BACKGROUND OF THE INVENTION
[0001] The mammalian bombesin (Bn)-related peptides, gastrin-releasing peptide (GRP.), neuromedin
B (NMB), and neuromedin C (NMC) have a wide range of biological effects. These include
chemotaxis, contraction of smooth muscle stimulation, and the release of numerous
gastrointestinal hormones. GRP and NMB are also active in the central nervous system,
affecting thermoregulation, behavioral effects, satiety, maintenance of circadian
rhythm, and inhibition of TSH release. Bn-related peptides function as a growth factor
in numerous normal cells (e.g., stomal, epithelial, and neuroendocrine cells) as well
as neoplastic cells such as human small cell lung cancer cells, non-small cell lung
cancer cells, rat hepatocellular tumor cells, prostatic cells and breast adenocarcinoma
cells.
[0002] Recent structure and cloning studies demonstrate that Bn-related peptides mediate
the actions of two distinct receptor classes. GRP has a high affinity, and NMB has
a low affinity, for the GRP-preferring class or subtype (GRP receptor or GRP-R). In
contrast, GRP has a low affinity, and NMB has a high affinity, for the other class,
the NMB-preferring subtype (NMB receptor or NMB-R). Both receptor classes are present
throughout the central nervous system and the gastrointestinal tract.
[0003] Native somatostatin, somatostatin-14 (SS-14), has been shown to inhibit the cross-linking
of
125I-GRP to a 120 kD protein in Triton® extracts of 3T3 cells and human small cell lung
cancer cells which are known to possess bombesin receptors. Recently, somatostatin
octapeptide analogs have also demonstrated binding affinity to NMB-R in Orbuch, et
al., Mol. Pharmacol.,
44:841 (1993). These analogs, however, also maintain a substantial activity for somatostatin
receptors.
[0004] WO94/02163 describes a method of selectivity inhibiting biochemical activity of cells
induced by neuromedin B. The method includes the step of contacting cells which contain
neuromedin B receptor with a cyclic octapeptide, having lysinc or ornithine at position
5.
[0005] EP0389180 describes octapeptides exhibiting GH-releasing-inhibiting activity. The
octapeptides have lysine at position 5.
[0006] EP0215171 describes octapeptides active in inhibiting the secretion of GH, insulin
and glucagon. The octapeptides have lysine at position 5.
[0007] EP0298732 describes a peptide comprising the sequence - Cys-X-D-Trp-Lys-Val-Cys wherein
X represents any amino acid residue.
SUMMARY OF THE INVENTION
Abbreviations
[0008]
Nal = 3- (2-naphtyhl)-alanine or 3- (1-naphthyl) -alanine
Bpa = 3-(4-biphenyl)-alanine
X-Phe = phenylalanine with a p-, o- or m-substituent, such as -OH, CH3, NO2, and halogen, on the phenyl ring, e.g., 3-(4-chloropheny,1)-alanine
F5Phe = 3-(pentafluorophenyl)-alanine
Nle=norleucine
Me-Trp = Trp with a methyl-substituted indolyl nitrogen
Dab = 2,4-diamino butyric acid
Aub = 2-amino butyric acid
[0009] The present invention relates to cyclic octapeptides which have both high affinity
and high selectivity for the NMB receptor and are encompassed by the following formula
(I):

A
1 is the D-isomer of Nal or Trp, and is preferably D-Nal. A
3 is F
5-Phe or ortho-, para-, or meta-substituted X-Phe wherein X is halogen, NO
2, CH
3 or OH. A
3 is preferably Phe or para-substituted X-Phe, where X is C1, F, or OH. A
5 is -NH-CH(Y)-CO- wherein Y is (CH
2)
m-R
4-N(R
5) (R
6) or (CH
2)
n-R
4-NH-C(R
7)-N(R
5)(R
6). In one aspect, A
5 is -NH-CH(Y)-CO- where Y is (CH
2)
m-R
4-N(R
5) (R
6), and preferably Dab, 7-amino-phenylalanine, and 2,3-diamino propionic acid, provided
that A
5 is not Orn. In another aspect, A
5 is -NH-CH(Y)-CO- where Y is (CH
2)
n-R
4-NH-C-(R
7)-N(R
5) (R
6), and is preferably Arg or 7-guanidinyl-phenylalanine. A
6 is the D- or L- isomer of Thr, Leu, Ile, Nle, , Val, Nal, Trp, Me-Trp, Abu, Bpa,
Phe, F
5-Phe, or X-Phe wherein X is a halogen, NO
2, CH
3, or OH. A
6 is preferably the D- or L-isomer of Thr, Leu, Ile, Nle, Trp, Val, and Abu. A
8 is Nal or Trp, and is preferably Nal. Subscript m is 1, 2, or 3, and preferably 2
or 3; n is 1, 2, 3, 4 or 5, and preferably 2, 3, or 4. Each of R
1 and R
2, independently, is H, E, COE, or COOE. E is a hydrocarbon of between 1 and 25 carbon
atoms; substituted or unsubstituted; saturated or unsaturated; straight chain or branched;
cyclic, acyclic, or polycyclic. Examples of E include C
1-12 alkyl, C
2-12 alkenyl, C
2-12 alkynyl, phenyl, naphthyl, C
7-12 phenylalkyl or alkylphenyl, C
8-12 phenylalkenyl or alkenylphenyl, C
8-12 phenylalkynyl or alkynylphenyl, C
11-20 naphthylalkyl or alkylnaphthyl, C
12-20 naphthylalkenyl or alkenylnaphthyl, or C
12-20 naphthylalkynyl or alkynylnaphthyl, provided that when one of R
1 or R
2 is COE or COOE, the other must be H. R
3 is -NH
2 and R
5, R
6, R
8 are each independently H or E. Each of R
5, R
6 and R
8 is preferably H or a C
1-10 hydrocarbon, such as alkyl, alkenyl, alkylphenyl, phenyl, and phenylalkyl, including
C
1-5 alkyl. Each of R
5 and R
6 is more preferably H. R
4 is C
6H
4 or absent, and preferably is absent. R
7 is =NR
8, =S, or =O, and preferably =NR
8, and more preferably R
7 is =NH. Preferred octapeptides encompassed by the above formula (I) of the invention
include H
2-D-Nal-Cys-Tyr-D-Trp-Arg-Val-Cys-Nal-NH
2 (peptide Arg
5); and H
2-D-Nal-Cys-Tyr-D-Trp-Dab-Val-Cys-Nal-NH
2 (peptide Dab
5).
[0010] In formula (I), the N-terminus is at the left and the C-terminus at the right- in
accordance with the conventional representation of a polypeptide chain. The symbol
A
1, A
2, or the like in a peptide sequence stands for an amino acid residue, i.e. =N-CH(R)-CO-
when it is at the N-terminus or -NH-CH-(R)-CO- when it is not at the N-terminus, where
R denotes the side chain of that amino acid residue. Thus, R is -CH(CH
3)
2 for Val. Also, when the amino acid residue is optically active, it is the L-form
configuration that is intended unless D-form is expressly designated. Note that the
two Cys residues (i.e., A
2 and A
7) in formula (I) are linked together via a disulfide bond. However, for convenience
a line which is used conventionally to denote a disulfide bond between two Cys residues
is omitted herein. COE refers to -(C=O)-E and COOE refers to -(C=O)-O-E.
[0011] Administration of a pharmaceutically acceptable salt of an octapeptide covered by
formula (I) into a patient whose disorder arises from biochemical activity mediated
by NMB is also within the present invention. In other words, the octapeptides can
be provided in the form of pharmaceutically acceptable salts such as acid addition
salts, or metal complexes such as with zinc or iron. Examples of acid addition salts
are (i) those made with organic acids such as acetic, lactic, pamoic, maleic, citric,
malic, ascorbic, succinic, benzoic, palmitic, suberic, salicylic, tartric, methanesulfonic
or toluenesulfonic acid; (ii) those made with polymeric acids such as tannic acid
or carboxymethyl cellulose; and (iii) those made with inorganic acids such as hydrochloric
acid, hydrobromic acid, sulfuric acid or phosphoric acid.
[0012] Other features and advantages of the present invention will be apparent from the
following description of the preferred embodiments, and also from the appending claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] We first briefly describe the drawings.
Fig. 1 is a graph showing the suppression of NMB stimulated food intake by an analog
of the invention.
Fig. 2 is a graph showing suppression of NMC stimulated food intake by an analog of
the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0014] Octapeptides of the invention are synthesized on methylbenzhydrylamine resin using
standard solid phase procedures and cleaved with hydrogen fluoride/anisol mixtures.
The peptides are cyclized in dilute 90% acetic acid solution by titration with I
2 and purified by gel filtration on SEPHADEX™ G-25 (Aldrich, Milwaukee, WI) in 50%
acetic acid and gradient elution on C18 silica using acetonitrile/0.1% trifluoroacetic
acid buffers. See, e.g., Sasaki, Y. et al.
J. Med. Chem.,
30:1162 (1987); Stewart, J.M. et al. Solid Phase Peptide Synthesis, 2nd Ed., Pierce
Chemical Co., Rockford, IL (1984); and Coy, D.H. et al.
Tetrahedron,
44:835 (1988). Homogeneity is assessed by thin layer chromatography ("TLC"), analytical
HPLC, amino acid analysis and mass spectrometry.
Preferably, homogeneity should be determined to be >96% for each peptide. Example
1 below is a detailed description regarding the synthesis of peptide Dab
5. Other peptides of the invention can be prepared by making appropriate modifications,
within the ability of someone of ordinary skill in the art, of the synthetic methods
disclosed herein.
[0015] The NMB analogs of the invention are screened in binding assays to determine their
respective affinities for the NMB, GRP, and somatostatin receptors. See Examples 2,
3, and 4, respectively. Agonists of the NMB receptor have been shown to stimulate
the generation of inositol phosphates. Wang, et al,
J. Biochem.,
286:641-648 (1992). In Example 5 below, an inositol phosphate turnover assay measured
the ability of the NMB analogs to antagonize the NMB receptor activation. In Example
6 below, an
in vivo assay demonstrated the ability of the NMB analogs of the invention to block suppression
of food intake produced by NMB.
[0016] The NMB analogs of this invention behave as potent antagonists of the NMB receptor.
NMB has been shown to stimulate the growth of cancer cell lines (Moody, et al.
J. Pharmacol.,
263:1 (1992); Wang, et al.,
Biochem. J., 286:641 (1992)). As NMB antagonists the analogs of this invention can be used to treat
cancers such as small cell lung tumors and glioblastomas. In addition, NMB has been
shown to suppress food intake (Kirkman, et al., Society for the Study of Ingestive
Behavior, Toronto, Canada). The analogs of the invention can be used to stimulate
food intake to treat eating disorders such as anorexia or those resulting from cancer
or AIDS. Furthermore, NMB has also been shown to decrease gastrin release, Kawai,
et al.,
Endocrinol. Japan,
37(6):857 (1990). The analogs of the invention, thus, can be used to stimulate gastrin
release in patients who are producing insufficient amounts of gastrin.
[0017] The analogs of the invention are also highly selective for the NMB receptor. The
analogs of the invention will, therefore, have reduced cross-reactivity with both
of these receptors. For example, other agonists of the somatostatin receptors may
inhibit growth hormone release or disturb carbohydrate metabolism by the agonists'
inhibition of insulin release.
[0018] The dose of the compound of the present invention for treating the above-mentioned
diseases varies depending upon the manner of administration, the age and the body
weight of the subject and the condition of the subject to be treated, and ultimately
will be decided by the attending physician or veterinarian. Such amount of the active
compound as determined by the attending physician or veterinarian is referred to herein
as a "therapeutically effective amount".
[0019] The formulations are presented in unit dosage form and are prepared by any of the
methods well known in the art of pharmacy. All methods include the step of bringing
the active ingredient(s) into association with the carrier which constitutes one or
more accessory ingredients. In general, the formulations for tablets or powders are
prepared by uniformly and intimately blending the active ingredient with finely divided
solid carriers, and then, if necessary as in the case of tablets, forming the product
into the desired shape and size.
[0020] Without further elaboration, it is believed that one skilled in the art can, based
on the description herein, utilize the present invention to its fullest extent. The
following specific embodiments are, therefore, to be construted merely as illustrative,
and not limitative of the remainder of the disclosure in any way. All publications
cited herein are incorporated by reference.
Example 1
[0021] Synthesis of Boc-D-Nal-
S-methylbenzyl-Cys-
O-bromobenzyl-oxycarbonyl-Tyr-D-Trp-
N-benzyloxycarbonyl-Dab-Val-
S-methylbenzyl-Cys-Nal-benzhydrylamine resin was as follows. Benzhydrylamine-polystyrene
resin (Advanced Chem Tech, Inc., Louisville, KY) (0.7 g, 0.3 mmole) in the chloride
ion form was placed in the reaction vessel of an Advanced Chem Tech™ peptide synthesizer
programmed to perform the following reaction cycle: (a) methylene chloride; (b) 33%
trifluoroacetic acid in methylene chloride (2 time for 1 and 25 min each); (c) methylene
chloride;
(d) ethanol; (e) methylene chloride; (f) 10% triethylamine in chloroform.
[0022] The neutralized resin was stirred with
t-butyloxy-carbonyl("Boc")-Nal and diisopropylcarbodiimide (1.5 mmole each) in methylene
chloride for 1 hr and the resulting amino acid resin was then cycled through steps
(a) to (f) in the above wash program. The following amino acids (0.9 mmole) were then
coupled successively by the same procedure: Boc-
S-methylbenzyl-Cys, Val, Boc-
N-benzyloxycarbonyl-Dab, Boc-D-Trp, Boc-
O-bromobenzyloxycarbonyl-Tyr, and Boc-
S-methyl-benzyl-Cys and Boc-D-Nal. After washing and drying, the completed resin weighed
1.13 g.
[0023] Using the completed resin, H-D-Nal-Cys-Tyr-D-Trp-Lys-Dab-Cys-Nal-NH
2 was prepared. The peptide resin obtained above (1.13 g, 0.5 mmole) was mixed with
anisole (5 ml), dithiothreitol (100 mg) and anhydrous hydrogen fluoride (35 ml) at
0°C and stirred for 45 min. Excess hydrogen fluoride was evaporated rapidly under
a stream of dry nitrogen. Free peptide was precipitated and washed with ether. The
crude peptide was then dissolved in 250 ml of 90% acetic acid to which was added a
concentrated solution of I
2/MeOH until a permanent brown color was observed. Excess I
2 was removed by addition of ascorbic acid and the solution was reduced to a small
volume by evaporation. The crude peptide solution was applied to a column (2.5 x 90
cm) of SEPHADEX™ G-25 and eluted with 50% acetic acid. Fractions containing a major
component by UV absorption and TLC were then pooled, reduced to a small volume by
evaporation and applied to a column (1.5 x 70 cm) of VYDAC® octadecylsilane silica
(10-15 µ) (Vydac, Hesperia, CA) followed by elution with a linear gradient of acetonitrile
in 0.1% trifluoroacetic acid in water. Fractions were examined by TLC and analytical
high performance liquid chromatography and pooled to give maximum purity.
[0024] Repeated lyophilization of the solution from water gave 97 mg of the product as a
white, fluffy powder. The product was found to be homogeneous by HPLC and TLC. Amino
acid analysis of an acid hydrolysate and FAB MS confirmed the composition of the octapeptide.
Example 2
NMB Receptor Binding Assay
[0025] The procedure for transfecting the rat NMB receptor into BALB-3T3 fibroblasts is
discussed in Wada, et al.,
Neuron,
6:4221-430 (1991) and Benya, et al.,
Mol. Pharmacol.,
42:1058 (1992). Membranes for the NMB receptor binding assay were obtained by homogenizing
BALB-3T3 fibroblasts, transfected with the rat NMB receptor, with a POLYTRON™ tissue
homogenizer (setting 6, 15 sec) (Brinkman, Westbury, NY) in ice-cold 50 mM Tris-HCl
(Buffer A) (Sigma Chemicals, St. Louis, MO) and centrifuging twice at 39,000 x
g (10 min), with an intermediate resuspension in fresh Buffer A. The final pellets
were resuspended in the 50 mM Tris-HCl, containing 0.1 mg/ml bacitracin (Sigma Chemicals,
St. Louis, MO), and 0.1% bovine serum albumin (BSA) (Buffer B) (Sigma Chemicals, St.
Louis, MO), and held on ice for the receptor binding assay. Aliquots (0.4 ml) were
incubated with 0.05 ml [
125I-Tyr
4]bombesin (-2200 Ci/mmole) (New England Nuclear, Boston, MA) in Buffer B, with and
without 0.05 ml of unlabeled NMB analogs. After a 30 min incubation (4°C), the bound
[
125I-Tyr
4]bombesin was separated from the free by rapid filtration through WHATMAN™ GF/B filters
which had been previously soaked in 0.3% polyethyleneimine using a Brandel filtration
manifold (Brandel, Gaithersberg, MD). The filters were then washed three times with
5 ml aliquots of ice-cold Buffer A. Specific binding was defined as the total [
125I]bombesin bound minus that bound in the presence of 1 µM unlabeled NMB. Analogs of
the invention had a high binding affinity for the NMB receptor. Examples of the NMB
receptor binding assay results for three analogs of the invention were (K
i values in nM) 47.4 ± 10.3 (peptide Arg
5), and 85.1 ± 2.7 (peptide Dab
5).
Example 3
GRP Receptor Binding Assay
[0026] Membranes for the GRP receptor binding assay were obtained by homogenizing cultured
AR42J cells with a Polytron™ tissue homogenizer (setting 6, 15 sec) in ice-cold 50
mM Tris-HCl (Buffer A) and centrifuging twice at 39,000 x
g (10 min), with an intermediate resuspension in fresh Buffer A. The final pellets
were resuspended in the 50 mM Tris-HCl containing 0.1 mg/ml bacitracin and 0.1% bovine
serum albumin (BSA) (Buffer B) and held on ice for the GRP receptor binding assay.
Aliquots (0.4 ml) were incubated with 0.05 ml of [
125I-Tyr
4]bombesin (-2200 Ci/mmole) in Buffer B, with and without 0.05 ml of unlabeled NMB
analogs. After a 30 min incubation (4°C), the bound [
125I]-Tyr
4]bombesin was separated from the free by rapid filtration through WHATMAN™ GF/B filters
which had been previously soaked in 0.3% polyethyleneimine using a Brandel™ filtration
manifold. The filters were then washed three times with 5 ml aliquots of ice-cold
Buffer A. specific binding was defined as the tatal [
125I-Tyr
4]bombesin bound minus that bound in the presence of 1 µM unlabeled GRP. Analogs of
the invention had a weak binding affinity for the GRP receptor. Examples of the GRP
receptor binding assay results for analogs of the invention were (K
i values in nM) 2921 ± 250 (peptide Arg
5) and 2632 ± 216 (peptide Dab
5).
Example 4
Somatostatin Receptor Binding Assay
[0027] Membranes for the somatostatin receptor binding assay were obtained by homogenizing
cultured AR42J acinar pancreas cells with a Polytron™ tissue homogenizer (setting
6, 15 sec), in ice-cold 50 mM Tris-HCl (Buffer A) and centrifuging twice at 39,000
x
g (10 min), with an intermediate resuspension in fresh Buffer A. The final pellets
were resuspended in 10 mM Tris-HCl for the receptor binding assay. For determination
of the K
i values, the various concentrations of NMB analogs were incubated for 90 min at 25°C
with approximately 0.05 nM [
125I]MK-678 (University of Arizona, School of Medicine, Tucson, AZ) in 50 mM HEPES (pH
7.4) (Sigma Chemicals, St. Louis, MO) containing BSA (fraction V) (10 mg/ml) (Sigma
Chemicals, St. Louis, MO), MgCl
2 (5 mM) (Sigma Chemicals, St. Louis, MO), aprotinin (200 KIU/ml) (Sigma Chemicals,
St. Louis, MO) bacitracin (0.02 mg/ml), and phenylmethylsulphonyl fluoride (0.02 mg/ml)
(Sigma Chemicals, St. Louis, MO). The final assay volume was 0.3 ml. The incubations
were terminated by rapid filtration through GF/C filters (presoaked in 0.3% polyethylenimine)
using a BRANDEL™ filtration manifold. Each tube and filter were then washed three
times with 5 ml aliquots of ice-cold buffer. Specific binding was defined as the total
[
125I]MK-678 bound minus that bound in the presence of 200 nM MK-678. A known cyclic octapeptide
D-Nal-Cys-Tyr-D-Trp-Lys-Val-Cys-Nal-NH
2 (Lys
5) was disclosed in Orbuch et al.,
Mol. Pharmacol.
44:841 (1993), and had an extremely high affinity for the somatostatin receptor (K
i = 0.84 ± 0.53). In contrast, analogs of the invention had a much lower affinity,
in a range of about one hundredth or one thousandth the K
i value of Lys
5, For example, K
i values (nM) for analogs of the invention were 407 ± 82 (peptide Dab
5) and, notably, 1032 ± 113 (peptide Arg
5).
Example 5
Inositol Phosphate Turnover Assay
[0028] For the measurement of inositol phosphate turnover, BALB-3T3 fibroblasts, transfected
with the rat NMB receptor were harvested and resuspended in a phosphate-buffered saline
solution containing 25 mM glucose (Sigma Chemicals, St. Louis, MO) and 75 mM sucrose
(PBS+GS) and pre-incubated with 25 µCi/ml myo-[
3H]inositol (New England Nuclear, Boston, MA) for 60 min at 37°C. The cells were washed,
resuspended in PBS+GS, and incubated with LiCl (100 mM) (Sigma Chemicals, St. Louis,
MO) and the NMB analogs in a final volume of 0.30 ml. The reaction was terminated
by the addition of chloroform/methanol (1:2) (Burdick & Johnson, Muskegeon, Michigan;
Mallinckrodt, Paris, Kentucky), and the total [
3H] inositol phosphates were isolated as described in Snider et al., J. Neurochem.,
47:1214 (1986). Peptide Dab
5 is a potent agonist of the NMB receptor, with a K
i (µM) of 78.1 ± 25.9 in the inositol phosphate turnover assay.
[0029] The following example describes a method for the determination of in vivo suppression
of food intake using a cyclic octapeptide.
Example 6
[0030] Individually housed male Sprague-Dawley rats (Charles River, n=8) weighing 450-500
g. were maintained in a temperature-controlled room on a 12:12 hr. light: dark cycle.
Rats were adapted to a 5 hr. food deprivation schedule followed by 60 min. access
to a 0.5 kcal/ml glucose solution. Rats were injected intraperitoneally with either
0.9% saline (1.0 ml/kg) or 100 nmole/kg of peptide Orn
5. One minute later, rats were injected intraperitoneally with either saline, 32.0
nmole/kg NMB, or 3.2 nmole/kg NMC (GRP18-27), the biologically active portion of GRP.
These agonist doses have previously been determined to reliably suppress intake in
this experimental paradigm, Ladenheim, et al., Amer. Physiol. Soc. R263-R266 (1991).
Five minutes after the second injection, the glucose solution was presented and intake
was monitored at 15, 30, 45 and 60 min. Each rat received all four conditions for
both NMB and NMC. Administration of either the agonists or antagonist was separated
by at least 48 hr. Data were statistically analysed using a 4 (injection) x 4 (time)
analysis of the variance followed by planned t-test comparisons for each agonist.
Because intake following the baseline condition (Saline+Saline) for both sets of experiments
was not significantly different (p>0.5) these were averaged and used to compare with
effects of the agonists and peptide Orn
5.
[0031] The results showed that both NMB (Fig. 1) and NMC (Fig.2) significantly suppressed
food intake compared to baseline intake at all time points (p<.01). Prior administration
of 100 nmole/kg of peptide Orn
5 completely blocked the suppression of glucose intake produced by NMB. Intake for
peptide Orn
5+NMB and peptide Orn
5+Saline conditions was greater than in the Saline+Saline condition (p<.01). In contrast
to NMB, prior administration of peptide Orn
5 had no effect on suppression of intake produced by NMC, in that suppression of intake
in the Saline+NMC condition was not significantly different from intake in the peptide
Orn
5+NMC condition (p>0.5).
Other Embodiments
[0032] From the above description, one skilled in the art can easily ascertain the essential
characteristics of the present invention, and without departing from the scope thereof,
can make various changes and modifications of the invention to adapt it to various
usages and conditions. Thus, other embodiments are also within the claims.
1. A cyclic octapeptide of the formula:

wherein:
A1 is D-Nal or D-Trp;
A3 is Phe, F5 -phe, or X-Phe wherein X is a halogen, NO2, CH3, or OH;
A5 is -NH-CH(Y)-CO- wherein Y is (CH2)m-R4-N(R5)(R6) or (CH2)n-R4-NH-C(R7)-N(R5)(R6), provided that A5 is not Orn;
A6 is the D- or L- isomer of an amino acid selected from the group consisting of Thr,
Leu, Ile, Nle, Val, Abu, Nal, Trp, Me-Trp, Bpa, F5-Phe, Phe and X-Phe where X is a halogen, NO2, CH3, or OH;
A8 is Nal or Trp;
m is 1, 2, or 3;
n is 1, 2, 3, 4 or 5;
each of R1 and R2, independently, is H, E, COE, or COOE wherein E is C1-12 alkyl, C2-12 alkeny, C2-12 alkynyl, phenyl, naphthyl, C7-12 phenylalkyl or alkylphenyl, C8-12 phenylalkenyl or alkenylphenyl, C8-12 phenylalkynyl or alkynylphenyl, C11-20 naphthylalkyl or alkylnaphthyl, C12-20 naphthylalkenyl or alkenylnaphthyl, or C12-20 naphthylalkynyl or alkynylnaphthyl, provided that when one of R1 or R2 is COE or COOE, the other must be H;
R3 is -NH2;
R4 is C6H4 or absent;
R7 is =NR8, =S, or =O;
each of R5, R6, and R8, independently, is H or E; and the two Cys residues are linked together via a disulfide
bond
2. A cyclic octapeptide of claim 1, wherein Y is
a) (CH2)m-R4-N(R5) (R6); or
b) (CH2)n-R4-NH-C(R7)-N(R5) (R6), wherein R, is absent, and, in the case of b), R7 is = NR8.
3. A cyclic octapeptide of claim 2, wherein m is 2 or 3, n is 2, 3 or 4, and each of
R5, R6 and R8, where present, independently is H or C1-C5 alkyl.
4. A cyclic octapeptide of claim 3, wherein A6 is the D-or L- isomer of an amino acid selected from the group consisting of Thr,
Leu, Ile, Nle, Trp, Val, and Abu.
5. A cyclic octapeptide of claim 4, wherein A3 is Phe or para-substituted X-Phe where x is Cl, F, or OH.
6. A cyclic octapeptide of claim 5, wherein A1 is D-Nal and A8 is Nal.
7. A cyclic octapeptide of claim 6, wherein A3 is Tyr and A6 is Val.
8. A cyclic octapeptide of claim 3, wherein A5, in the case of a), is Dab and, in the case of b), is Arg.
9. A cyclic octapeptide of claim 8, wherein A6 is a D-or L- isomer of an amino acid selected from the group consisting of Thr, Leu,
Ile, Nle, Trp, Val, and Abu.
10. A cyclic octapeptide of claim 8, wherein A3 is Phe or para-substituted X-Phe where X is Cl, F, or OH; or
wherein A1 is D-Nal and A8 is Nal; or
wherein A3 is Tyr and A6 is Val.
11. A cyclic octapeptide of claim 10, having the formula:
H2-D-Nal-Cys-Tyr-D-Trp-Dab-Val-Cys-Nal-NH2;
or having the formula:
H2-D-Nal-Cys-Tyr-D-Trp-Arg-Val-Cys-Nal-NH2.
12. A cyclic octapeptide of claim 9, wherein A1 is D-Nal and A8 is Nal.
13. A cyclic octapeptide of claim 9, wherein A3 is Tyr and A6 is Val.
14. A cyclic octapeptide of claim 13, having the formula:
H2-D-Nal-Cys-Tyr-D-Trp-Dab-Val-Cys-Nal-NH2.
15. A cyclic octapeptide of claim 1, wherein Y is (CH2)n-R4-NH-C(R7)-N(R5)(R6).
16. A cylic octapeptide of claim 15, wherein R4 is absent, and R7 is =NR8.
17. A cyclic octapeptide of claim 16, wherein n is 2, 3, or 4; and each of R5, R6, and R8, independently, is H or C1-C5 alkyl.
18. A cyclic octapeptide of claim 17, wherein A6 is a D-or L- isomer of an amino acid selected from the group consisting of Thr, Leu,
Ile, Nle, Trp, Val and Abu.
19. A cyclic octapeptide of claim 18, wherein A3 is Phe, or para-substituted X-Phe where X is Cl, F, or OH.
20. A cyclic octapeptide of claim 19, wherein A1 is D-Nal and A8 is Nal.
21. A cyclic octapeptide of claim 20, wherein A3 is Tyr and A6 is Val.
22. A cyclic octapeptide of claim 19, wherein A5 is Arg.
23. A cyclic octapeptide of claim 22, wherein A6 is a D-or L- isomer of an amino acid selected from the group consisting of Leu, Ile,
Nle, Trp, Val, and Abu.
24. A cyclic octapeptide of claim 23, wherein A3 is Phe, or para-substituted X-Phe where X is Cl, F, or OH.
25. A cylic octapeptide of claim 24, wherein A1 is D-Nal and A8 is Nal.
26. A cyclic octapeptide of claim 25, wherein A3 is Tyr and A6 is Val.
27. A cyclic octapeptide of claim 26, wherein said octapeptide is of the formula:
H2-D-Nal-Cys-Tyr-D-Trp-Arg-Val-Cys-Nal-NH2.
1. Cyclisches Octapeptid mit der Formel:

in der
A1 D-Nal oder D-Trp ist;
A3 Phe, F5-Phe oder X-Phe ist, wobei X Halogen, NO2, CH3 oder OH ist;
A5 -NH-CH(Y)-CO- ist, wobei Y (CH2)m-R4-N(R5)(R6) oder (CH2)n-R4-NH-C(R7)-N(R5) (R6) ist, mit der Maßgabe, dass A5 nicht Orn ist;
A6 das D- oder L-Isomer einer Aminosäure ausgewählt aus der Gruppe bestehend aus Thr,
Leu, Ile, Nle, Val, Abu, Nal, Trp, Me-Trp, Bpa, F5-Phe, Phe und X-Phe ist, wobei X Halogen, NO2, CH3 oder OH ist;
A8 Nal oder Trp ist;
m 1, 2 oder 3 ist;
n 1, 2, 3, 4 oder 5 ist;
jedes von R
1 und R
2 unabhängig H, E, COE oder COOE ist, wobei E C
1-12-Alkyl, C
2-12-Alkenyl, C
2-12-Alkinyl, Phenyl, Naphthyl, C
7-12-Phenylalkyl oder -Alkylphenyl, C
8-12-Phenylalkenyl oder -Alkenylphenyl, C
8-12-Phenylalkinyl oder -Alkinylphenyl, C
11-20-Naphthylalkyl oder -Alkylnaphthyl, C
12-20-Naphthylalkenyl oder -Alkenylnaphthyl oder C
12-20-Naphthylalkinyl oder -Alkinylnaphthyl ist, mit der Maßgabe, dass, wenn eines von
R
1 oder R
2 COE oder COOE ist, dea andere H sein muss;
R3 -NH2 ist;
R4 C6H4 ist oder fehlt;
R7 =NR8, =S oder =O ist;
jedes von R
5, R
6 und R
8 unabhängig H oder E ist; und die beiden Cys-Reste über eine Disulfidbrücke miteinander
verbanden sind.
2. Cyclisches Octapeptid nach Anspruch 1, bei dem Y
a) (CH2)m-R4-N(R5) (R6) oder
b) (CH2)n-R4-NH-C(R7)-N-(R5) (R6) ist, wobei R4 fehlt und im Fall von b) R7 =NR8 ist.
3. Cyclisches Octapeptid nach Anspruch 2, bei dem m 2 oder 3 ist, n 2, 3 oder 4 ist,
und jedes von R5, R6 und R8, wo vorhanden, unabhängig H oder C1- bis C5-Alkyl ist.
4. Cyclisches Octapeptid nach Anspruch 3, bei dem A6 das D-oder L-Isomer einer Aminosäure ausgewählt aus der Gruppe bestehend aus Thr,
Leu, Ile, Nle, Trp, Val und Abu ist.
5. Cyclisches Octapeptid nach Anspruch 4, bei dem A3 Phe oder para-substituiertes X-Phe ist, wobei x Cl, F oder OH ist.
6. Cyclisches Octapeptid nach Anspruch 5, bei dem A1 D-Nal ist und A8 Nal ist.
7. Cyclisches Octapeptid nach Anspruch 6, bei dem A3 Tyr ist und A6 Val ist.
8. Cyclisches Octapeptid nach Anspruch 3, bei dem A5 im Fall von a) Dab ist und im Fall von b) Arg ist.
9. Cyclisches Octapeptid nach Anspruch 8, bei dem A6 ein D-oder L-Isomer einer Aminosäure ausgewählt aus der Gruppe bestehend aus Thr,
Leu, Ile, Nle, Trp, Val und Abu ist.
10. Cyclisches Octapeptid nach Anspruch 8, bei dem A3 Phe oder para-substituiertes X-Phe ist, wobei X Cl, F oder OH ist; oder
bei dem A1 D-Nal ist und A8 Nal ist; oder
bei dem A3 Tyr ist und A6 Val ist.
11. Cyclisches Octapeptid nach Anspruch 10 mit der Formel:
H2-D-Nal-Cys-Tyr-D-Trp-Dab-Val-Cys-Nal-NH2
oder mit der Formel
H2-D-Nal-Cys-Tyr-D-Trp-Arg-Val-Cys-Nal-NH2.
12. Cyclisches Octapeptid nach Anspruch 9, bei dem A1 D-Nal ist und A8 Nal ist.
13. Cyclisches Octapeptid nach Anspruch 9, bei dem A3 Tyr ist und A6 Val ist.
14. Cyclisches Octapeptid nach Anspruch 13 mit der Formel:
H2-D-Nal-Cys-Tyr-D-Trp-Dab-Val-Cys-Nal-NH2.
15. Cyclisches Octapeptid nach Anspruch 1, bei dem Y (CH2)n-R4-NH-C(R7)-N(R5) (R6) ist.
16. Cyclisches Octapeptid nach Anspruch 15, bei dem R4 fehlt und R7 =NR8 ist.
17. Cyclisches Octapeptid nach Anspruch 16, bei dem n 2, 3 oder 4 ist, und jedes von R5, R6 und R8 unabhängig H oder C1bis C5-Alkyl ist.
18. Cyclisches Octapeptid nach Anspruch 17, bei dem A6 ein D-oder L-Isomer einer Aminosäure ausgewählt aus der Gruppe bestehend aus Thr,
Leu, Ile, Nle, Trp, Val und Abu ist.
19. Cyclisches Octapeptid nach Anspruch 18, bei dem A3 Phe oder para-substituiertes X-Phe ist, wobei X Cl, F oder OH ist.
20. Cyclisches Octapeptid nach Anspruch 19, bei dem A1 D-Nal ist und A8 Nal ist.
21. Cyclisches Octapeptid nach Anspruch 20, bei dem A3 Tyr ist und A6 Val ist.
22. Cyclisches Octapeptid nach Anspruch 19, bei dem A5 Arg ist.
23. Cyclisches Octapeptid nach Anspruch 22, bei dem A6 ein D-oder L-Isomer einer Aminosäure ausgewählt aus der Gruppe bestehend aus Leu,
Ile, Nle, Trp, Val und Abu ist.
24. Cyclisches Octapeptid nach Anspruch 23, bei dem A3 Phe oder para-substituiertes X-Phe ist, wobei X Cl, F oder OH ist.
25. Cyclisches Octapeptid nach Anspruch 24, bei dem A1 D-Nal ist und A8 Nal ist.
26. Cyclisches Octapeptid nach Anspruch 25, bei dem A3 Tyr ist und A6 Val ist.
27. Cyclisches Octapeptid nach Anspruch 26, bei dem das Octapeptid die Formel
H2-D-Nal-Cys-Tyr-D-Trp-Arg-Val-Cys-Nal-NH2
hat.
1. Octapeptide cyclique de la formule :

dans laquelle :
- A1 représente D-Nal ou D-Trp ;
- A3 représente Phe, F5-Phe ou X-Phe, où X représente un halogène, NO2, CH3 ou OH ;
- A5 représente -NH-CH(Y)-CO-, où Y représente (CH2)m-R4-N(R5)(R6) ou (CH2)n-R4-NH-C(R7)-N(R5)(R6), à la condition que A5 ne représente pas Orn ;
- A6 est l'isomère D ou L d'un acide aminé choisi dans le groupe constitué par Thr, Leu,
Ile, Nle, Val, Abu, Nal, Trp, Me-Trp, Bpa, F5-Phe, Phe et X-Phe, où X représente un halogène, NO2, CH3 ou OH ;
- A8 représente Nal ou Trp ;
- m vaut 1, 2 ou 3 ;
- n vaut 1, 2, 3, 4 ou 5 ;
- R1 et R2 représentent chacun indépendamment H, E, COE ou CODE, où E représente alkyle en C1-12, alcényle en C2-12, alcynyle en C2-12, phényle, naphtyle, phénylalkyle ou alkylphényle en C7-12, phénylalcényle ou alcénylphényle en C8-12, phénylalcynyle ou alcynylphényle en C8-12, naphtylalkyle ou alkylnaphtyle en C11-20, naphtylalcényle ou alcénylnaphtyle en C12-20, ou naphtylalcynyle ou alcynylnaphtyle en C12-20, à la condition que, lorsque l'un parmi R1 ou R2 représente COE ou CODE, l'autre doit être H ;
- R3 représente -NH2 ;
- R4 représente C6H4 ou est absent ;
- R7 représente =NR8, =S ou =O ;
- R5, R6 et R8 représentent chacun indépendamment H ou E ; et
- les deux résidus Cys sont liés ensemble par l'intermédiaire d'une liaison disulfure.
2. Octapeptide cyclique selon la revendication 1, dans lequel Y représente :
(a) (CH2)m-R4-N(R5) (R6) ; ou
(b) (CH2)n-R4-NH-C(R7)-N(R5) (R6), où R4 est absent et, dans le cas de (b), R7 représente =NR8.
3. Octapeptide cyclique selon la revendication 2, dans lequel m vaut 2 ou 3, n vaut 2,
3 ou 4, et R5, R6 et R8, s'ils sont présents, représentent chacun indépendamment H ou alkyle en C1-C5.
4. Octapeptide cyclique selon la revendication 3, dans lequel A6 est l'isomère D ou L d'un acide aminé choisi dans le groupe constitué par Thr, Leu,
Ile, Nle, Trp, Val et Abu.
5. Octapeptide cyclique selon la revendication 4, dans lequel A3 représente Phe ou X-Phe substitué en para, où X représente Cl, F ou OH.
6. Octapeptide cyclique selon la revendication 5, dans lequel A1 représente D-Nal et A8 représente Nal.
7. Octapeptide cyclique selon la revendication 6, dans lequel A3 représente Tyr et A6 représente Val.
8. Octapeptide cyclique selon la revendication 3, dans lequel A5, dans le cas de (a), représente Dab et, dans le cas de (b), représente Arg.
9. Octapeptide cyclique selon la revendication 8, dans lequel A6 est un isomère D ou L d'un acide aminé choisi dans le groupe constitué par Thr, Leu,
Ile, Nle, Trp, Val et Abu.
10. Octapeptide cyclique selon la revendication 8, dans lequel A3 représente Phe ou X-Phe substitué en para, où X représente Cl, F ou OH ; ou
dans lequel A1 représente D-Nal et A8 représente Nal ; ou
dans lequel A3 représente Tur et A6 représente Val.
11. Octapeptide cyclique selon la revendication 10, ayant la formule :
H2-D-Nal-Cys-Tyr-D-Trp-Dab-Val-Cys-Nal-NH2 ;
ou ayant la formule :
H2-D-Nal-Cys-Tyr-D-Trp-Arg-Val-Cys-Nal-NH2.
12. Octapeptide cyclique selon la revendication 9, dans lequel A1 représente D-Nal et A8 représente Nal.
13. Octapeptide cyclique selon la revendication 9, dans lequel A3 représente Tyr et A6 représente Val.
14. Octapeptide cyclique selon la revendication 13, ayant la formule :
H2-D-Nal-Cys-Tyr-D-Trp-Dab-Val-Cys-Nal-NH2.
15. Octapeptide cyclique selon la revendication 1, dans lequel Y représente (CH2)n-R4-NH-C(R7)-N(R5) (R6).
16. Octapeptide cyclique selon la revendication 15, dans lequel R4 est absent, et R7 représente =NR8.
17. Octapeptide cyclique selon la revendication 16, dans lequel n vaut 2, 3 ou 4 ; et
R5, R6 et R8 représentent chacun indépendamment H ou alkyle en C1-C5.
18. Octapeptide cyclique selon la revendication 17, dans lequel A6 représente un isomère D ou L d'un acide aminé choisi dans le groupe constitué par
Thr, Leu, Ile, Nle, Trp, Val et Abu.
19. Octapeptide cyclique selon la revendication 18, dans lequel A3 représente Phe ou X-Phe substitué en para, où X représente Cl, F ou OH.
20. Octapeptide cyclique selon la revendication 19, dans lequel A1 représente D-Nal et A8 représente Nal.
21. Octapeptide cyclique selon la revendication 20, dans lequel A3 représente Tyr et A6 représente Val.
22. Octapeptide cyclique selon la revendication 19, dans lequel A5 représente Arg.
23. Octapeptide cyclique selon la revendication 22, dans lequel A6 représente un isomère D ou L d'un acide aminé choisi dans le groupe constitué par
Leu, Ile, Nle, Trp, Val et Abu.
24. Octapeptide cyclique selon la revendication 23, dans lequel A3 représente Phe ou X-Phe substitué en para, où X représente Cl, F ou OH.
25. Octapeptide cyclique selon la revendication 24, dans lequel A1 représente D-Nal et A8 représente Nal.
26. Octapeptide cyclique selon la revendication 25, dans lequel A3 représente Tyr et A6 représente Val.
27. Octapeptide cyclique selon la revendication 26, dans lequel ledit octapeptide est
représenté par la formule :
H2-D-Nal-Cys-Tyr-D-Trp-Arg-Val-Cys-Nal-NH2.