 1 oder 2, wobei mindestens ein größerer Teil des mineralischen
Isolierstoffs ein Mineral umfasst, das eine relative Permittivität von nicht mehr
als 3 besitzt.
4. Verfahren nach Anspruch 3, wobei mindestens ein größerer Teil des mineralischen Isolierstoffs
amorphes Siliziumoxid umfasst.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei der mineralische Isolierstoff nicht
mehr als 2 Gewichtsprozent Silikonöl umfasst.
6. Verfahren nach Anspruch 5, wobei der mineralische Isolierstoff nicht mehr als 1 Gewichtsprozent
Silikonöl umfasst.
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei der mineralische Isolierstoff mindestens
0,2 Gewichtsprozent Silikonöl umfasst.
8. Verfahren nach Anspruch 7, wobei der mineralische Isolierstoff mindestens 0, 5 Gewichtsprozent
Silikonöl umfasst.
9. Verfahren nach einem der Ansprüche 1 bis 8, wobei das Silikonöl ein aliphatisches
Silikonöl ist.
10. Mineralisoliertes Kabel, das ein Metallrohr, einen oder mehrere verlängerte Leiter,
die sich innerhalb des Rohrs befinden und die sich entlang der Länge des Rohrs erstrecken
und einen mineralischen Isolierstoff umfasst, der das Rohr füllt und der den oder
die Leiter gegen das Rohr und (wenn mehr als ein Leiter vorhanden ist) gegen einander
isoliert, wobei der mineralische Isolierstoff Teilchen umfasst, die mit nicht mehr
als 5 Gewichtsprozent eines polymerisierten Silikonöls, basierend auf dem Gesamtgewicht
des mineralischen Isolierstoffs und des Silikonöls, beschichtet ist.
11. Kabel nach Anspruch 10, wobei der mineralische Isolierstoff eine relative Permittivität
von nicht mehr als 3 besitzt.
12. Kabel nach Anspruch 10 oder 11, wobei mindestens ein größerer Teil des mineralischen
Isolierstoffs amorphes Siliziumoxid umfasst.
13. Kabel nach einem der Ansprüche 10 bis 12, wobei der mineralische Isolierstoff nicht
mehr als 2 Gewichtsprozent des polymerisierten Silikonöls umfasst.
14. Kabel nach einem der Ansprüche 10 bis 13, wobei der mineralische Isolierstoff mindestens
0,5 Gewichtsprozent des polymerisierten Öls umfasst.
1. Procédé de formation d'un câble isolé à isolant minéral, qui comprend les étapes suivantes:
(i) enrober un isolant minéral particulaire avec au maximum 5 % en poids d'une huile
de silicone non durcie, par rapport au poids total de l'isolant minéral et de l'huile
de silicone ;
(ii) soumettre l'isolant minéral enrobé à une étape de traitement thermique afin de
polymériser au moins partiellement l'huile de silicone et de permettre l'élimination
de tout hydrogène dégagé pendant la polymérisation;
(iii) introduire l'isolant minéral résultant dans un tube métallique qui contient
un ou plusieurs conducteurs allongés qui s'étendent suivant sa longueur pour former
une préforme de câble, le ou chaque conducteur étant isolé du tube et de tout autre
conducteur qui peut être présent au moyen de l'isolant minéral ; et
(iv) soumettre la préforme de câble à une pluralité d'étapes d'étirage et de recuit,
par lesquelles le diamètre de la préforme est réduit, les étapes de recuit étant telles
que la préforme de câble n'atteigne pas une température supérieure à 450°C.
2. Procédé selon la revendication 1, dans lequel la préforme de câble n'atteint pas une
température supérieure à 400°C pendant les étapes de recuit.
3. Procédé selon la revendication 1 ou la revendication 2, dans lequel au moins une majeure
partie de l'isolant minéral comprend une substance minérale ayant une permittivité
relative non supérieure à 3.
4. Procédé selon la revendication 3, dans lequel au moins une majeure partie de l'isolant
minéral comprend de la silice amorphe.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel l'isolant minéral
ne comprend pas plus de 2 % en poids d'huile de silicone.
6. Procédé selon la revendication 5, dans lequel l'isolant minéral ne comprend pas plus
de 1 % en poids d'huile de silicone.
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel l'isolant minéral
comprend au moins 0,2 % en poids d'huile de silicone.
8. Procédé selon la revendication 7, dans lequel l'isolant minéral comprend au moins
0,5 % en poids d'huile de silicone.
9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel l'huile de silicone
est une huile de silicone aliphatique.
10. Câble isolé à isolant minéral, qui comprend un tube métallique, un ou plusieurs conducteurs
allongés disposés à l'intérieur du tube et qui s'étendent suivant la longueur du tube,
et un isolant minéral qui remplit le tube et qui isole le ou chaque conducteur du
tube et (lorsqu'il y a plus d'un conducteur) de tout autre conducteur, dans lequel
l'isolant minéral comprend des particules qui sont enrobées avec au maximum 5 % en
poids d'une huile de silicone polymérisée, par rapport au poids total de l'isolant
minéral et de l'huile de silicone.
11. Câble selon la revendication 10, dans lequel l'isolant minéral a une permittivité
relative non supérieure à 3.
12. Câble selon la revendication 10 ou la revendication 11, dans lequel au moins une majeure
partie de l'isolant minéral comprend de la silice amorphe.
13. Câble selon l'une quelconque des revendications 10 à 12, dans lequel l'isolant minéral
ne comprend pas plus de 2 % en poids de l'huile de silicone polymérisée.
14. Câble selon l'une quelconque des revendications 10 à 13, dans lequel l'isolant minéral
comprend au moins 0,5 % en poids de l'huile polymérisée.