

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 1 018 980 B9

(12)

CORRECTED EUROPEAN PATENT SPECIFICATION

Note: Bibliography reflects the latest situation

(15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see page(s) 7

(48) Corrigendum issued on:
07.01.2004 Bulletin 2004/02

(45) Date of publication and mention
of the grant of the patent:
02.01.2003 Bulletin 2003/01

(21) Application number: **98948582.6**

(22) Date of filing: **30.09.1998**

(51) Int Cl.7: **A61F 2/00**

(86) International application number:
PCT/US1998/020439

(87) International publication number:
WO 1999/016381 (08.04.1999 Gazette 1999/14)

(54) PELVIC FLOOR RECONSTRUCTION

REKONSTRUKTION DER BODENBECKENMUSKULATUR

RECONSTITUTION DE LA STRUCTURE PERINEALE

(84) Designated Contracting States:
DE FR GB IE NL

(30) Priority: **01.10.1997 US 60730 P**

(43) Date of publication of application:
19.07.2000 Bulletin 2000/29

(73) Proprietor: **Boston Scientific Limited**
Maple Grove, Minnesota 55311-1566 (US)

(72) Inventors:
• **TRIPP, Hugh, A.**
Mansfield, MA 02084 (US)

• **RACKLEY, Raymond**
Shaker Heights, OH 44122 (US)

(74) Representative: **Greenwood, John David et al**
Graham Watt & Co.
St. Botolph's House
7-9 St. Botolph's Road
Sevenoaks Kent TN13 3AJ (GB)

(56) References cited:
WO-A-88/01853 **WO-A-93/10731**
WO-A-94/19029 **US-A- 4 854 316**

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

DescriptionTechnical Field

[0001] The present invention relates to patches for use in supporting tissues, organs, parts of organs, or other such anatomical structures. The patches may be used in a variety of pelvic floor reconstruction or stabilization procedures, including treatment of cystoceles, rectoceles, enteroceles, or enterocystoceles. More particularly, the present invention relates to prefabricated patches, methods of making the patches, and kits including the patches.

Background Information

[0002] Damage to the pelvic floor is a serious medical condition which may occur during delivery or due to injury to the vesicovaginal fascia. Such an injury can result in a herniation of the bladder called a cystocele. Other similar conditions are known as rectoceles, enteroceles and enterocystoceles. A rectocele is a herniation of the rectum. An enterocele is formed when the intestine protrudes through a defect in the rectovaginal or vesicovaginal pouch and an enterocystocele is a double hernia in which both the bladder and the intestine protrude. These herniations are serious medical problems that can severely and negatively impact a patient both physiologically and psychologically.

[0003] Treatment of these conditions requires repositioning of the protruding organs or portions thereof. Existing tissue is often compromised facilitating the need to use a synthetic patch. Current medical procedures for repositioning the protruding organs or portions thereof may be time consuming or invasive. Hence, there is a need for reducing the amount of time which these procedures require and the invasiveness of the procedures.

[0004] WO 93/10731 discloses a method of preparing a pad to be applied to bleeding tissue comprising dissolving a resorbable reinforcing polymer in a solvent to form a solution. The solution is permitted to solidify into a desired configuration having an upper surface to form a reinforcing sheet. A sheet of resorbable base layer material is then secured to the upper surface of the product and then allowed to dry. The base layer comprises e.g. collagen. The reinforcing means comprises material to render the pad resistant to tearing when wet.

[0005] WO 94/19029 discloses a sheet of implantable patch tissue repair material having the form of a layer of porous polytetrafluoroethylene sheet material laminated to a layer of mesh-type sheet material having a multiplicity of openings through the mesh-type sheet material, said openings having a mean minimum diameter of about 0.1 mm. The inventive patch tissue repair material offers good strength characteristics, good biocompatibility, suture retention, and flexibility.

Summary of the Invention

[0006] The present invention relates to prefabricated repair patches and methods of making the patches.

[0007] The invention is defined in the independent claims 1 and 17.

[0008] One aspect of the invention features a prefabricated patch used in pelvic floor reconstruction procedures, including treatment of cystoceles, rectoceles, enteroceles and enterocystoceles. The patch is made of a natural or synthetic biocompatible material suitable for implantation into the body and has a plurality of apertures formed in a central portion of the patch.

[0009] Embodiments of this aspect of the invention can include the following features. For example, the natural or synthetic biocompatible material may be made of a material which facilitates tissue ingrowth, and it can have a plurality of interstices in which tissue ingrowth may occur. Also, the natural or synthetic biocompatible

material may be adapted to be cleanly trimmed with scissors without generating sharp edges or spines. The synthetic biocompatible material can be absorbable, and it can be a woven or knitted material such as Hemashield® (available from Meadox Medical, 112 Bauer

Drive, Oakland, NJ 07436). In yet another embodiment of the patch, the natural or synthetic biocompatible material is coated. In some embodiments, the coating on the biocompatible material is absorbed after implantation to facilitate tissue ingrowth into the natural or synthetic biocompatible material. In another embodiment of the patch, the natural or synthetic biocompatible material is impregnated with an antibiotic. In one embodiment, the patch is impregnated with bacitracin. In another embodiment the patch is impregnated with polymixim. In another embodiment the patch is impregnated with neomycin. In some embodiments, the patch is capable of releasing a drug, and the drug can be released over time.

[0010] The plurality of apertures formed in the central portion of the patch provide enhanced vascularity and are adapted to permit rapid tissue ingrowth after the patch is installed. The apertures may also be used for pexing sutures. The apertures may be substantially circular. Preferably, the apertures are positioned on the patch at locations which reduce the likelihood of crumpling. For example, the apertures may be positioned at locations which lie outside of the force lines created when the patch is attached to a supporting anatomical structure or tissue. The apertures may be positioned at locations adapted to equalize the distribution of force on the patch when the patch is attached to a supporting anatomical structure or tissue. In one embodiment the apertures are also adapted for suture attachment or for allowing a suture to pass therethrough. In some embodiments, the material around the periphery of the apertures is reinforced. In other embodiments, the apertures are strengthened with a reinforcing device.

[0011] In some embodiments, the corners of the patch

are adapted to receive a suture, thus serving as suture attachment sites. In other embodiments, the corners of the patch are adapted to receive more than one suture. In some embodiments, the sutures may be pre-attached to the patch.

[0012] In another aspect, the invention relates to a kit for performing a pelvic floor reconstruction or stabilization. The kit comprises a sterile natural or synthetic biocompatible material having a shape adapted for use in the procedures discussed above. The natural or synthetic biocompatible material has a plurality of apertures formed therein.

[0013] In one embodiment of the kit, the patch is packaged and both the patch and packaging are sterile. In another embodiment of the kit, the patch is a filamentous material coated with a coating to decrease the possibility of infection and/or increase biocompatibility. The coating can also include collagen or a polymeric material. In some embodiments, the coating may also include one or more drugs, for example and antibiotic, an immunosuppressant, and/or an anticoagulant. The packaging may be ultra-violet proof to protect the coating and/or drug.

[0014] Yet another aspect of the invention involves a method of making a patch for use in pelvic floor reconstruction procedures, such as those for treating cystoceles, rectoceles, enteroceles or cystoenteroceles. A natural or synthetic biocompatible material is cut into a shape adapted for pelvic floor stabilization and apertures are formed in the natural or synthetic biocompatible material. The material is typically sterilized, and a coating and/or drug can be applied to the material. The material can then be packaged.

[0015] With the claimed patch it is possible to carry out a method of stabilizing the pelvic floor. A patch is provided and it comprises a natural or synthetic biocompatible material having a shape adapted for pelvic floor reconstruction and a plurality of apertures formed in a central portion of the patch. One side of the patch is placed in contact with the tissue to be supported. The patch is secured to a supporting structure such as tissue, fascia, ligament, bone, muscle or other such anatomical structures having sufficient strength to allow the patch to be secured thereto without tearing the supporting structure. The supporting structure is located such that when the patch is secured thereto the herniated tissue is re-positioned in a location which alleviates the hernia. The force applied is sufficient to reposition the tissue in normal anatomical position. The patch may be secured by a at least one suture which is connected to a bone anchor which is attached to bone. In another embodiment, at least one suture can be attached to anatomical structures other than bone such as the arcus tendinous fascia pelvis, the ileal pectineal, or the pubo-coccygeous muscle complex.

[0016] It is also possible to carry out a treatment for a cystocele and the tissue to be supported is the bladder or a portion thereof. The patch is placed in contact with

the tissue beneath the bladder or portion thereof. The patch is connected to the supporting structure such that a biasing force is applied to the bladder or portion thereof to reposition the bladder or portion thereof such that

5 the cystocele is alleviated. The supporting structure may be the pubic bone, a ligament, or muscle tissue. The patch may be connected to the supporting structure through a suture or other fastener. The suture or other fastener may be secured to the supporting structure with 10 a securing device such as a bone anchor. The tissue to be supported further may comprise the bladderneck and at least a portion of the patch contacts the bladderneck to provide a biasing force to the bladderneck which repositions the bladderneck. The patch can be trapezoidal 15 in shape and the narrower end of the trapezoid contacts the bladderneck while the wider end of the trapezoid contacts the bladder. The anchor may be positioned in a pubic bone. At least one suture may be attached to the patch at each of the corners. It is also possible to 20 introduce the patch percutaneously. The patch may be introduced without invasive surgery.

[0017] Further it is possible to carry out a method of treating a rectocele and the tissue to be supported comprises the rectum or a portion thereof. In such procedures, the patch is placed in contact with the rectum or 25 a portion thereof or the tissue adjacent to the rectum or a portion thereof to reposition the rectum or a portion thereof.

[0018] Alternatively, it is possible to carry out a method 30 of treating an enterocele and the tissue to be repositioned comprises the intestine or a portion thereof. In such procedures, the patch is placed in contact with the intestine or a portion thereof or the tissue adjacent to the intestine or a portion thereof to reposition the intestine or a portion thereof.

[0019] It is also possible to carry out a method of treating an enterocystocele, and the tissue to be supported comprises the bladder and the intestine or portions thereof. In such procedures, the patch is placed in contact with the bladder and intestine or portions thereof or the tissue adjacent to the bladder and intestine or a portions thereof to reposition the bladder and intestine or a portions thereof.

[0020] The foregoing and other objects, aspects, features, and advantages of the invention will become more apparent from the following description and from the 45 claims.

Brief Description of the Drawings

[0021] In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.

[0022] Figure 1 is a plan view of a preferred embodiment of the patch of the present invention.

[0023] Figure 2 is a plan view of a preferred embodi-

ment of the patch of the present invention showing preferred dimensions.

[0024] Figure 3 is a schematic cross-sectional view taken through the urethra and upper vaginal wall illustrating an incision in the upper vaginal wall.

[0025] Figure 4 is a schematic cross-sectional view taken through the urethra and upper vaginal wall illustrating a bilaterally extending pocket created by blunt dissection.

[0026] Figure 5 is a sagittal section of a female pelvis illustrating the location of the patch relative to the bladderneck and the bladder in a procedure in which both the bladderneck and the bladder are repositioned.

[0027] Figure 6 is a cross section of a female pelvis illustrating the location of the patch relative to the bladderneck and the bladder in a procedure in which both the bladderneck and the bladder are repositioned.

Description

[0028] The present invention relates to prefabricated patches for use in pelvic floor reconstruction. More particularly, the patches are useful in pelvic floor reconstruction procedures, such as procedures for treating cystoceles, rectoceles, enteroceles, and cystoenteroceles.

[0029] The present patches are designed to be implanted in a patient in whom a hernia has resulted in an organ or portion of an organ protruding from its normal position. For example, the patient may have a cystocele whereby the hernia causes the bladder to protrude from its normal position. Alternatively, the patient may have a rectocele whereby the hernia causes the rectum to protrude from its normal position. The patient may also suffer from an enterocele in which the hernia causes the intestine to protrude from its normal position. In addition, the patient may have a cystoenterocele in which the hernia causes both the bladder and the intestine to protrude from their normal positions.

[0030] In each of the above conditions, the protruding organ or portion thereof may be restored to its normal position using the present devices and methods. In such procedures, one side of the patch is placed in contact with the organ or portion thereof which is to be repositioned or the tissue adjacent to the organ or portion thereof which is to be repositioned. The patch is secured to a support structure through a fastener such as a suture. The support structure may be any structure having sufficient strength to allow the support to be secured thereto without tearing the support structure. For example, the support structure may be bone, fascia, ligament or muscle. The support structure is positioned such that when the patch is secured thereto, the patch will apply a biasing force to the tissue to be repositioned such that the tissue to be repositioned is restored to its normal position.

[0031] The patches of the present invention comprise a natural or synthetic biocompatible material having a

plurality of apertures therein. The biocompatible material may be any of a variety of materials. In some embodiments the patch may be made of a material which facilitates tissue ingrowth. For example, the patch may

5 be made of a material having a plurality of interstices, openings or pores therein which permit tissue ingrowth.

[0032] The patch may be fabricated from any of a variety biocompatible materials. Such materials may be naturally occurring or synthetic, non-filamentous or filamentous, elastic or inelastic, and may be porous, micro-porous, perforated, or impermeable. The properties of the patch may be selected as appropriate based on the surgical procedure used to implant the patch and the application for which the patch is used.

[0033] Synthetic polymeric materials including, polyester such as Hemashield®, polytetrafluoroethylene (PTFE) such as GoreTex®, polyethylene terephthalate (PET), fluorinated ethylene propylene resin (FEP), polyurethane, or nylon can also be used to form the patches.

10 The synthetic polymeric material can be woven, knitted, or nonknitted. In one embodiment, filaments made from synthetic materials may be braided together to form strands or threads which can be woven, braided, or knitted together to form strips of fabric. Preferably, the synthetic filamentous material is polyester. In one embodiment of the patch, the biocompatible material may be adapted to be cleanly trimmed with scissors without generating sharp edges or spines.

[0034] In a preferred embodiment the patch may be 15 made of knitted collagen coated polyester such as Hemashield® (available from Meadox Medical, 112 Bauer Drive, Oakland, NJ 07436).

[0035] The patch can be made from natural materials using autologous, allogenic, or xenogenic material. The 20 natural material can be fibrous tissue, fascia including the fascia lata and rectus fascia, dura, pericardium, striated muscle or part of the vaginal wall. Tissue from xenogenic or allogenic sources may be freeze dried to reduce the immune response to the implanted patch.

25 Patches made from natural material include a plurality of apertures formed in the center portion and can be a shape adapted to support herniated tissue and/or the bladderneck.

[0036] Additionally, the patch material may be impregnated with antibiotics or other agents which can be delivered from the surface of the patch as well as through the pores, micropores or perforations. Impregnation with antibiotics or other agents may be facilitated by coating the patch with collagen.

30 **[0037]** A coating may also be applied to the patch. The coating may be applied to the surface of the material or may be impregnated within the material. The coating may be used to deliver a number of compounds, such as antibiotics, anticoagulant agents, e.g., heparin, immunosuppressant agents and/or other drugs. In some embodiments, the drug may be released over time. The coating also blocks the interstices of the underlying patch material, thereby decreasing the risk of infection

by sequestering the interstices of the patch from contact with microorganisms encountered during implantation of the patch. Preferably, the coating is absorbed after implantation to facilitate tissue ingrowth into the interstices, pores, micropores and/or perforations of the patch material.

[0038] Suitable coatings include polyglycolic acid, polylactic acid, blends of polyglycolic acid and polylactic acid, gelatin, polyvinyl alcohol, and polyvinyl pyrrolidone. A preferred coating is a smooth layer of collagen, such as that provided on the Hemashield® available from Meadox. (Meadox Medical, 112 Bauer Drive, Oakland, NJ 07436 or Boston Scientific Corporation, One Boston Scientific Place, Natick, MA 01760.) The smooth collagen coating protects the interstices of the underlying patch material from bacterial contact during implantation, thereby decreasing the risk of infection as previously discussed. The collagen coating can also enhance tissue compatibility. Additionally, the collagen coating can facilitate the uptake of antibiotics to reduce the risk of infection. After placement in the body, the collagen is gradually absorbed, facilitating tissue ingrowth into the underlying filamentous material.

[0039] The patches of the present invention can also be made of absorbable materials. Such absorbable patches preferably remain structurally intact for at least three months while supporting tissue ingrowth. Thereafter, the patches may be fully absorbed. Preferably, the patches are fully absorbed over a period of months following the three month period in which the patch is intact. Preferably, the absorbable patch is made of polylactic acid or polylactic acid/polyglycolic acid copolymers.

[0040] The patch may have a variety of shapes adapted for use in pelvic floor reconstruction procedures. For example, the patch may be trapezoidal, square, rectangular, oblong, ovoid, or may be an elongated incurvate shape. Those skilled in the art will appreciate that the patch may have a variety of other shapes depending on the procedure in which it is being used and the materials of which it is made.

[0041] The patch has a plurality of apertures therein which provide enhanced vascularity and are adapted to permit rapid tissue ingrowth after the patch is installed. The apertures may also be used for pexing sutures. Preferably, the apertures are positioned on the patch at locations which reduce the likelihood of crumpling. For example, the apertures may be positioned at locations which lie outside of the force lines created when patch is attached to a supporting anatomical structure or tissue. The apertures may be positioned at locations adapted to equalize the distribution of force on the patch when the patch is attached to a supporting anatomical structure or tissue. In one embodiment the apertures are also adapted for suture attachment or for allowing a suture to pass therethrough. In embodiments using synthetic material, the material around the periphery of the aperture can be reinforced by heat sealing or ultrasonic

sealing the material. Reinforcing devices can be inserted into the material. The reinforcing device can define the periphery of the aperture and strengthen the patch in the area of the apertures. In a preferred embodiment,

5 the one piece reinforcing device can be made from biocompatible plastics or metals, such as stainless steel or titanium. Alternatively, a multiple piece interlocking reinforcement device can be inserted into the material.

[0042] In some embodiments, the corners of the patch 10 are adapted to receive a suture, thus serving as suture attachment sites. In other embodiments, the corners of the patch are adapted to receive more than one suture. In some embodiments, the sutures may be pre-attached to the patch.

[0043] Referring to Figure 1, there is disclosed a plan view of a preferred embodiment of the patch 10 of the present invention. The patch of Figure 1 has been cut into a generally elongate trapezoid shape adapted for pelvic floor reconstruction, with a central plane extending between a more narrow first end 16 and a wider second end 18. Introduced into the natural or synthetic biocompatible material are a plurality of tissue ingrowth apertures 12. Tissue ingrowth apertures are prefabricated in the central plane of the patch 10. The cross lines 14 represent force lines along which tension is transmitted when the patch is attached to the supporting structure at the corners. In a preferred embodiment, the apertures are positioned so that they lie outside of the force lines.

[0044] The dimensions of a preferred embodiment 30 are shown in Figure 2. The approximate dimensions, in centimeters (inches), are as follows: A=5.00; B=5.51; C=1.0; and D=4.52 (A=1.97; B=2.17; C=0.4; and D=1.78). Preferably, the diameter of the apertures is 0.43 cm (0.17 inches). However, those skilled in the art 35 will appreciate that the dimensions of the patch may vary depending on the procedures in which it is used and anatomical variations.

[0045] The present patches may be cut into the desired shape prior to providing them to the physicians. 40 This eliminates the need for the physician to cut the patch material into the desired shape during the surgical procedure, thereby reducing the time of the procedure as well as the complexity of the procedure. In addition, providing the patches in pre-cut form may reduce the 45 amount of tissue dissection required for the implantation procedure because the chance that the physician will cut the patch into a size or shape which does not minimize the amount of tissue dissection is eliminated. The patches of the present invention may be individually 50 packaged and/or sterilized prior to purchase. The packaging may protect the patch during storage. For example, in embodiments in which the patch material comprises a collagen coated filamentous material, the packaging may protect the patch from damage by ultraviolet 55 light. The patch may be soaked in an antibiotic solution, such as a solution of neomycin, bacitracin, or polymixim, to prevent microorganisms from collecting on and colonizing the surface of the patch during manipulation,

thereby reducing the risk of infection following implantation of the patch. The patch may also be sterilized by ethylene oxide or irradiation. Uptake and delivery of the antibiotic may be enhanced by using a coated patch as described above. In additional embodiments, the patch may be provided to the physician with the sutures pre-attached.

[0046] Use of the patch to treat a condition in which an organ or portion thereof protrudes from its normal position will now be described using treatment of a cystocele as an example. If desired, the bladdemeck may be stabilized in addition to repositioning the bladder.

[0047] A minimally invasive percutaneous method of patch delivery and stabilization to treat an incontinent patient will now be described with reference to Figures 3-6. Preoperatively, the patient receives broad spectrum antibiotics, such as gentamicin and ampicillin. The patient is placed in the dorsal lithotomy position and regional or general anesthesia is administered. Preparation of the patient emphasizes isolation of the anus with a stapled towel or plastic drape. A Foley catheter is placed.

[0048] A midline incision 20 is made in the upper vaginal wall 22 beneath the bladdemeck, such as at the urethro-vesical junction as illustrated in Figure 3. The surgeon then inserts an instrument such as surgical scissors through the incision in the upper vaginal wall and bluntly dissects the tissue 26 on both sides of the urethra to create a bilaterally extending pocket which is illustrated in Figure 4.

[0049] The bilaterally extending pocket can also be created and the patch can be inserted using a variety of other minimally invasive instruments/methods including transvaginal, hiatal and percutaneous approaches.

[0050] Either before or after creating the pocket 28, a bone anchor 30, such as a screw in anchor a press in anchor, or a punch in anchor, is introduced into the pubic bone 34 for fixation of suspensory sutures, with or without predrilling a hole in the pubic bone. Bone anchor sites are located by placing the bone anchor implantation device on the body over the area of the pubic bone after visualization or digital palpation over the bone. The surgeon then extends the bone probes distally until both probes have made contact with the pubic bone. Preferably, one anchor 30 for each side (two per patient) is implanted into the tubercle portions of the pubic bone. Preferably, the eyelet of the anchor is recessed below the surface of the bone or flush with the surface of the bone. The anchor 30 preferably has a suture 32 slidably secured thereto prior to implantation of the anchor into the pubic bone so that a first suture end and a second suture end extend from the implanted anchor after removal of the anchor driver.

[0051] Two separated approximately one inch transverse incisions are made over the pubic bone as illustrated in the U.S. Patent No. 5,611,515 entitled "Bladderneck Suspension Procedure", and dissection is car-

ried down to the area of the rectus fascia. The first end of the anchored suture is manually placed into a suture channel of a suture passer of a type such as that illustrated in Figures 45 and 45a of the above U.S. Patent No. 5,611,515 entitled "Bladderneck Suspension Procedure." The probe is moved distally to lock the suture therein.

[0052] Beginning on the right side, the suprapubic wound is stretched cephalad to allow the vertical passage of the suture passer through the rectus fascia with the probe tip fully exposed. Distal advancement of the suture passer is accomplished with the tip proximally retracted within the probe guide. The suture passer is acutely angled into the abdomen so that the point rests on the underside of the pubic periosteum.

[0053] While maintaining contact with the underside of the pubis, the suture passer with the probe tip retracted is thereafter passed distally toward the introitus. At the completion of this distal passage, the suture passer can be palpated through the introitus to the right of the urethra 24. The distal end tip of the suture passer is withdrawn from the surface of the pubourethral ligament and gently swept along the pubocervical fascia to the area of the bladderneck under the guidance of a finger within the vagina. Palpation through the vagina may be safely performed to assist in localization of the suture passer tip.

[0054] The probe tip is then distally extended. The suture passer is then passed through the endopelvic fascia and into the pocket 28 between the urethra 24 and the upper vaginal wall 22 at which time the probe tip is retracted. The surgeon then guides the suture passer distally into the vagina through the midline incision 20 in the upper vaginal wall 22. The probe is then retracted maximally to the unlocked position to allow the first end of the suture to be manually removed from the suture channel.

[0055] The surgeon selects a patch 10, such as patch of the present invention. The surgeon then attaches the sutures 32 to the patch. This step is unnecessary in embodiments where a suture is pre-attached to the repair patch of the invention. If desired, the suture may also be passed through one or more apertures in the patch.

[0056] After securing the sutures to the patch, the first end of the suture is placed into the unlocked suture channel and locked into place. The suture passer and suture locked therein are then pulled up through the suprapubic wound. The first end of the suture is then released from the suture channel by manually retracting the probe.

[0057] The identical procedure is performed on the left side.

[0058] The surgeon places the patch 10 into the pocket 28 through the midline incision 20 in the upper vaginal wall 22. At least a portion of the patch is placed under the cystocele. Where it is desired to stabilize the bladderneck as well as to reposition the bladder, at least a portion of the patch is placed beneath the bladderneck.

[0059] As will be apparent to one of skill in the art, the patch may be placed beneath the bladderneck in a variety of ways other than via the pocket 28.

[0060] After placing the patch in the pocket or opening, the surgeon aligns the patch. The sutures cause the patch to provide a biasing force on the bladder sufficient to support the bladder in a location which alleviates the cystocele. In addition, if a portion of the patch is under the bladderneck, the patch realigns the bladderneck and the urethra to the correct anatomical position. As will be apparent to one of skill in the art, alignment of the patch relative to the bladderneck and the bladder can be accomplished in a variety of ways, such as by direct visualization.

[0061] If the patch is trapezoidal in shape and if it is desired to stabilize the bladderneck as well as to reposition the bladder, the narrower end of the trapezoid is preferably positioned beneath the bladderneck and the wider end is preferably positioned beneath the bladder.

[0062] After the patch is correctly positioned, the sutures on each side are tied with sufficient tension to reposition the bladder, and, if desired, to support the bladderneck as illustrated in Figure 5. The Foley catheter is removed prior to tying the suspensory sutures.

[0063] Referring to Figure 6, in one embodiment, the one or more of the sutures 32 can be laterally attached to anatomical support structures other than the pubic bone, for example, the ileal pectenial (termed Cooper's ligament) 36, the arcus tendinous fascia (termed the White Line) 38, or the pubococcygeous muscle complex 40. In Figure 6, the smaller side of the patch 42 is attached to the pubic bone 34 and the larger side 44 is attached to the arcus tendinous fascia pelvis (termed the White Line).

[0064] In order to minimize postoperative urinary blockage caused by excessive tension, suture tension is regulated by tying the first and second ends of the sutures across a suture tensioner of a type such as that illustrated in Figures 46-49 of the above U.S. Patent No. 5,611,515 entitled "Bladderneck Suspension Procedure", filed April 5, 1993. The suture tensioner is thereafter removed and the position of the patch is reconfirmed prior to closing the vaginal and suprapubic wounds.

[0065] The wounds are irrigated with an antibiotic solution, such as a bacitracin solution. The wound edges and the rectus fascia at the suture entry points are infiltrated with bupivacaine. A Foley catheter is introduced. Alternatively, a suprapubic tube can be placed, especially in those patients having dexterity problems or an aversion to learning intermittent catheterization.

[0066] Following surgery, the patient is given either ciprofloxacin or ofloxacin for ten days. For those patients having a Foley catheter, the catheter is removed approximately one week following surgery. The patient performs intermittent catheterization as necessary until the postvoid residuals are less than 75 cc on two consecutive catheterizations. In patients having a suprapubic

tube, the suprapubic tube is removed when the postvoid residuals are less than 75 cc following two consecutive urinations.

[0067] While the foregoing procedure was described using two bone anchors per patient, one of ordinary skill in the art will recognize that the procedure could also be accomplished using either one anchor per patient, greater than two anchors per patient, other types of surgical fasteners or no surgical fasteners at all.

[0068] The patch invention disclosed here is designed to be attachable to any suitable support structure. Examples of such structures include but are not limited to the ligaments, fascia and appropriate muscle structures proximate to the site of attachment. For example, the sutures may be attached to the Cooper's ligament or the rectus fascia without using bone anchors.

Claims

1. A surgical patch (10) comprising a piece of biocompatible material including four corners, a first force line (14) and a second force line (14), the first force line extending from one of the corners to a diagonally opposite one of the corners, and the second force line extending from a different corner to a diagonally opposite one of the corners, and a plurality of apertures (12), the plurality of apertures (12) being located outside of the first force line and the second force line (14).
2. The surgical patch (10) of claim 1, wherein at least one of the plurality of apertures (12) comprises a substantially circular hole in the piece of material.
3. The surgical patch (10) of claim 1, wherein the biocompatible material includes a plurality of interstices.
4. The surgical patch (10) of claim 1, wherein the piece of material has four sides and the sides form a trapezoidal shape.
5. The surgical patch (10) of claim 4, wherein the apertures (12) are located in the central portion of the piece of material away from the sides.
6. The surgical patch (10) of claim 1, wherein the piece of material comprises a knitted material.
7. The surgical patch (10) of claim 1, wherein the patch (10) is capable of releasing a drug.
8. The surgical patch (10) of claim 1, wherein the piece of material includes a coating, comprising any of heparin, an antibiotic, collagen, polyglycolic acid, polylactic acid, gelatin, polyvinyl alcohol, and polyvinyl pyrrolidone.

9. The surgical patch (10) of claim 1 or claim 8, wherein in the piece of material or the coating is absorbable by a body.

10. The surgical patch (10) of claim 1, including a first end (16) approximately 5.0 cm (1.97 inches) long, a second end (18) approximately 5.5 cm (2.17 inches) long, and third and fourth ends approximately 4.5 cm (1.78 inches) long:

11. The patch (10) of claim 1, wherein the patch is adapted to be secured to an anatomical support in the body with at least one surgical fastener to treat herniation such that the patch (10) applies a force sufficient to restore the herniated tissue to a normal anatomical position.

12. The patch (10) of claim 11, wherein the herniated tissue is a cystocele, a rectocele, or an enterocele.

13. The surgical patch (10) of claim 11, wherein the surgical fastener includes a bone anchor.

14. The surgical patch (10) of claim 1, wherein the apertures (12) permit tissue in growth after the surgical patch (10) is installed in a body.

15. The surgical patch (10) of claim 1, wherein the apertures (12) of the surgical patch 10 are reinforced.

16. The surgical patch (10) of claim 1, wherein the apertures (12) are approximately 0.43 cm (0.17 inches) in diameter, and are spaced approximately 1.0 cm (0.4 inches) apart.

17. A method of making a surgical patch (10), comprising:

providing a biocompatible material;
cutting the material into a shape including four corners adapted for treatment of herniation in a body;
forming a plurality of apertures (12) in a central portion of the material, the plurality of apertures being located outside of a first force line (14) extending from one of the corners to a diagonally opposite one of the corners, and a second force line (14) extending diagonally from a different corner to a diagonally opposite corner;
sterilizing the material; and
applying a coating to the material.

18. The method of claim 17, comprising the further step of sterilizing the patch by irradiating the material, heating the material, or exposing the material to ethylene oxide.

19. The method of claim 17, wherein the applying step

further comprises applying collagen to the material, or applying a drug such as an antibiotic or an immunosuppressant to the material.

5 20. The method of claim 18, further comprising the step of packing the material in a sterile, ultra-violet-proof container.

10 Patentansprüche

1. Chirurgisches Patch (10) aufweisend ein Teil eines biokompatiblen Materials, das vier Ecken, eine erste Kraftlinie (14) und eine zweite Kraftlinie (14), wobei sich die erste Kraftlinie von einer der Ecken zu der diagonal gegenüberliegenden Ecke erstreckt und die zweite Kraftlinie sich von einer anderen Ecke zu der diagonal gegenüberliegenden Ecke erstreckt, und eine Mehrzahl von Öffnungen (12) beinhaltet, wobei die Öffnungen (12) außerhalb der ersten Kraftlinie und der zweiten Kraftlinie (14) angeordnet sind.

25 2. Chirurgisches Patch (10) gemäß Anspruch 1, **durch gekennzeichnet, dass** mindestens eine der Öffnungen (12) ein im wesentlichen kreisförmiges Loch in dem Teil des Materials aufweist.

30 3. Chirurgisches Patch (10) gemäß Anspruch 1, **durch gekennzeichnet, dass** das biokompatible Material eine Mehrzahl von Hohlräumen aufweist.

35 4. Chirurgisches Patch (10) gemäß Anspruch 1, **durch gekennzeichnet, dass** das Teil des Materials vier Seiten hat und die Seiten eine trapezförmige Gestalt bilden.

40 5. Chirurgisches Patch (10) gemäß Anspruch 4, **durch gekennzeichnet, dass** die Öffnungen (12) in dem mittleren Teil des Materialteils weg von den Seiten angeordnet sind.

45 6. Chirurgisches Patch (10) gemäß Anspruch 1, **durch gekennzeichnet, dass** das Materialteil ein verstricktes Material aufweist.

50 7. Chirurgisches Patch (10) gemäß Anspruch 1, **durch gekennzeichnet, dass** das Patch (10) in der Lage ist, ein Arzneimittel abzugeben.

55 8. Chirurgisches Patch (10) gemäß Anspruch 1, **durch gekennzeichnet, dass** das Materialteil eine Beschichtung aufweist, die Heparin, ein Antibiotikum, Kollagen, Polyglykolsäure, Polymilchsäure, Gelatine, Polyvinylalkohol, und/oder Polyvinylpyrrolidon enthält.

9. Chirurgisches Patch (10) gemäß Anspruch 1 oder

Anspruch 8, **dadurch gekennzeichnet, dass** das Materialteil oder die Beschichtung durch einen Körper absorbierbar sind.

10. Chirurgisches Patch (10) gemäß Anspruch 1, **dadurch gekennzeichnet, dass** es ein erstes Ende (16) ungefähr 5,0 cm (1,97 inches) lang, ein zweites Ende (18) ungefähr 5,5 cm (2,17 inches) lang und dritte und vierte Enden ungefähr 4,5 cm (1,78 inches) lang aufweist.

11. Patch (10) gemäß Anspruch 1, **dadurch gekennzeichnet, dass** das Patch derart angepasst ist, dass es zur Behandlung von Herniation mit mindestens einem chirurgischen Befestigungsmittel an einem anatomischen Träger im Körper befestigt werden kann, so dass das Patch (10) eine Kraft ausübt, die dazu ausreicht, das hernierte Gewebe zur normalen anatomischen Position zurückzubringen.

12. Patch (10) gemäß Anspruch 11, **dadurch gekennzeichnet, dass** das hernierte Gewebe eine Cystocele, eine Rectocele oder eine Enterocèle ist.

13. Chirurgisches Patch (10) gemäß Anspruch 11, **dadurch gekennzeichnet, dass** das chirurgische Befestigungsmittel eine Knochenhalterung beinhaltet..

14. Chirurgisches Patch (10) gemäß Anspruch 1, **dadurch gekennzeichnet, dass** die Öffnungen (12) Wachsen des Gewebe erlauben, nachdem das chirurgische Patch (10) im Körper implantiert wurde.

15. Chirurgisches Patch (10) gemäß Anspruch 1, **dadurch gekennzeichnet, dass** die Öffnungen (12) des chirurgischen Patches 10 verstärkt werden.

16. Chirurgisches Patch (10) gemäß Anspruch 1, **dadurch gekennzeichnet, dass** die Öffnungen (12) ungefähr 0,43 cm (0,17 inches) im Durchmesser sind und dass sie ungefähr 1,0 cm (0,4 inches) von einander entfernt angeordnet sind.

17. Verfahren zur Herstellung eines chirurgischen Patches (10) aufweisend, dass man:

ein biokompatibles Material bereitstellt;

das Material derart zurecht schneidet, dass es vier Ecken aufweist, die zur Behandlung einer Herniation in einem Körper angepasst sind;

eine Mehrzahl von Öffnungen (12) im mittleren Teil des Materials, wobei die Mehrzahl an Öffnungen außerhalb einer ersten Kraftlinie (14), die sich von einer der Ecken zu der diagonal gegenüberliegenden Ecke erstreckt, und einer zweiten Kraftlinie (14), die sich von einer anderen Ecke zu der diagonal gegenüberliegenden Ecke erstreckt, angeordnet sind;

das Material sterilisiert und

das Material beschichtet.

10 5

18. Verfahren gemäß Anspruch 17 aufweisend den weiteren Schritt, dass man das Patch sterilisiert, indem man das Material bestrahlt, erwärmt oder Ethylenoxid aussetzt.

15 19. Verfahren gemäß Anspruch 17, **dadurch gekennzeichnet, dass** der Beschichtungsschritt weiterhin aufweist, dass man das Material mit Kollagen oder einem Arzneimittel, wie einem Antibiotikum oder einem Immunsuppressivum, beschichtet.

20 20. Verfahren gemäß Anspruch 18 weiterhin aufweisend den Schritt, dass man das Material in einen sterilen, Ultraviolet-Licht-undurchlässigen Behälter packt.

25

Revendications

1. Pansement chirurgical (10) comprenant une pièce en matériau biocompatible possédant quatre coins, une première ligne de force (14) et une deuxième ligne de force (14), la première ligne de force s'étendant entre un des coins et un des coins qui lui est diagonalement opposé, et la deuxième ligne de force s'étendant entre un autre coin et un des coins qui lui est diagonalement opposé, et une pluralité d'ouvertures (12), la pluralité d'ouvertures (12) étant située à l'extérieur de la première ligne de force et de la deuxième ligne de force (14).

30

2. Pansement chirurgical (10) selon la revendication 1, dans lequel au moins une ouverture parmi la pluralité des ouvertures (12) comprend un trou sensiblement circulaire pratiqué dans la pièce en matériau biocompatible.

35

3. Pansement chirurgical (10) selon la revendication 1, dans lequel le matériau biocompatible comprend une pluralité d'interstices.

40

4. Pansement chirurgical (10) selon la revendication 1, dans lequel la pièce de matériau possède quatre côtés formant un trapèze.

45

5. Pansement chirurgical (10) selon la revendication 4, dans lequel les ouvertures (12) sont placées dans la partie centrale de la pièce de matériau en étant écartées des côtés.

50

55

6. Pansement chirurgical (10) selon la revendication 1, dans lequel la pièce de matériau comprend un matériau tricoté.

7. Pansement chirurgical (10) selon la revendication 1, dans lequel le pansement (10) est capable de libérer un médicament.

8. Pansement chirurgical (10) selon la revendication 1, dans lequel la pièce de matériau comprend un revêtement composé d'une quelconque substance parmi l'héparine, un antibiotique, le collagène, l'acide polyglycolique, l'acide polylactique, la gélatine, l'alcool polyvinyle, et la pyrrolidone polyvinyle.

9. Pansement chirurgical (10) selon la revendication 1 ou la revendication 8, dans lequel la pièce de matériau ou le revêtement peut être absorbé par le corps humain.

10. Pansement chirurgical (10) selon la revendication 1, comprenant une première extrémité (16) de longueur approximativement égale à 5,0 cm (1,97 pouces), une deuxième extrémité (18) de longueur approximativement égale à 5,5 cm (2,17 pouces), et des troisième et quatrième extrémités de longueur approximativement égale à 4,5 cm (1,78 pouces).

11. Pansement chirurgical (10) selon la revendication 1, dans lequel le pansement est prévu pour être fixé à un support anatomique dans le corps avec au moins une attache chirurgicale pour traiter la formation d'une hernie de façon à ce que le pansement (10) applique une force suffisante pour faire revenir le tissu ayant subi une hernie à un position anatomique normale.

12. Pansement chirurgical (10) selon la revendication 11, dans lequel le tissu ayant subi une hernie est un cystocèle, un rectocèle, ou un enterocèle.

13. Pansement chirurgical (10) selon la revendication 11, dans lequel l'attache chirurgicale comprend une attache osseuse.

14. Pansement chirurgical (10) selon la revendication 1, dans lequel les ouvertures (12) permettent la croissance du tissu après que le pansement chirurgical (10) a été installé dans un corps.

15. Pansement chirurgical (10) selon la revendication 1, dans lequel les ouvertures (12) du pansement chirurgical (10) sont renforcées.

16. Pansement chirurgical (10) selon la revendication 1, dans laquelle les ouvertures (12) ont un diamètre approximativement égal à 0,43 cm (0,17 pouce) et sont espacées d'approximativement 1,0 cm (0,4 pouce).

17. Procédé de fabrication d'un pansement chirurgical (10) consistant à

5 fournir un matériau biocompatible ; couper le matériau pour lui donner une forme comprenant quatre coins prévus pour assurer le traitement d'une hernie dans un corps ; former une pluralité d'ouvertures (12) dans une partie centrale du matériau, la pluralité d'ouvertures étant placées à l'extérieur d'une première ligne de force (14) s'étendant entre un des coins et un des coins qui lui est diagonalement opposé, et une deuxième ligne de force (14) s'étendant en diagonale entre un coin différent et un coin qui lui est diagonalement opposé ;

10 stériliser le matériau ; et appliquer un revêtement sur le matériau.

18. Procédé selon la revendication 17, comprenant l'étape supplémentaire consistant à stériliser le pansement en irradiant le matériau, en chauffant le matériau, ou en exposant le matériau à l'oxyde éthylène.

20

19. Procédé selon la revendication 17, dans lequel l'étape consistant à appliquer consiste en outre à appliquer du collagène au matériau, ou à appliquer un médicament comme un antibiotique ou un immunosupresseur au matériau.

25

20. Procédé selon la revendication 18, comprenant en outre l'étape consistant à emballer le matériau dans un conteneur stérile et protégé des ultraviolets.

30

35

40

45

50

55

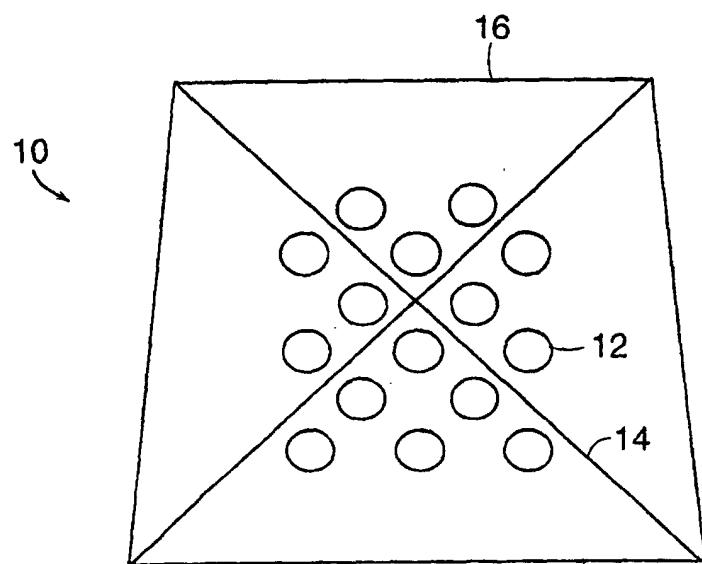


FIG. 1

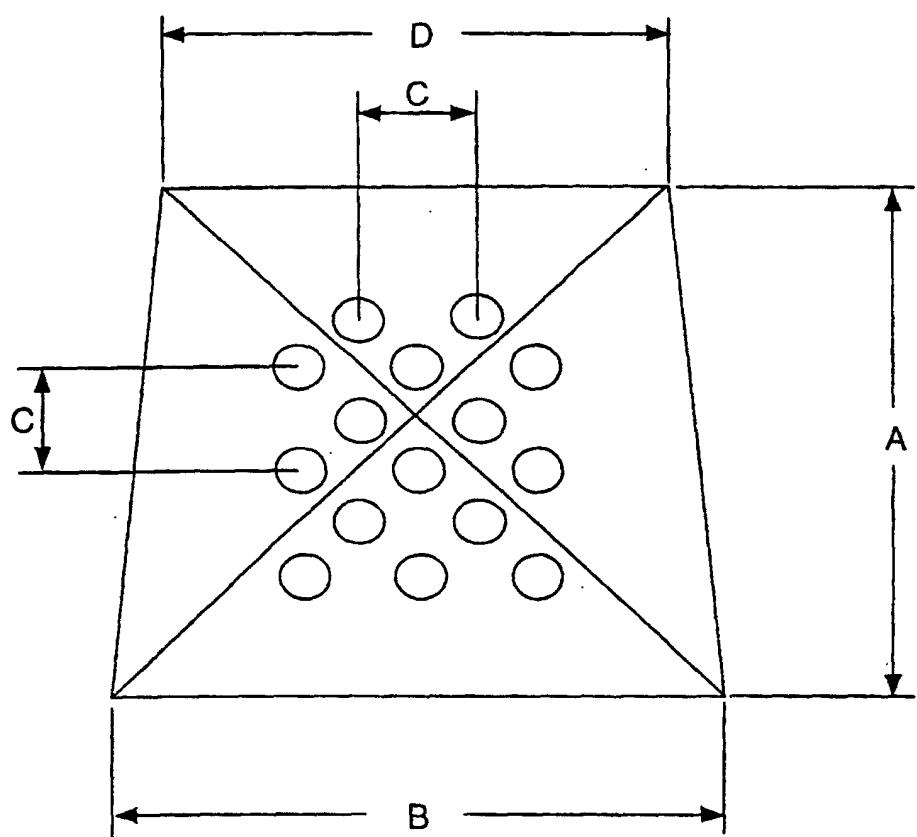


FIG. 2

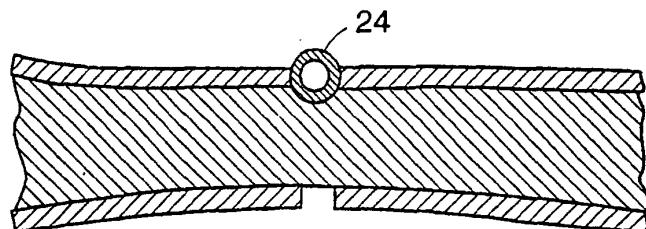


FIG. 3

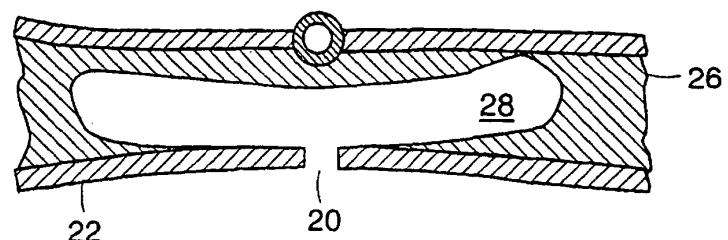


FIG. 4

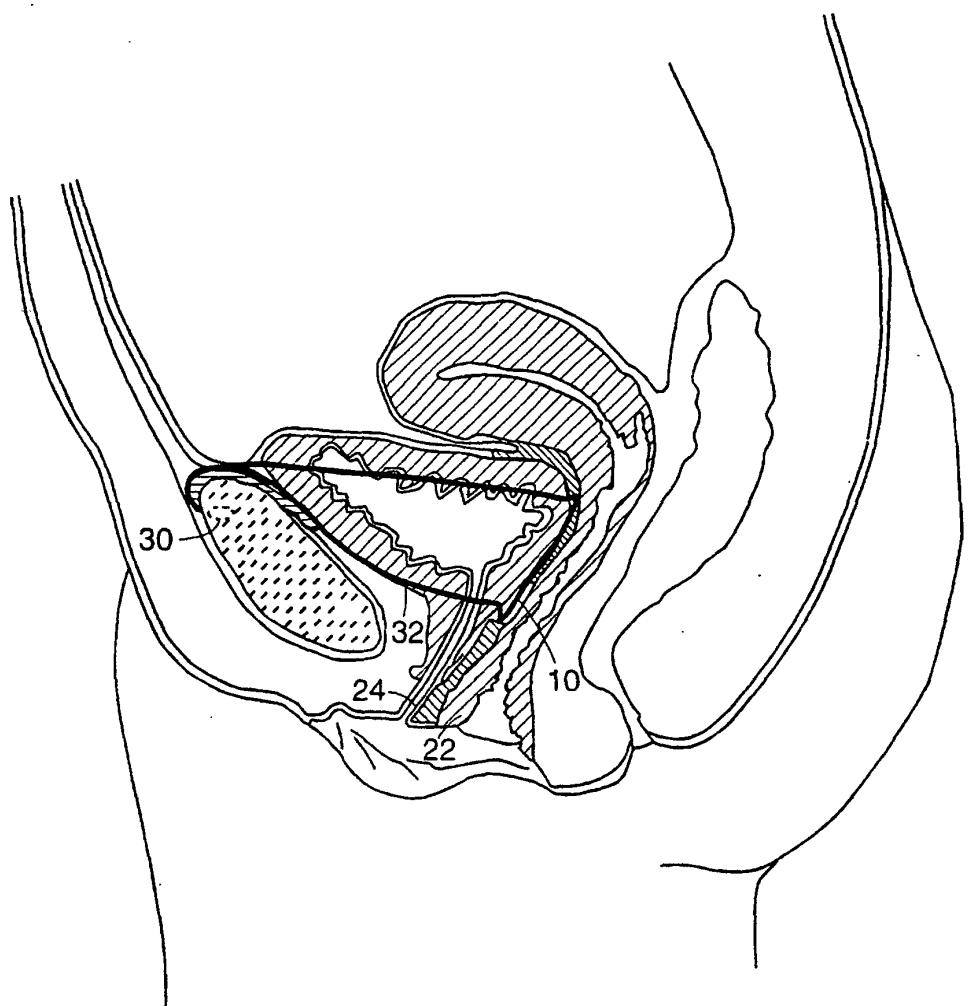


FIG. 5

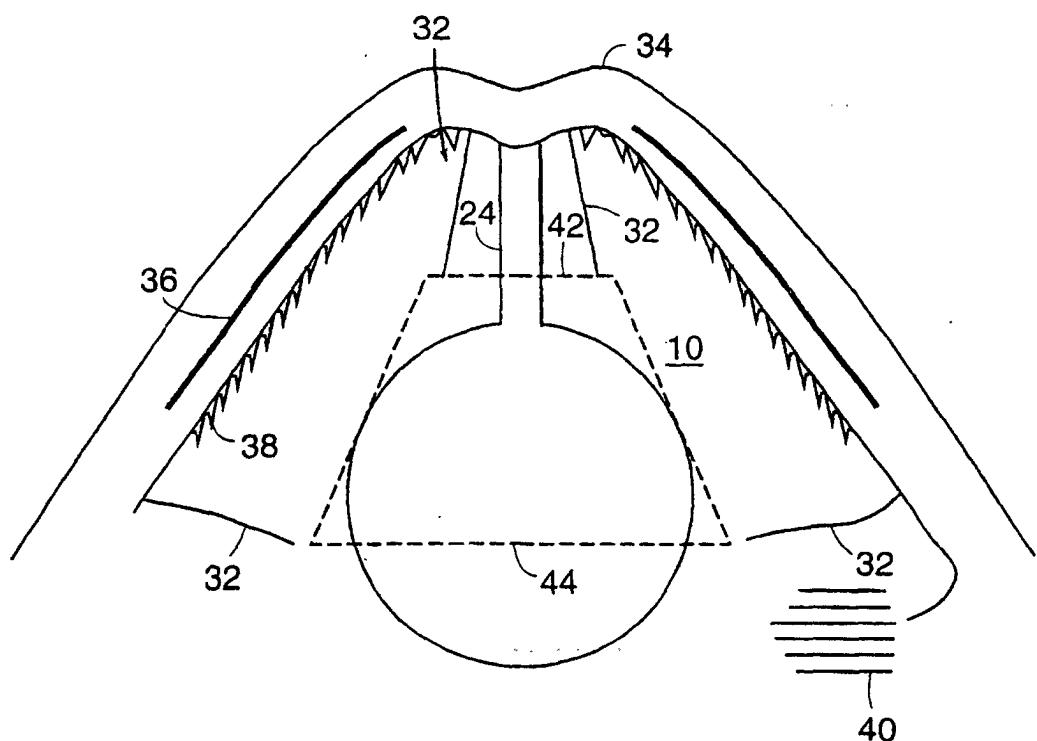


FIG. 6