

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 1 020 603 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

19.07.2000 Patentblatt 2000/29

(21) Anmeldenummer: 99120290.4

(22) Anmeldetag: 12.10.1999

(51) Int. Cl.7: **E05F 15/12**

(11)

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

(30) Priorität: 14.01.1999 DE 19901033

(71) Anmelder: DORMA GmbH + Co. KG

58256 Ennepetal (DE)

(72) Erfinder:

- Scholten, Jan, Dipl.-Ing. 45277 Essen (DE)
- Kisters, Peter, Dipl.-Ing. 47574 Goch (DE)
- Schneider, Guido, Dipl.-Ing.
 58313 Herdecke (DE)

(54) Drehtürantrieb

Die Erfindung betrifft einen Drehtürantrieb mit einer elektromechanischen Vorrichtung, die das für das Öffnen und Schließen der Tür notwendige Schließmoment liefert, dabei wird das sich über den Öffnungswinkel der Tür in seinem Übersetzungsverhältnis ändernde Getriebe eine mit einer Abtriebswelle verbundene Führung und eine relativ zu der Führung und in dieser translatorisch bewegbare Mitnehmerrolle umfaßt, die mit einem in eine mit der Federanordnung in Verbindung stehende Zahnstange eingreifenden Ritzel verbunden ist, wobei die Drehachse der Abtriebswelle zu der Drehachse des Ritzels und die Drehachse der Mitnehmerrolle zu der Drehachse des Ritzels in vorbestimmten Abständen voneinander angeordnet sind, derart, daß beim Verdrehen von Abtriebswelle und Ritzel infolge des sich dabei ändernden Achsabstandes zwischen Abtriebswelle und Mitnehmerrolle sich das Übersetzungsverhältnis ändert.

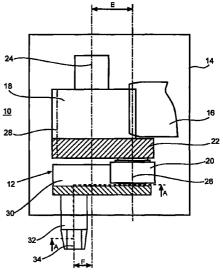


Fig.1

Beschreibung

[0001] Die Erfindung betrifft Drehtürantriebe gemäß in den Oberbegriffen der Patentansprüche 1 und 2 angegebenen Art.

[0002] Aus der DE 41 24 282 C2 ist ein gattungsgemäßer Drehtürantrieb bekannt, bei dem das automatische Öffnen der angeschlossenen Tür über den Drehtürantrieb in elektromechanischer Weise erfolgt. Der Schließvorgang wird mit Unterstützung des Motorantriebes über eine eingebaute Schließfeder, die sich z.B. in einem handelsüblichen Türschließer befindet, bewerkstelligt. Dabei wird der Motorantrieb mit einem reduzierten Antriebsmoment beaufschlagt, wobei der Motor nur die Verluste des Getriebes ausgleicht. Ein dauerndes Schalten der Kupplung wird durch diese Art der Steuerung vermieden, welches gleichzeitig einen geringen Verschleiß bedeutet, denn es braucht beim Reversiervorgang der Drehtür nicht extra wieder die Kupplung eingekuppelt werden. Dieser Drehtürantrieb ist mit einem sogenannten Scherengestänge ausgestattet.

[0003] Ein solcher Antrieb kann auf dem Türrahmen oder der Tür montiert werden. Neben der vorbeschriebenen Anordnung eines Scherengestänges kann auch ein Parallelgestänge und eine sogenannte Gleitschiene in Verbindung mit einem geraden Betätigungsarm verwendet werden. Während die Schließmomente für Scheren- und Parallelgestänge den genormten Vorgaben genügen, zeigen sich für den Schließvorgang bei Verwendung einer Gleitschiene in der Regel sehr niedrige Schließmomente.

[0004] Eine Vorrichtung zum Öffnen und Schließen von Türen zeigt die DE 37 30 114 A1, die aus zwei Montageteilen besteht. Das eine Teil wird am Türblatt und das andere Teil der Vorrichtung wird rahmenseitig befestigt, wobei beide Montageteile untereinander durch einen Kraftübertragungsmechanismus miteinander verbunden sind. Gleichzeitig ist ein Umkehrmechanismus mit einer Rastkupplung vorhanden, die auch gleichzeitig die zu übertragenden Kräfte begrenzt. Hierzu können auch bewährte handelsübliche Türschließer verwendet werden, die jedoch eine Schließfeder aufweisen. Das Abtriebsrad der Vorrichtung, welches einerseits mit dem Kraftübertragungsmechanismus verbunden ist, weist ein Ritzel auf, welches mit einer Zahnstange in Wirkverbindung steht.

[0005] Ein ähnlich arbeitender Drehtürantrieb wird in der WO 89/11578 beschrieben, wobei hier ebenfalls für den Öffnungsvorgang eine Vorrichtung vorhanden ist und der Schließvorgang wie bei der DE 41 24 282 C2 durch die Kraft des Türschließers bewerkstelligt wird.

[0006] Ähnliche Drehtürantriebe werden in der US 1,684,704 sowie 2,256,613 wiedergegeben. Auch hier sind Antriebe in Verbindung mit Türschließern wiedergegeben, wobei jedoch der Türschließer als separates Bauteil auf dem Flügel montiert ist und der Drehflügelantrieb oberhalb des Türflügels sich befindet. Die Ver-

bindung zwischen Drehtürantrieb und Türschließer wird durch ein Scherengestänge bewerkstelligt. Die US 4,333,270 offenbart einen Drehtürantrieb, der elektromechanisch arbeitet. Dabei wirkt ein Antriebsrad mit einer Zahnstange derart zusammen, daß eine Feder für die Schließung der Tür beim Öffnungsvorgang gespannt wird.

[0007] Ein elektromechanischen Drehtürantrieb, der einen Gleichstrommotor in Verbindung mit einem Planetengetriebe zum Antrieb verwendet offenbart die DE 32 02 930 A1. Zwischen der Abtriebswelle und der angeschlossenen Tür ist ein Kniehebelgestänge vorhanden. Dieser Drehtürantrieb wird sowohl für den Öffnungs- als auch für den Schließvorgang der angeschlossenen Tür verwendet.

Einen elektrohydraulischen Drehtürantrieb mit der Typenbezeichnung ED 200 wird in dem Firmenprospekt der DORMA GmbH + Co. KG als ein kompakter Antrieb, der die Tür gegen eine Feder öffnet und mechanisch durch die Rückstellkräfte der Feder wieder in seine Schließlage geht, wiedergegeben. Dabei kann der Antrieb auf dem Türrahmen oder auf der Tür montiert werden. Dabei wird durch einen Elektromotor eine Pumpe angetrieben, die ein entsprechendes Ölvolumen in einem Hydraulikzylinder pumpt, der sich wiederum gegen eine Feder ausdehnt. Dabei ist der Kolben des Hydraulikzylinders mit einer Zahnung versehen, die ein Ritzel antreibt, an das der Hebelmechanismus zur Betätigung der Tür angebracht ist. Um die angeschlossene Tür nun wieder in ihre Schließlage zu bringen, werden entsprechende Ventile geöffnet und das Ölvolumen kann in den Tank der Antriebseinheit wiederzurückfließen. Die Feder schiebt dabei den Kolben zurück und schließt durch seine Bewegung, die auf das Ritzel übertragen wird, die Tür.

[0009] Die Aufgabe der Erfindung ist es deshalb, einen Drehtürantrieb gemäß dem Stand der Technik derart weiterzubilden, daß unter Verwendung der genannten Nachteile eine einfache Konstruktion sowie eine problemlose Anpassung an gewünschte Drehmomentverläufe über den Öffnungswinkel ermöglicht werden.

[0010] Diese Aufgabe wird durch die kennzeichnenden Merkmale der Patentansprüche 1 und 2 gelöst.

[0011] Eine Anhebung der Momente für den Schließbereich ist beispielsweise im Bereich kleiner Türöffnungswinkel wünschenswert.

[0012] Weitere vorteilhafte Ausführungsformen der Erfindung bilden die Merkmale der Unteransprüche.

[0013] Durch die Übersetzung von translatorischer Kolbenbewegung in rotatorische Ritzelbewegung, ergibt sich eine Variation des Teilkreisdurchmessers. Durch den sich so verändernden Hebelarm kann bei gleichbleibender Kolben- bzw. Umfangskraft am Abtriebsritzel eine Anpassung der Ritzelmomente erfolgen. Gleichzeitig kann aufgrund der höheren Federkraft, durch die Zwischenschaltung eines Getriebes zwischen Abtriebswelle und Gestänge, diese reduziert

werden. Ferner besteht hierbei die Möglichkeit, den Federweg über eine weitere Veränderung des Teilkreisdurchmessers zu verkleinern. Der Verlauf des Schließmomentes ist eine Überlagerung der Einflüsse der Übersetzungs- oder Übertragungsfunktion, des Teilkreisdurchmessers und des Federkraftverlaufes.

Die im Stand der Technik verwendeten Ritzel [0014] weisen im Gegensatz zu der vorliegenden Erfindung einen aus abschnittsweise konstanten Radien zusammengesetzten Wälzkurvenverlauf auf So ist die zur konstruktiven Integration des veränderlichen Teil- bzw. Wälzkreisdurchmessers eingesetzte Lösung, das in der DE 36 45 313 C2 beschriebene Prinzip, Stand der Technik. Dabei ergibt sich für die dem Zahnritzel zugeordkomplementäre Verzahnung z. B. eine langgezogene S-förmige Wälzkurve. Durch eine geeignete Wahl des Verlaufs der Wälzkurve und der Flankenwinkel wird dabei versucht, die sich aus der Führungswandung der Zahnstange ergebende Reibung zu minimieren. Die ritzelseitige Verzahnung weist über ihre Wälzkurve variierte Profilverschiebungen auf. Im Bereich großer Türöffnungswinkel, das heißt kleiner Wälzkreisdurchmesser, wird die Verzahnung durch positive Profilverschiebung radial nach außen verschoben. An der Zahnstange wird entsprechend eine gegensinnige Profilverschiebung vorgenommen. Darüber hinaus weist die Verzahnung über der Wälzkurve einen sich verändernden Modul auf. Dabei wird der Modul nur so groß gewählt, daß die Festigkeit der Verzahnung ausreichend ist. Dabei sind die hier beschriebenen Ergebnisse empirisch erzielt worden.

[0015] Der Erfindung liegt die Erkenntnis zugrunde, daß das gewünschte sich ändernde Übersetzungsverhältnis durch eine Entkopplung der erforderlichen Hebellängenveränderungen des Getriebes von der Funktion der Umwandlung der Drehbewegung am sinnvollsten erreicht werden kann. Hierdurch ergeben sich nicht nur vielfältige Anpassungsmöglichkeiten an gewünschte Drehmomentenverläufe, sondern auch eine kostengünstige Konstruktion.

[0016] Aus diesem Grunde wird erfindungsgemäß eine Vorrichtung zwischen der Abtriebswelle des Drehtürantriebes und des Kraftübertragungsmechanismus geschaltet. Dabei überträgt z. B. das zwischengeschaltete Getriebe einen optimalen Teilkreisverlauf, wodurch die erforderliche Hebelängenveränderung von der Funktion der Umwandlung der translatorischen Kolbenbewegung in die Hebelverdrehung entkoppelt wird. Dabei wird eine Zahnstange mit einem konventionellen Ritzel gepaart.

[0017] Nach der Erfindung weist daher das sich über den Schließ- und Öffnungswinkel der Tür in seinem Übersetzungsverhältnis ändernde Getriebe eine mit einer Abtriebswelle verbundene Führung und eine relativ zur Führung und in dieser translatorisch bewegbare Mitnehmerrolle auf, die mit einem in eine an die Federanordnung gekoppelte Zahnstange eingreifendes Ritzel verbunden ist, wobei die Drehachse der Abtriebs-

welle zu der Drehachse des Ritzels und die Drehachse der Mitnehmerrolle zu der Drehachse des Ritzels in vorbestimmten Abständen voneinander angeordnet sind, derart, daß beim Verdrehen von Abtriebswelle und Ritzel infolge des sich dabei ändernden Achsabstandes zwischen Abtriebswelle und Mitnehmerrolle das Übersetzungsverhältnis sich ändert.

[0018] Gemäß einer Ausführungsform der Erfindung schneidet die Drehachse der Mitnehmerrolle den Wälzkreis des Ritzels und ist parallel zur Drehachse des Ritzels ausgerichtet. Hierdurch ergibt sich eine kompakte raumsparende Konstruktion, die aber auch gleichzeitig den gewünschten, sich über den Öffnungswinkel des Türblattes der zugeordneten Tür ändernden Übersetzungsverhältnissen Rechnung trägt.

[0019] Das Übersetzungsverhältnis des Getriebes ist durch den Wälzkreisdurchmesser des Ritzels, den Abstand der Drehachse der Abtriebswelle von der Drehachse des Ritzels sowie von dem Abstand der Mitnehmerrolle zur Drehachse des Ritzels bestimmt. Durch Änderung einzelner Werte wird das Übersetzungsverhältnis und somit der Drehmomentenverlauf des Drehtürantriebes über den Öffnungswinkel des Türblattes verändert. Hierdurch ergeben sich unterschiedliche Übersetzungsverhältnisse und somit Anpassungsmöglichkeiten an gewünschte Drehmomentencharakteristika über den Öffnungswinkel, bei der lediglich die genannten Komponenten und Werte verändert werden müssen.

[0020] Gemäß einer Ausführungsform der Erfindung ist der Drehtürantrieb mit einem zwischen einem Anlenkpunkt des drehbeweglichen Türblattes der zugeordneten Tür und einem weiteren Anlenkpunkt außerhalb des Türblattes über den Drehbereich sich ändernden wirksamen Hebelarm ausgebildet, der an die Abtriebswelle angreift.

[0021] Vorzugsweise wird der wirksame Hebelarm durch einen Gleitschienenarm gebildet.

[0022] Weitere Vorteile und Merkmale ergeben sich aus der folgenden Beschreibung einer Ausführungsform der Erfindung im Zusammenhang mit den Zeichnungen. Es zeigen:

Figur 1: Eine schematische Schnittan-

sicht des Getriebes des Dreh-

türantriebes.

Figur 2 und Figur 3: Eine Ansicht gemäß der Linie

A-A von Figur 1 in um 180°

gedrehten Stellungen.

[0023] In Figur 1 ist in einer schematischen Ansicht eine Vorrichtung 10 mit Getriebe 12 dargestellt, das in einem Gehäuse 14 des Drehtürantriebes angeordnet ist. Bei dem Ausführungsbeispiel ist auf die Wiedergabe der bekannten Teile des Drehflügelantriebes verzichtet worden.

[0024] Das Getriebe 12 wirkt dabei mit einer Zahn-

40

45

50

10

15

20

35

40

45

50

55

stange 16 zusammen. In die Zahnstange 16 greift ein Ritzel 18 ein, das fest mit einem eine Mitnehmerrolle 20 tragenden Mitnehmer 22 verbunden ist, wobei die Drehachse 24 des Ritzels 18 und die Drehachse des Mitnehmers 22 identisch sind.

[0025] Die Drehachse 26 der Mitnehmerrolle 20 ist zur Drehachse 24 in einem Abstand E angeordnet, so daß die Drehachse 26 den Wälzkreis 28 des Ritzels 18 schneidet. Die Drehachsen 24 und 26 sind zueinander parallel ausgerichtet.

[0026] Die Mitnehmerrolle 20 ist zwischen einer Führung 30 angeordnet, die fest mit einer aus dem Gehäuse 14 herausragenden Abtriebswelle 32 verbunden ist. Die Drehachse 34 der Abtriebswelle 32 und die Drehachse der Führung 30 sind daher identisch.

[0027] Die Drehachse 34 der Abtriebswelle 32 und der Führung 30 ist zur Drehachse 24 des Ritzels 18 und des Mitnehmers 22 in einem Abstand F angeordnet.

[0028] An die Abtriebswelle 32 wird ein nicht dargestellter Gleitschienenarm angreifen.

[0029] Mit dem Öffnen eines Türblattes, an dem beispielsweise der Drehtürantrieb angebracht ist, wird die Abtriebswelle 32 gedreht. Über eine Führung, die aus zwei Führungsschienen 36 und 38 besteht, siehe Figuren 2 und 3, wird die Mitnehmerrolle 20 bewegt, d. h. die durch das Öffnen der Tür auf die Abtriebswelle 32 und die Führung 30 übertragene Kraft wird über die Führung 30 auf die Mitnehmerrolle 20 und somit auf den Mitnehmer 22 und das Ritzel 18 übertragen. Die Mitnehmerrolle 20 wird dabei relativ zur Führung 30 translatorisch geführt. Das Ritzel 18 bewegt die Zahnstange 16 beim Öffnen und Schließen durch den Antriebsmotor über eine Steuerung aufgrund eines Sensorsignales.

[0030] Wie den Figuren 2 und 3 zu entnehmen ist, verändert sich mit dem Drehen der Abtriebswelle 32 und somit des Mitnehmers 22 mit dem Ritzel 18 die relative Lage der Drehachse 26 der Mitnehmerrolle 20 zur Drehachse 34 der Abtriebswelle 32. Die Figuren 2 und 3 zeigen um 180° gedrehte Positionen des Getriebes 12 entsprechend der Teilschnittansicht gemäß der Linie A-A. Der maximale Abstand der Drehachse 26 der Mitnehmerrolle 20 von der Drehachse 34 der Abtriebswelle 32 ist in Figur 2 und der minimale Abstand der Drehachse 26 der Mitnehmerrolle 20 von der Drehachse 34 der Abtriebswelle 32 ist in Figur 3 dargestellt. [0031] Durch den sich ändernden Hebelarm zwi-

[0031] Durch den sich ändernden Hebelarm zwischen den beiden Drehachsen 26 und 34 verändert sich der über den Öffnungswinkel ergebende Kraftverlauf. Das Übersetzungsverhältnis des Getriebes 12 wird durch den Durchmesser des Wälzkreises 28, des Ritzels 18, den Abstand F der Drehachse 34, der Abtriebswelle 32 von der Drehachse 24 des Ritzels 18, sowie von dem Abstand E der Drehachse 26 der Mitnehmerrolle 20 zur Drehachse 24 des Ritzels 18 bestimmt.

[0032] Durch Variation dieser Größen wird der Kraftverlauf über den Öffnungswinkel des Türblattes beeinflußt und kann dadurch auf einfache Weise festge-

legt werden.

[0033] Über den Öffnungswinkel eines Türblattes einer Tür kann somit auf einfache Weise Einfluß auf den sich durch den Gleitschienenarm ändernden wirksamen Hebelarm und somit auf den über den Öffnungswinkel des Türblattes sich ändernden Kraft- und Drehmomentenverlauf genommen werden.

[0034] Dieses ist sowohl bei elektromechanischen als auch bei elektrohydraulischen Drehtürantrieben möglich, darüber hinaus auch bei solchen Drehtürantrieben, die als Öffnungshilfe anzusehen sind, das heißt beim Öffnen des angeschlossenen Türflügels wird gleichzeitig eine Feder gespannt, die die spätere Schließung der Tür ohne den Antrieb bewerkstelligt.

Bezugszeichen

[0035]

- 10 Vorrichtung
- 12 Getriebe
- 14 Gehäuse
- 16 Zahnstange
- 18 Ritzel
- 20 Mitnehmerrolle
 - 22 Mitnehmer
 - 24 Drehachse
 - 26 Drehachse
 - 28 Wälzkreis
- 30 Führung
 - 32 Abtriebswelle
 - 34 Drehachse36 Führungsschiene links
 - 38 Führungsschiene rechts
- E Abstand (Drehachse 24 zur Drehachse 26)
- F Abstand (Drehachse 34 zur Drehachse 24)

Patentansprüche

- Drehtürantrieb mit einer elektromechanischen oder elektrohydraulischen Antriebsvorrichtung, die das für das Öffnen und Schließen eines angeschlossenen Drehflügels nötige Öffnungs- bzw. und/oder Schließmoment liefert, wobei eine elektronische Regelung /Steuerung mit mindestens einem Speicher und mindestens einem Mikroprozessor aufgrund von Sensorsignalen das Öffnen bzw. das Schließen über eine Abtriebswelle bewirkt, die mit einem Gestänge oder einem Betätigungsarm erzeugt wird, dadurch gekennzeichnet, daß zwischen der Abtriebswelle (32) des Drehtürantriebes und dem Gestänge bzw. dem Betätigungsarm eine Vorrichtung (10) vorhanden ist, die eine Veränderung des Öffnungs- und/oder des Schließmomentes über den Drehwinkel des angeschlossenen Drehflügels bewirkt.
 - 2. Drehtürantrieb mit einer elektromechanischen oder

10

20

25

30

35

40

45

elektrohydraulischen Antriebsvorrichtung, die das für das Öffnen und Schließen eines angeschlossenen Drehflügels nötige Öffnungsmoment liefert, wobei eine elektronische Regelungssteuerung mit mindestens einem Speicher und mindestens einem Mikroprozessor aufgrund von Sensorsignalen das Öffnungsmoment über eine Abtriebswelle liefert und mit der Antriebsvorrichtung direkt oder indirekt ein Getriebe verbunden ist, das mit einem Achsaustritt eines Türschließers verbunden ist und über die Abtriebsachse des Türschließers mit einem Gestänge oder einem Betätigungsarm in Verbindung steht, dadurch gekennzeichnet, daß zwischen der Abtriebsachse des Türschließers und dem Gestänge bzw. dem Betätigungsarm eine Vorrichtung (10) vorhanden ist, die eine Veränderung des Öffnungs- und/oder des Schließmomentes über den Drehwinkel des Drehflügels bewirkt.

- 3. Drehtürantrieb nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Vorrichtung (10) ein Getriebe (12) ist, das unterschiedliche Übersetzungsverhältnisse aufweist.
- 4. Drehtürantrieb nach Anspruch 1 und 3, dadurch gekennzeichnet, daß das sich über den Öffnungswinkel der Tür in seinem Übersetzungsverhältnis ändernde Getriebe (12) eine mit der Abtriebswelle (32) verbundene Führung (30) und eine relativ zu der Führung (30) und in dieser translatorisch bewegbare Mitnehmerrolle (20) umfaßt, die mit einem mit einer mit der elektromechanisch oder elektrohydraulischen Vorrichtung in Verbindung stehenden Zahnstange (16) eingreifendes Ritzel verbunden ist, wobei die Drehachse (34) der Abtriebswelle (32) zur Drehachse (24) des Ritzels (18) und die Drehachse (26) der Mitnehmerrolle (20) zu der Drehachse (24) des Ritzels (18) in vorbestimmten Abständen (E und F) voneinander angeordnet sind, derart, daß beim Verdrehen des Ritzels (18), in Folge des sich dabei ändernden Achsabstandes zwischen Abtriebswelle (32) und Mitnehmerrolle (20), sich das Übersetzungsverhältnis der Abtriebswelle (32) ändert.
- 5. Drehtürantrieb nach Anspruch 2, dadurch gekennzeichnet, daß das sich über den Öffnungswinkel der Tür in seinem Übersetzungsverhältnis ändernde Getriebe (12) eine mit der Abtriebswelle (32) verbundene Führung (30) und eine relativ zu der Führung (30) und in dieser translatorisch bewegbare Mitnehmerrolle (20) umfaßt, die mit eine mit der Federspannung des Türschließers in Verbindung stehenden Zahnstange (16) eingreifendes Ritzel (18) verbunden ist, wobei die Drehachse (34) der Abtriebswelle (32) zur Drehachse (24) des Ritzels(18) und die Drehachse (26) der Mitnehmerrolle (20) zu der Drehachse (24) des Ritzels (18) in

vorbestimmten Abständen (E und F) voneinander angeordnet sind, derart, daß beim Verdrehen des Ritzels (18), in Folge des sich dabei ändernden Achsabstandes zwischen Abtriebswelle (32) und Mitnehmerrolle (20), sich das Übersetzungsverhältnis der Abtriebswelle (32) ändert.

- 6. Drehtürantrieb nach den Ansprüchen 4 und 5, dadurch gekennzeichnet, daß die Drehachse (26) der Mitnehmerrolle (20) den Wälzkreis (28) des Ritzels (18) schneidet und parallel zur Drehachse (24) des Ritzels (18) ausgerichtet ist.
- 7. Drehtürantrieb nach den Ansprüchen 3 bis 5, dadurch gekennzeichnet, daß das Übersetzungsverhältnis des Getriebes (12) durch des Durchmesser des Wälzkreises (28), des Ritzels (18), den Abstand F der Drehachse (34), der Abtriebswelle (32) von der Drehachse (24) des Ritzels (18) sowie von dem Abstand E der Drehachse (24) der Mitnehmerrolle (20) zur Drehachse (24) des Ritzels (18) bestimmt ist.
- 8. Drehtürantrieb nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Ausbildung des Drehtürantriebes mit einem zwischen einem Anlenkpunkt des drehbeweglichen Drehflügels der zugeordneten Tür und einem weiteren Anlenkpunkt außerhalb des Türblattes über den Drehbereich sich ändernden wirksamen Hebelarm, der an die Abtriebswelle (32) angreift.
- **9.** Drehtürantrieb nach Anspruch 8, dadurch gekennzeichnet, daß der wirksame Hebelarm durch ein Gleitschienengestänge gebildet wird.
- **10.** Drehtürantrieb nach Anspruch 8, dadurch gekennzeichnet, daß der wirksame Hebelarm durch ein Kniehebelgestänge gebildet wird.

5

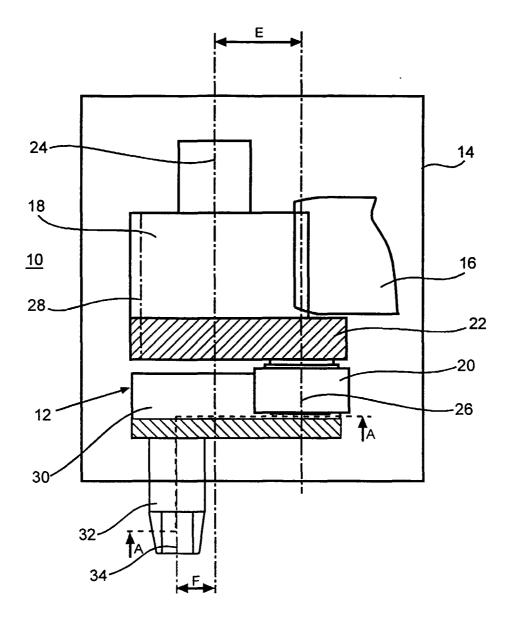
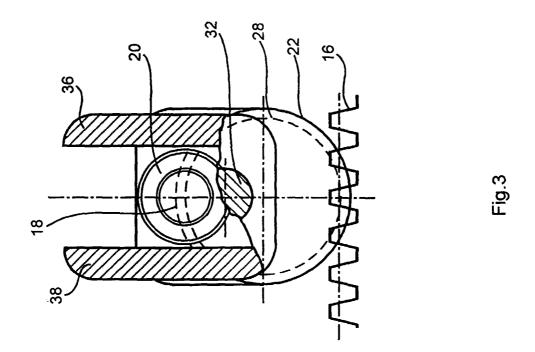
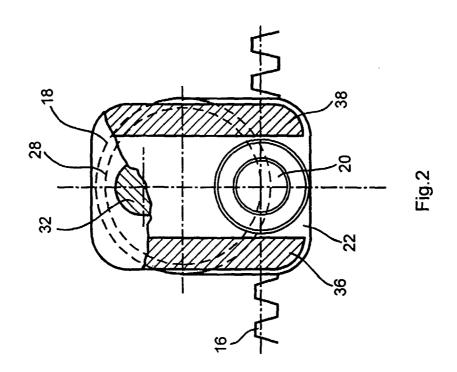




Fig.1

