

(12)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) **EP 1 025 241 B1**

EUROPEAN PATENT	SPECIFICATION
-----------------	----------------------

(45) Date of publication and mention of the grant of the patent: 30.03.2005 Bulletin 2005/13

(21) Application number: 98956181.6

(22) Date of filing: 23.10.1998

- (51) Int Cl.⁷: **C12N 15/57**, C12N 9/54, C11D 3/386, A23K 1/165
- (86) International application number: PCT/US1998/022572
- (87) International publication number: WO 1999/020770 (29.04.1999 Gazette 1999/17)

(54) MULTIPLY-SUBSTITUTED PROTEASE VARIANTS

MEHRFACH SUBSTITUIERTE PROTEASEVARIANTEN

VARIANTES DE PROTEASES A SUBSTITUTIONS MULTIPLES

(84) Designated Contracting States: • PAECH, Christian AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Palo Alto, CA 94303 (US) MC NL PT SE • NADHERNY, Joanne **Designated Extension States:** San Francisco, CA 94118 (US) RO NAKI, Donald, P. San Francisco, CA 94118 (US) (30) Priority: 23.10.1997 US 956323 • POULOSE, Ayrookaran, J. 23.10.1997 US 956324 Belmont, CA 94002 (US) 23.10.1997 US 956564 • COLLIER, Katherine, D. Redwood City, CA 94062 (US) (43) Date of publication of application: • CALDWELL, Robert, M. 09.08.2000 Bulletin 2000/32 Redwood City, CA 94062 (US) • BAECK, André, C. (73) Proprietors: B-2820 Bonheiden (BE) GENENCOR INTERNATIONAL, INC. Palo Alto, California 94304 (US) (74) Representative: Kiddle, Simon John et al THE PROCTER & GAMBLE COMPANY Mewburn Ellis LLP Cincinnati, Ohio 45202 (US) York House, 23 Kingsway (72) Inventors: London WC2B 6HP (GB) SCHELLENBERGER, Volker Palo Alto, CA 94303 (US) (56) References cited: • KELLIS, James, T., Jr. WO-A-89/06279 WO-A-91/00345 WO-A-95/10615 Portola Valley, CA 94028 (US) WO-A-95/30011 US-A- 5 316 935 US-A- 5 543 302

EP 1 025 241 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

Related Applications

⁵ **[0001]** The present application is a continuation-in-part application of United States Patent Application 08/956,323, filed October 23, 1998, United States Patent Application 08/956,564, filed October 23. 1998, and United States Patent Application 08/956,324 filed October 23, 1998. all of which are hereby incorporated herein in their entirety.

Background of the Invention

10

[0002] Serine proteases are a subgroup of carbonyl hydrolases. They compnse a diverse class of enzymes having a wide range of specificities and biological functions. Stroud. R. <u>Sci. Amer.</u>, **131**:74-88. Despite their functional diversity, the catalytic machinery of serine proteases has been approached by at least two genetically distinct families of enzymes: 1) the subtilisins and 2) the mammalian chymotrypsin-related and homologous bacterial serine proteases (e.

- 15 g., trypsin and S. gresius trypsin). These two families of serine proteases show remarkably similar mechanisms of catalysis. Kraut, J. (1977), <u>Annu. Rev. Biochem.</u>, **46**:331-358. Furthermore, although the primary structure is unrelated, the tertiary structure of these two enzyme families bring together a conserved catalytic triad of amino acids consisting of serine. histidine and aspartate.
- [0003] Subtilisins are serine proteases (approx. MW 27,500) which are secreted in large amounts from a wide variety of *Bacillus* species and other microorganisms. The protein sequence of subtilisin has been determined from at least nine different species of *Bacillus*. Markland, F.S.. et al. (1983), <u>Hoppe-Seyler's Z. Physiol. Chem.</u>, **364**:1537-1540. The three-dimensional crystallographic structure of subtilisins from *Bacillus amyloliquefaciens*, *Bacillus licheniforimis* and several natural variants of *B. lentus* have been reported. These studies indicate that although subtilisin is genetically unrelated to the mammalian serine proteases, it has a similar active site structure. The x-ray crystal structures of
- ²⁵ subtilisin containing covalently bound peptide inhibitors (Robertus, J.D., et al. (1972), <u>Biochemistry</u>, **11**:2439-2449) or product complexes (Robertus, J.D., et al. (1976), <u>J. Biol. Chem.</u>, **251**:1097-1103) have also provided information regarding the active site and putative substrate binding cleft of subtilisin. In addition, a large number of kinetic and chemical <u>Biol. Chem.</u>, **244**:5333-5338) and extensive site-specific mutagenesis has been carried out (Wells and Estell (1988) TIBS 13:291-297)
- 30

Summary of the Invention

[0004] It is an object herein to provide protease variants containing an amino acid substitution at a residue position corresponding to position 103 and an amino acid substitution at a residue position corresponding to position 245 of *Bacillus amyloliquefaciens* subtilisin and one or more amino acid substitutions at residue positions selected from the group consisting of residue positions corresponding to positions 1, 3, 4, 8, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 27, 33, 37, 38, 42, 43, 48, 55, 57, 58, 61, 62, 68, 72, 75, 76, 77, 78, 79, 86, 87, 89, 97, 98, 99, 101, 102, 104, 106, 107, 109, 111, 114, 116, 117, 119, 121, 123, 126, 128, 130, 131, 133, 134, 137, 140, 141, 142, 146, 147, 158, 159, 160, 166, 167, 170, 173, 174, 177, 181, 182, 183, 184, 185, 188, 192, 194, 198, 203, 204, 205, 206, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 222, 224, 227, 228, 230, 232, 237, 238, 240, 242, 243, 244, 246, 247, 248, 249,

- ⁴⁵ 204, 206, 210, 216, 217, 218, 222, 260, 265, or 274 of *Bacillus amyloliquefaciens* subtilisin.
 [0005] While any combination of the above listed amino acid substitutions may be employed, the preferred protease variant enzymes useful for the present invention comprise the substitution of amino acid residues in the following combinations of positions. All of the residue positions correspond to positions of *Bacillus amyloliquefaciens* subtilisin:
- (1) a protease variant including substitutions of the amino acid residues at position 236;
 (2) a protease variant including substitutions of the amino acid residues at positions 103 and 245 and at one or more of the following positions 1, 9, 12, 61, 62, 68, 76, 97, 98, 101, 102, 104, 109, 130, 131, 159, 170, 183, 185, 205, 209, 210, 211, 212, 213, 215, 217, 222, 230, 232. 248, 252, 257, 260, 261, 270 and 275; or
 (2) a protease variant including substitutions of the amino acid residues at positions 103 and 245 and at one or more of the following positions 1, 9, 12, 61, 62, 68, 76, 97, 98, 101, 102, 104, 109, 130, 131, 159, 170, 183, 185, 205, 209, 210, 211, 212, 213, 215, 217, 222, 230, 232. 248, 252, 257, 260, 261, 270 and 275; or
- (3) a protease variant including substitutions of the amino acid residues at positions 103, 236 and 245 and at one
 or more of the following positions 1, 9, 12, 61, 62, 68, 76, 97, 98, 101, 102, 104, 109, 130, 131, 159, 183, 185, 205, 209, 210, 211, 212, 213, 215, 217, 230, 232, 243, 248, 252, 257, 260, 270 and 275.

[0006] More preferred protease variants are substitution sets selected from the group consisting of residue positions

corresponding to positions in Table 1 of *Bacillus amyloliquefaciens* subtilisin:

5				.							·									·····	
10																					
	Table 1																				
15	Та																				
20																					
25																					
30									218	248	·ar						174		237		
		222	104	104	107	104	246	104	183	104	104	261	160	216	104	104	104	104	104	104	183
35		104	103	103	104	103	104	103	104	103	103	104	104	104	103	103	103	103	103	103	104
40		103	98	78	103	76	103,	27	103	76	76	103	103	103	76	76	27	76	76	76	103
		76	76	76	76	4	76	76	76	16		76	76	76	17	37	76	38	38	в	76

EP 1 025 241 B1

							,				·										
5																					
10		 																			
15			 																		
20													 								
25																				 	
20									185	274			240						177		
			 								3									<u> </u>	
30	104	104	104	184	252	259	251	104	104	237	160	228	104	254	204	204	104	159	104	104	270
25	103	103	103	104	104	104	104	103	103	104	104	104	103	104	104	104	103	104	103	103	104
35	76	76	76	103	103	103	103	86	76 .	103	103	103	76	103	103	103	76	103	76	76	103
40	19	13	19	76	76	76	76	76	72	76	76	76	55	76	76	76	43	76	10	58	76

EP 1 025 241 B1

•

							·								·						
5																					
10														 					 		
15	 																				
20																					
25						251		 	 									183			
					 	236	237			204	3		271	261	 		242	116			
30	185	104	262	104	104	166	104	130	109	104	181	104	212	252	242	271	104	104	258	271	104
}	104	103	104	103	103	104	103	104	104	103	104	103	104	104	104	104	103	103	104	104	103
35	103	76	103	78	76	103	76	103	103	66	103	76	103	103	103	103	76	76	103	103	76
40	76	27	76	76	24	76	17	76	76	76	76	12	76	76	76	76	12	43	76	76	61

EP 1 025 241 B1

5																					
																-					
10																					
15																					
,																					
20																					
				265																251	252
25	263			249	271															217	217
	182	272	246	206	238		198	182	137	248	,206		258	271	261	206	206			159	159
30	104	182	109	104	137		182	104	119	137	104	206	212	104	206	104	104	158	206	104	104
35	103	104	104	103	104	228	104	103	104	104	103	104	104	103	104	103	103	104	104	103	103
	76	103	103	87	103	104	103	76	103	103	76	103	103	76	103	76	77	103	103	76	76
40	38	76	76	76	76	103	76	21	76	76	13	76	76	58	76	4	76	76	76	4	4

5																					
10																					
15																					
20																					
	251												 	 					271	271	
25	185	244					159	236		159					271		271	271	212	243	
	133	206	188	158	185	251	111	159	159	104	1.159	159	238	224	268		212	245	141	236	245
30	104	159	104	104	104	206	104	104	104	103	104	146	159	159	212	104	104	212	134	212	109
	103	104	103	103	103	104	103	103	103	76	103	104	104	104	104	103	103	104	104	104	104
35	17	103	76	76	27	103	76	76	76	62	92	103	103	103	103	68	87	103	103	103	103
40	76	76	4	4	76	76	48	68	42	12	42	76	76	76	76	76	76	76	76	76	76

5																					
10																					
15											245					-					
20						271					236		253	236				249			
				271	245	236				236	159	236	236	184	243	245		236	249		
25				236	236	217			236	159	121	159	209	159	236	236	159	159	236		249
	210	104	236	159	159	159	104		159	104	.,114	104	159	117	159	159	142	123	159	245	222
30	109	103	104	104	104	104	103	104	104	103	103	103	104	104	104	104	104	104	104	222	104
	104	76	103	103	103	103	76	103	103	76	76	76	103	103	103	103	103	103	103	104	103
35	103	. 62	- 92	76	76	76	68	76	76	75	76	68	76	76	76	76	76	76	76	103	76
40	76	20	68	68	68	68	17	68	68	68	68	12	68	68	68	68	68	68	68	76	12

5																					
10																					
15											255		245		245		245			245	
20									 	261	245	247	236	245	236	245	236			236	252
			263							245	236	245	204	236	218	236	203			232	245
25			237		271			248		236	159	236	174	204	159	232	194	245		159	236
	222	263	222	222	222	222	222	222	249	159	1.141	159	159	159	133	159	159	222	245	104	232
30	173	222	104	109	109	104	137	109	222	104	104	104	104	104	104	104	104	104	232	103	159
	104	104	103	104	104	103	104	104	104	103	103	103	103	103	103	103	103	103	104	76	104
35	103	103	76	103	103	76	103	103	103	76	76	76	76	76	76	76	76	76	103	68	103
40	76	76	21	76	76	61	76	76	76	68	68	68	68	68	68	68	68	12	9/	24	68

.....

5																					
10																					
15	260												275						269		245
10	245						252		252	252		252	252	262		262			262	251	243
20	236						248		245	245	245	245	245	248	245	245	261		245	245	222
	232	245		245			245	245	236	236	236	236	236	245	222	227	245		222	222	185
25	213	244	245	222			236	236	232	232	232	232	232	222	215	222	222	245	218	130	170
	159	222	210	130	104	184	232	232	159	159	,,159	159	159	130	130	130	130	222	130	104	130
30	104	104	222	104	103	104	159	159	140	104	104	104	104	104	104	104	104	130	104	103	104
25	103	103	103	103	76	103	104	104	104	103	103	103	103	103	103	103	103	104	103	76	103
35	76	76	76	76	68	76	103	103	103	68	68	68	87	76	76	76	76	103	76	57	76
40	68	12	12	12	22	68	68	68	68	43	43	43	. 68	12	12	12	12	76	12	12	12

5																					
10																					
15																					
									245		245							245	257		275
20	268	245	257	245	248	245	245	245	236	245	236	245	245	245	245	248	245	236	245		257
	245	210	245	236	245	236	236	237	232	236	232	236	236	236	236	245	236	232	236	257	245
25	222	222	236	232	236	232	232	236	159	232	206	232	232	232	232	236	232	210	232	245	236
20	130	130	232	159	232	159	203	232	104	183	j :74	188	230	159	215	232	159	159	159	236	232
30	104	104	159	116	159	104	159	159	103	159	159	159	159	104	159	159	104	104	104	232	159
35	103	103	104	104	104	103	104	104	79	104	104	104	104	103	104	104	103	103	103	104	104
	76	76	103	103	103	68	103	103	76	103	103	103	103	86	103	103	76	76	76	103	103
40	12	12	68	68	68	10	68	68	68	68	68	68	68	68	68	68	68	68	68	76	68

5																					
10																				 	
15						245			259	260				245			251	272	245		
		257		245	245	236	245	245	245	245	261		245	236			248	245	236	256	245
20		245	257	236	236	232	236	236	236	236	245		236	232		245	245	236	232	245	236
		236	245	232	232	214	232	232	232	232	236	245	232	159		236	236	232	206	236	232
25		232	236	209	211	159	215	159	159	159	232	242	210	104	245	232	232	159	183	232	206
	275	224	232	159	159	104	159	104	104	104	1 69	236	159	103	236	192	159	104	159	159	159
30	257	159	159	104	104	103	104	103	103	103	104	232	104	76	232	159	147	103	104	104	104
35	104	104	104	103	103	76	103	76;	76	76	103	104	103	68	104	104	104	76	103	103	103
	103	103	103	76	76	68	76	68	68	87	76	103	76	48	103	103	103	68	76	76	76
40	9/	68	76	68	68	12	68	12	20	68	68	76	68	12	76	76	76	12	68	68	68

					Ī														
	245				252									252					
	236	252	252	252	248		252	252	252	252	261	252	252	248	252	252		252	252
245	232	248	248	248	245		248	248	248	248	252	248	248	245	248	248	252	248	248
236	185	245	245	245	236	252	245	245	245	245	248	245	245	236	245	245	248	245	245
232	170	236	236	236	232	248	236	236	236	236	245	236	236	232	236	236	245	236	236
159	159	232	232	232	184	245	232	232	232	232	236	232	232	210	232	232	236	232	232
104	116	159	159	212	159	236	209	159	159	3 09	232	185	210	185	212	213	232	215	216
103	104	104	104	159	66	232	159	109	104	159	159	159	159	159	159	159	213	159	159
.92	103	103	103	104	104	159	104	104	103	104	104	104	104	104	104	104	104	104	104
68	76	68	68	103	103	104	103	103	68	103	103	103	103	103	103	103	103	103	103
27	68	61	43	68	68	103	68	68	20	68	68	68	68	68	68	68	68	68	68

5																					
10																					260
10											269	260									245
15	252	252	252		252	255	256	260	257	258	252	252	261	261	252				252		236
	248	251	248	252	248	252	252	252	252	252	248	248	252	252	248			252	248	252	232
20	245	248	245	248	245	248	248	248	248	248	245	245	248	248	245	252	252	248	245	248	218
	236	245	236	245	236	245	245	245	245	245	236	236	245	245	236	248	248	245	236	245	213
25	232	236	232	236	232	236	236	236	236	236	232	232	236	236	232	245	245	236	232	236	159
	173	232	206	232	159	232	232	232	232	232	1 :59	159	232	232	159	236	236	232	159	232	104
30	159	159	159	159	104	159	159	159	159	159	104	116	159	159	104	232	232	159	104	159	103
35	104	104	104	104	103	104	104	104	104	104	103	104	104	104	103	104	159	104	103	104	101
	103	103	103	103	68	103	103	103	103	103	68	103	103	103	76	103	104	103	68	103	76
40	68	68	68	68	55	68	68	68	68	68	8	68	68	68	68	68	103	68	18	68	68

		260				252														_
	252	245	252		252	248				252	252	252								
252	248	236	248		248	245	252		252	248	248 .	248								
248	245	232	245		245	236	248	252	248	245	245	245	252	252	252	252	252	252	252	
245	236	213	236	245	236	232	245	248	245	236	236	236	248	248	248	248	248	248	248	
236	232	210	232	236	232	159	236	245	236	232	232	232	245	245	245	245	245	245	245	
232	159	159	159	232	159	137	232	236	232	160	104	167	236	236	236	236	236	236	236	
228	104	104	104	210	130	133	159	232	218	4 :59	103	159	232	232	232	232	232	232	232	
159	103	103	103	205	104	104	133	159	159	104	76	104	159	159	159	159	159	159	159	
104	76	89	76	159	103	103	104	104	104	103	68	103	104	104	104	104	104	106	109	
103	68	76	68	104	68	68	103	103	103	68	61	68	103	103	103	103	103	104	104	
68	33	68	61	103	61	61	61	68	68	61	е	61	97	86	66	101	102	103	103	

5											-										
10					252									271	260	260	260				
15					248	252	252	252					260	260	245	245	245	260			
	252	252	252	252	245	248	248	248	252	252	252	252	245	245	236	236	236	245	260	260	
20	248	248	248	248	236	245	245	245	248	248	248	248	236	236	232	232	232	236	245	245	245
	245	245	245	245	232	236	236	236	245	245	245	245	232	232	213	213	213	232	236	236	236
25	236	236	236	236	213	232	232	232	236	236	236	236	213	213	209	210	205	210	232	232	232
	232	232	232	232	159	213	217	206	232	232	\$32	232	159	159	159	159	159	159	213	213	209
30	159	184	166	217	104	159	206	159	159	159	159	159	104	104	104	104	104	104	159	159	159
35	104	159	159	159	103	104	159	104	130	131	104	104	103	103	103	103	103	103	104	104	104
	103	104	104	104	62	103	104	103	104	104	103	103	76	76	76	76	76	76	103	103	103
40	62	103	103	103	20	62	103	62	103	103	27	38	38	68	68	68	68	68	68	76	68

5																					
0													261					260			
5													260					245	260		260
									257	257	257		245	261		252		236	245		245
0	245	245	245	245	245		260		245	245	245		236	257	260	248	257	232	236		236
	236	236	236	236	236		245		236	236	236	257	232	245	245	245	245	213	232	257	232
5	232	232	232	232	232	245	236	245	232	232	232	245	213	236	236	236	236	210	213	245	213
	210	230	126	205	210	236	232	236	174	194	209	236	159	232	232	232	232	159	209	236	210
0	159	159	159	159	159	230	159	232	159	159	159	232	104	159	213	210	209	104	159	232	205
5	104	104	104	104	104	159	104	159	104	104	104	159,	103	104	159	159	159	103	104	209	159
	103	103	103	103	103	104	103	104	103	103	103	104	76	103	104	104	104	76	103	104	104
40	68	68	68	68	68	103	68	103	68	68	68	103	68	68	103	103	103	68	12	103	103

EP 1 025 241 B1

5																					
10					260										252	252	252				
15		245	257		245							252	261	252	248	248	248	252			
	260	236	245	257	236	245					245	248	257	248	245	245	245	248	252	252	252
20	245	232	236	245	232	236	245	245	245		236	245	245	245	236	236	236	245	248	248	248
	236	210	232	236	210	232	236	236	236	245	232	236	236	236	232	232	232	236	245	245	245
25	232	209	210	232	209	210	232	232	232	236	209	232	232	232	212	212	212	232	236	236	244
	209	205	209	209	205	209	210	210	159	230	1,59	159	159	212	159	159	159	213	232	232	236
30	205	159	205	205	159	205	209	205	128	159	104	104	104	159	104	104	104	159	159	184	232
35	159	104	159.	159	104	159	159	159	104	104	103	103	103	104	103	103	103	104	131	159	159
	104	103	104	104	103	104	104	104	103	103	68	68	68	103	102	102	102	103	104	104	104
40	103	68	103	103	68	103	103	103	68	48	48	48	48	102	12	101	98	102	103	103	103

5																					
10												252									
10	256	252						252		252	252	248			252			252	252	252	
15	252	248	252	252	252	252	252	248	252	248	248	245			248	252	252	248	248	248	260
	248	245	248	248	248	248	248	245	248	245	245	236			245	248	248	245	245	245	252
20	245	236	245	245	245	245	245	236	236	236	236	232			236	245	245	236	236	236	248
	236	232	236	236	236	236	236	232	232	232	232	213	252		232	236	236	232	232	232	245
25	232	213	232	232	232	232	232	212	212	213	213	212	248		213	232	232	213	213	213	236
30	213	159	185	206	213	159	159	159	159	159	212	159	245	245	159	159	159	159	159	159	232
	159	104	159	159	159	104	104	104	104	109	159	104	232	230	130	130	128	104	128	128	159
35	104	103	104	104	104	103	103	103	103	104	104	103	159	159	104	104	104	103	104	104	104
	103	62	103	103	103	102	102	102	102	103	103	101	104	104	103	103	103	101	103	103	103
40	62	12	101	101	101	86	101	86	98	62	62	62	103	103	62	101	101	62	62	62	101

.

Г		Ţ	Ţ	1	_	Ţ	Ţ	Ţ	1	T	Ţ
											271
											252
									252		248
252	252	252	252	252	252	252		252	248	252	245
248	248	248	248	248	248	248		248	245	248	236
245	245	245	245	245	245	245		245	236	245	232
236	236	236	236	236	236	236	245	236	232	236	213
232	232	232	232	232	232	232	236	232	194	232	206
159	159	159	212	209	210	205	230	194	159	230	185
131	104	104	159	159	159	159	159	159	104	159	159
104	103	103	104	104	104	104	104	104	103	104	104
103	101	101	103	103	103	103	103	103	101	103	103
101	98	66	101	101	101	101	101	101	76	101	62

[0007] Most preferred protease variants are those shown in Table 3.

[0008] It is a further object to provide DNA sequences encoding such protease variants, as well as expression vectors containing such variant DNA sequences.

[0009] Still further, another object of the invention is to provide host cells transformed with such vectors, as well as host cells which are capable of expressing such DNA to produce protease variants either intracellularly or extracellularly.

[0010] There is further provided a cleaning composition comprising a protease variant of the present invention.

[0011] Additionally, there is provided an animal feed comprising a protease variant of the present invention.

[0012] Also provided is a composition for the treatment of a textile comprising a protease variant of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013]

Figs. 1 A-C depict the DNA and amino acid sequence for *Bacillus amyloliquefaciens* subtilisin and a partial restriction map of this gene.

Fig. 2 depicts the conserved amino acid residues among subtilisins from *Bacillus amyloliquefaciens* (BPN)' and *Bacillus lentus* (wild-type).

Figs. 3A and 3B depict the amino acid sequence of four subtilisins. The top line represents the amino acid sequence of subtilisin from *Bacillus amyloliquefaciens* subtilisin (also sometimes referred to as subtilisin BPN'). The second line depicts the amino acid sequence of subtilisin from *Bacillus subtilis*. The third line depicts the amino acid sequence of subtilisin from *B. licheniformis*. The fourth line depicts the amino acid sequence of subtilisin from *Bacillus lentus* (also referred to as subtilisin 309 in PCT WO89/06276). The symbol * denotes the absence of specific amino acid residues as compared to subtilisin BPN'.

15

20

5

Detailed Description of the Invention

[0014] Proteases are carbonyl hydrolases which generally act to cleave peptide bonds of proteins or peptides. As used herein, "protease" means a naturally-occurring protease or a recombinant protease. Naturally-occurring proteases include α -aminoacylpeptide hydrolase, peptidylamino acid hydrolase, acylamino hydrolase, serine carboxypeptidase, metallocarboxypeptidase, thiol proteinase, carboxylproteinase and metalioproteinase. Serine, metallo, thiol and acid proteases are included, as well as endo and exo-proteases.

[0015] The present invention includes protease enzymes which are non-naturally occurring carbonyl hydrolase variants (protease variants) having a different proteolytic activity, stability, substrate specificity, pH profile and/or perform-

- ance characteristic as compared to the precursor carbonyl hydrolase from which the amino acid sequence of the variant is derived. Specifically, such protease variants have an amino acid sequence not found in nature, which is derived by substitution of a plurality of amino acid residues of a precursor protease with different amino acids. The precursor protease may be a naturally-occurring protease or a recombinant protease.
- [0016] The protease variants useful herein encompass the substitution of any of the nineteen naturally occurring Lamino acids at the designated amino acid residue positions. Such substitutions can be made in any precursor subtilisin (procaryotic, eucaryotic, mammalian, etc.). Throughout this application reference is made to vanous amino acids by way of common one - and three-letter codes. Such codes are identified in Dale, M.W. (1989), <u>Molecular Genetics of Bacteria</u>, John Wiley & Sons, Ltd., Appendix B.

[0017] The protease variants useful herein are preferably derived from a *Bacillus* subtilisin. More preferably, the protease variants are derived from *Bacillus lentus* subtilisin and/or subtilisin 309.

- ³⁵ protease variants are derived from *Bacillus lentus* subtilisin and/or subtilisin 309. [0018] Subtilisins are bacterial or fungal proteases which generally act to cleave peptide bonds of proteins or peptides. As used herein, "subtilisin" means a naturally-occurring subtilisin or a recombinant subtilisin. A series of naturally-occurring subtilisins is known to be produced and often secreted by various microbial species. Amino acid sequences of the members of this series are not entirely homologous. However, the subtilisins in this series exhibit the same or
- 40 similar type of proteolytic activity. This class of serine proteases shares a common amino acid sequence defining a catalytic triad which distinguishes them from the chymotrypsin related class of serine proteases. The subtilisins and chymotrypsin related serine proteases both have a catalytic triad comprising aspartate, histidine and serine. In the subtilisin related proteases the relative order of these amino acids, reading from the amino to carboxy terminus, is aspartate-histidine-serine. In the chymotrypsin related proteases, the relative order, however, is histidine-aspartate-
- ⁴⁵ serine. Thus, subtilisin herein refers to a serine protease having the catalytic triad of subtilisin related proteases. Examples include but are not limited to the subtilisins identified in Fig. 3 herein. Generally and for purposes of the present invention, numbering of the amino acids in proteases corresponds to the numbers assigned to the mature *Bacillus amyloliquefaciens* subtilisin sequence presented in Fig. 1.
- [0019] "Recombinant subtilisin" or "recombinant protease" refer to a subtilisin or protease in which the DNA sequence encoding the subtilisin or protease is modified to produce a variant (or mutant) DNA sequence which encodes the substitution, deletion or insertion of one or more amino acids in the naturally-occurring amino acid sequence. Suitable methods to produce such modification, and which may be combined with those disclosed herein, include those disclosed in US Patent RE 34,606, US Patent 5,204,015 and US Patent 5,185,258, U.S. Patent 5,700,676, U.S. Patent 5,801,038, and U.S. Patent 5,763,257.
- ⁵⁵ **[0020]** "Non-human subtilisins" and the DNA encoding them may be obtained from many procaryotic and eucaryotic organisms. Suitable examples of procaryotic organisms include gram negative organisms such as *E. coli* or *Pseudomonas* and gram positive bacteria such as *Micrococcus* or *Bacillus*. Examples of eucaryotic organisms from which subtilisin and their genes may be obtained include yeast such as *Saccharomyces cerevisiae*, fungi such as *Aspergillus*

sp.

[0021] A "protease variant" has an amino acid sequence which is denved from the amino acid sequence of a "precursor protease". The precursor proteases include naturally-occurring proteases and recombinant proteases. The amino acid sequence of the protease variant is "derived" from the precursor protease amino acid sequence by the sub-

- ⁵ stitution, deletion or insertion of one or more amino acids of the precursor amino acid sequence. Such modification is of the "precursor DNA sequence" which encodes the amino acid sequence of the precursor protease rather than manipulation of the precursor protease enzyme *per se*. Suitable methods for such manipulation of the precursor DNA sequence include methods disclosed herein, as well as methods known to those skilled in the art (see, for example, EP 0 328299, WO89/06279 and the US patents and applications already referenced herein).
- [0022] Specific substitutions corresponding to position 103 in combination with one or more of the following substitutions corresponding to positions 1, 3, 4, 8, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 27, 33, 37, 38, 42, 43, 48, 55, 57, 58, 61, 62, 68, 72, 75, 76, 77, 78, 79, 86, 87, 89, 97, 98, 99, 101, 102, 104, 106, 107, 109, 111, 114, 116, 117, 119, 121, 123, 126, 128, 130, 131, 133, 134, 137, 140, 141, 142, 146, 147, 158, 159, 160, 166, 167, 170, 173, 174, 177, 181, 182, 183, 184, 185, 188, 192, 194, 198, 203, 204, 205, 206, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 222, 224, 227, 228, 230, 232, 236, 237, 238, 240, 242, 243, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255
- ¹⁵ 222, 224, 227, 228, 230, 232, 236, 237, 238, 240, 242, 243, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 265, 268, 269, 270, 271, 272, 274 and 275 of *Bacillus amyloliquefaciens* subtilisin are identified herein.

[0023] Preferred variants are those having combinations of substitutions at residue positions corresponding to positions of *Bacillus amyloliquefaciens* subtilisin in Table 1. More preferred variants are those having combinations of substitutions at residue positions corresponding to positions of *Bacillus amyloliquefaciens* subtilisin in Table 3.

[0024] Further preferred variants are those having combinations of substitutions at residue positions corresponding to positions of *Bacillus amyloliquefaciens* subtilisin in Table 2.

30		
35		
40		
45		

25

50

5																				
10																				
15					260														245	
					245		252		252	252					245	257		245	236	245
20	5			252	236		248		245	245	245	261		257	236	245	257	236	232	236
	Table			245	232		245	245	236	236	236	245		245	232	236	245	232	214	232
25				236	213		236	236	232	232	232	222	245	236	210	232	236	211	159	215
		245	249	232	159	104	232	232	159	1595	159	130	222	232	159	224	232	159	104	159
30		222	222	159	104	103	159	159	140	104	104	104	130	159	104	159	159	104	103	104
	:	104	104	104	103	76	104	104	104	103	103	103	104	104	103	104	104	103	76	103
35		103	103	103	76	68	103	103	103	68	68	76	103	103	76	103	103	76	68	76
40		76	76	68	68	22	68	68	68	43	43	12	76	68	68	68	76	68	12	68

5																				
10																				
15		259	260		245		251	272	245				252		252	252	252	252	252	252
	245	245	245	261	236		248	245	236	256	245	245	248		248	248	248	248	248	248
20	236	236	236	245	232	245	245	236	232	245	236	236	245	252	245	245	245	245	245	245
	232	232	232	236	159	236	236	232	206	236	232	232	236	248	236	236	236	236	236	236
25	159	159	159	232	104	232	232	159	183	232	206	159	232	245	232	232	232	232	232	232
	104	104	104	159	103	192	159	104	159	159	159	104	212	236	209	159	159	209	210	212
30	103	103	103	104	76	159	147	103	104	104	104	103	159	232	159	109	104	159	159	159
	76	76	87	103	68	104	104	76	103	103	103	76	104	159	104	104	103	104	104	104
35	68	68	76	76	48	103	103	68	76	76	76	68	103	104	103	103	68	103	103	103
40	12	20	68	68	12	76	76	12	68	68	68	27	68	103	68	68	20	68	68	68

	[1				1			1	Ţ	
5											
										260	
10										245	
15	252		252	252	252	255	256	260	252	236	252
	248	252	248	248	248	252	252	252	248	232	248
20	245	248	245	245	245	248	248	248	245	213	245
	236	245	236	236	236	245	245	245	236	210	236
25	232	236	232	232	232	236	236	236	232	159	232
	213	232	215	216	159	232	232	232	228	104.	218
30	159	213	159	159	104	159	159	159	159	103	159
	104	104	104	104	103	104	104	104	104	89	104
35	103	103	103	103	68	103	103	103	103	76	103
40	68	68	68	68	20	68	68	68	68	68	68

[0025] These amino acid position numbers refer to those assigned to the mature *Bacillus amyloliquefaciens* subtilisin sequence presented in Fig. 1. The invention, however, is not limited to the mutation of this particular subtilisin but extends to precursor proteases containing amino acid residues at positions which are "equivalent" to the particular identified residues in *Bacillus amyloliquefaciens* subtilisin. In a preferred embodiment of the present invention, the precursor protease is *Bacillus lentus* subtilisin and the substitutions are made at the equivalent amino acid residue positions in *B. lentus* corresponding to those listed above.

⁵⁰ **[0026]** A residue (amino acid) position of a precursor protease is equivalent to a residue of *Bacillus amyloliquefaciens* subtilisin if it is either homologous (i.e., corresponding in position in either primary or tertiary structure) or analogous to a specific residue or portion of that residue in *Bacillus amyloliquefaciens* subtilisin (i.e., having the same or similar functional capacity to combine, react, or interact chemically).

[0027] In order to establish homology to primary structure, the amino acid sequence of a precursor protease is directly compared to the *Bacillus amyloliquefaciens* subtilisin primary sequence and particularly to a set of residues known to be invariant in subtilisins for which sequence is known. For example, Fig. 2 herein shows the conserved residues as between *B. amyloliquefaciens* subtilisin and *B. lentus* subtilisin. After aligning the conserved residues, allowing for necessary insertions and deletions in order to maintain alignment (i.e., avoiding the elimination of conserved residues)

through arbitrary deletion and insertion), the residues equivalent to particular amino acids in the primary sequence of *Bacillus amyloliquefaciens* subtilisin are defined. Alignment of conserved residues preferably should conserve 100% of such residues. However, alignment of greater than 75% or as little as 50% of conserved residues is also adequate to define equivalent residues. Conservation of the catalytic triad, Asp32/His64/Ser221 should be maintained. Siezen

- ⁵ et al. (1991) Protein Eng. 4(7):719-737 shows the alignment of a large number of serine proteases. Siezen et al. refer to the grouping as subtilases or subtilisin-like serine proteases.
 [0028] For example, in Fig. 3, the amino acid sequence of subtilisin from *Bacillus amyloliquefaciens, Bacillus subtilis, Bacillus licheniformis (carlsbergensis)* and *Bacillus lentus* are aligned to provide the maximum amount of homology between amino acid sequences. A comparison of these sequences shows that there are a number of conserved res-
- ¹⁰ idues contained in each sequence. These conserved residues (as between BPN' and *B. lentus*) are identified in Fig. 2. [0029] These conserved residues, thus, may be used to define the corresponding equivalent amino acid residues of *Bacillus amyloliquefaciens* subtilisin in other subtilisins such as subtilisin from *Bacillus lentus* (PCT Publication No. WO89/06279 published July 13, 1989), the preferred protease precursor enzyme herein, or the subtilisin referred to as P892 (EP 0 328 299), which is highly homologous to the preferred *Bacillus lentus* subtilisin. The amino acid se-
- ¹⁵ quences of certain of these subtilisins are aligned in Figs. 3A and 3B with the sequence of *Bacillus amyloliquefaciens* subtilisin to produce the maximum homology of conserved residues. As can be seen, there are a number of deletions in the sequence of *Bacillus lentus* as compared to *Bacillus amyloliquefaciens* subtilisin. Thus, for example, the equivalent amino acid for Val165 in *Bacillus amyloliquefaciens* subtilisin in the other subtilisins is isoleucine for *B. lentus* and *B. licheniformis*.
- 20 [0030] "Equivalent residues" may also be defined by determining homology at the level of tertiary structure for a precursor protease whose tertiary structure has been determined by x-ray crystallography. Equivalent residues are defined as those for which the atomic coordinates of two or more of the main chain atoms of a particular amino acid residue of the precursor protease and *Bacillus amyloliquefaciens* subtilisin (N on N, CA on CA, C on C and O on O) are within 0.13nm and preferably 0.1nm after alignment. Alignment is achieved after the best model has been oriented
- ²⁵ and positioned to give the maximum overlap of atomic coordinates of non-hydrogen protein atoms of the protease in question to the *Bacillus amyloliquefaciens* subtilisin. The best model is the crystallographic model giving the lowest R factor for experimental diffraction data at the highest resolution available.

30
$$R \text{ factor} = \frac{\sum_{h} |Fo(h)| - |Fc(h)|}{\sum_{h} |Fo(h)|}$$

55

[0031] Equivalent residues which are functionally analogous to a specific residue of *Bacillus amyloliquefaciens* subtilisin are defined as those amino acids of the precursor protease which may adopt a conformation such that they either alter, modify or contribute to protein structure, substrate binding or catalysis in a manner defined and attributed to a specific residue of the *Bacillus amyloliquefaciens* subtilisin. Further, they are those residues of the precursor protease (for which a tertiary structure has been obtained by x-ray crystallography) which occupy an analogous position to the extent that, although the main chain atoms of the given residue may not satisfy the criteria of equivalence on the basis of occupying a homologous position, the atomic coordinates of at least two of the side chain atoms of the residue lie

- ⁴⁰ with 0.13nm of the corresponding side chain atoms of *Bacillus amyloliquefaciens* subtilisin. The coordinates of the three dimensional structure of *Bacillus amyloliquefaciens* subtilisin are set forth in EPO Publication No. 0 251 446 (equivalent to US Patent 5,182,204, the disclosure of which is incorporated herein by reference) and can be used as outlined above to determine equivalent residues on the level of tertiary structure.
- [0032] Some of the residues identified for substitution are conserved residues whereas others are not. In the case of residues which are not conserved, the substitution of one or more amino acids is limited to substitutions which produce a variant which has an amino acid sequence that does not correspond to one found in nature. In the case of conserved residues, such substitutions should not result in a naturally-occurring sequence. The protease variants of the present invention include the mature forms of protease variants, as well as the pro- and prepro-forms of such protease variants. The prepro-forms are the preferred construction since this facilitates the expression, secretion and maturation of the protease variants.

[0033] "Prosequence" refers to a sequence of amino acids bound to the N-terminal portion of the mature form of a protease which when removed results in the appearance of the "mature" form of the protease. Many proteolytic enzymes are found in nature as translational proenzyme products and, in the absence of post-translational processing. are expressed in this fashion. A preferred prosequence for producing protease variants is the putative prosequence of *Bacillus amyloliquefaciens* subtilisin, although other protease prosequences may be used.

[0034] A "signal sequence" or "presequence" refers to any sequence of amino acids bound to the N-terminal portion of a protease or to the N-terminal portion of a proprotease which may participate in the secretion of the mature or pro forms of the protease. This definition of signal sequence is a functional one, meant to include all those amino acid

sequences encoded by the N-terminal portion of the protease gene which participate in the effectuation of the secretion of protease under native conditions. The present invention utilizes such sequences to effect the secretion of the protease variants as defined herein. One possible signal sequence comprises the first seven amino acid residues of the signal sequence from *Bacillus subtilis* subtilisin fused to the remainder of the signal sequence of the subtilisin from *Bacillus lentus* (ATCC 21536).

[0035] A "prepro" form of a protease variant consists of the mature form of the protease having a prosequence operably linked to the amino terminus of the protease and a "pre" or "signal" sequence operably linked to the amino terminus of the prosequence.

5

- [0036] "Expression vector" refers to a DNA construct containing a DNA sequence which is operably linked to a suitable control sequence capable of effecting the expression of said DNA in a suitable host. Such control sequences include a promoter to effect transcription, an optional operator sequence to control such transcription, a sequence encoding suitable mRNA ribosome binding sites and sequences which control termination of transcription and translation. The vector may be a plasmid, a phage particle, or simply a potential genomic insert. Once transformed into a suitable host, the vector may replicate and function independently of the host genome, or may, in some instances,
- ¹⁵ integrate into the genome itself. In the present specification, "plasmid" and "vector" are sometimes used interchangeably as the plasmid is the most commonly used form of vector at present. However, the invention is intended to include such other forms of expression vectors which serve equivalent functions and which are, or become, known in the art. [0037] The "host cells" used in the present invention generally are procaryotic or eucaryotic hosts which preferably have been manipulated by the methods disclosed in US Patent RE 34,606 to render them incapable of secreting
- 20 enzymatically active endoprotease. A preferred host cell for expressing protease is the *Bacillus* strain BG2036 which is deficient in enzymatically active neutral protease and alkaline protease (subtilisin). The construction of strain BG2036 is described in detail in US Patent 5,264,366. Other host cells for expressing protease include *Bacillus subtilis* 1168 (also described in US Patent RE 34,606 and US Patent 5,264,366, the disclosure of which are incorporated herein by reference), as well as any suitable *Bacillus* strain such as *B. licheniformis, B. lentus*, etc.
- ²⁵ **[0038]** Host cells are transformed or transfected with vectors constructed using recombinant DNA techniques. Such transformed host cells are capable of either replicating vectors encoding the protease variants or expressing the desired protease variant. In the case of vectors which encode the pre- or prepro-form of the protease variant, such variants, when expressed, are typically secreted from the host cell into the host cell medium.
- [0039] "Operably linked," when describing the relationship between two DNA regions, simply means that they are functionally related to each other. For example, a presequence is operably linked to a peptide if it functions as a signal sequence, participating in the secretion of the mature form of the protein most probably involving cleavage of the signal sequence. A promoter is operably linked to a coding sequence if it controls the transcription of the sequence; a ribosome binding site is operably linked to a coding sequence if it is positioned so as to permit translation.
- [0040] The genes encoding the naturally-occurring precursor protease may be obtained in accord with the general methods known to those skilled in the art. The methods generally comprise synthesizing labeled probes having putative sequences encoding regions of the protease of interest, preparing genomic libraries from organisms expressing the protease, and screening the libraries for the gene of interest by hybridization to the probes. Positively hybridizing clones are then mapped and sequenced.
- [0041] The cloned protease is then used to transform a host cell in order to express the protease. The protease gene is then ligated into a high copy number plasmid. This plasmid replicates in hosts in the sense that it contains the wellknown elements necessary for plasmid replication, a promoter operably linked to the gene in question (which may be supplied as the gene's own homologous promoter if it is recognized, i.e., transcribed, by the host), a transcription termination and polyadenylation region (necessary for stability of the mRNA transcribed by the host from the protease gene in certain eucaryotic host cells) which is exogenous or is supplied by the endogenous terminator region of the
- ⁴⁵ protease gene and, desirably, a selection gene such as an antibiotic resistance gene that enables continuous cultural maintenance of plasmid-infected host cells by growth in antibiotic-containing media. High copy number plasmids also contain an origin of replication for the host, thereby enabling large numbers of plasmids to be generated in the cytoplasm without chromosomal limitations. However, it is within the scope herein to integrate multiple copies of the protease gene into host genome. This is facilitated by procaryotic and eucaryotic organisms which are particularly susceptible to homologous recombination.

[0042] The gene can be a natural *B. lentus* gene. Alternatively. a synthetic gene encoding a naturally-occurring or mutant precursor protease may be produced. In such an approach, the DNA and/or amino acid sequence of the precursor protease is determined. Multiple, overlapping synthetic single-stranded DNA fragments are thereafter synthesized, which upon hybridization and ligation produce a synthetic DNA encoding the precursor protease. An example

⁵⁵ of synthetic gene construction is set forth in Example 3 of US Patent 5,204,015, the disclosure of which is incorporated herein by reference.

[0043] Once the naturally-occurring or synthetic precursor protease gene has been cloned, a number of modifications are undertaken to enhance the use of the gene beyond synthesis of the naturally-occurring precursor protease. Such

modifications include the production of recombinant proteases as disclosed in US Patent RE 34,606 and EPO Publication No. 0 251 446 and the production of protease variants described herein.

[0044] The following cassette mutagenesis method may be used to facilitate the construction of the protease variants of the present invention, although other methods may be used. First, the naturally-occurring gene encoding the protease

- ⁵ is obtained and sequenced in whole or in part. Then the sequence is scanned for a point at which it is desired to make a mutation (deletion, insertion or substitution) of one or more amino acids in the encoded enzyme. The sequences flanking this point are evaluated for the presence of restriction sites for replacing a short segment of the gene with an oligonucleotide pool which when expressed will encode various mutants. Such restriction sites are preferably unique sites within the protease gene so as to facilitate the replacement of the gene segment. However, any convenient
- 10 restriction site which is not overly redundant in the protease gene may be used, provided the gene fragments generated by restriction digestion can be reassembled in proper sequence. if restriction sites are not present at locations within a convenient distance from the selected point (from 10 to 15 nucleotides), such sites are generated by substituting nucleotides in the gene in such a fashion that neither the reading frame nor the amino acids encoded are changed in the final construction. Mutation of the gene in order to change its sequence to conform to the desired sequence is
- ¹⁵ accomplished by M13 primer extension in accord with generally known methods. The task of locating suitable flanking regions and evaluating the needed changes to arrive at two convenient restriction site sequences is made routine by the redundancy of the genetic code, a restriction enzyme map of the gene and the large number of different restriction enzymes. Note that if a convenient flanking restriction site is available, the above method need be used only in connection with the flanking region which does not contain a site
- 20 **[0045]** Once the naturally-occurring DNA or synthetic DNA is cloned, the restriction sites flanking the positions to be mutated are digested with the cognate restriction enzymes and a plurality of end termini-complementary oligonucleotide cassettes are ligated into the gene. The mutagenesis is simplified by this method because all of the oligonucleotides can be synthesized so as to have the same restriction sites, and no synthetic linkers are necessary to create the restriction sites.
- 25 [0046] As used herein, proteolytic activity is defined as the rate of hydrolysis of peptide bonds per milligram of active enzyme. Many well known procedures exist for measuring proteolytic activity (K. M. Kalisz, "Microbial Proteinases," <u>Advances in Biochemical Engineering/Biotechnology</u>, A. Fiechter ed., 1988). In addition to or as an alternative to modified proteolytic activity, the variant enzymes of the present invention may have other modified properties such as K_m, k_{cat}, k_{cat}/K_m ratio and/or modified substrate specificity and/or modified pH activity profile. These enzymes can be tailored
- ³⁰ for the particular substrate which is anticipated to be present, for example, in the preparation of peptides or for hydrolytic processes such as laundry uses.
 [0047] In one aspect of the invention, the objective is to secure a variant protease having altered, preferably improved wash performance as compared to a precursor protease in at least one detergent formulation and or under at least one set of wash conditions.
- ³⁵ **[0048]** There is a variety of wash conditions including varying detergent formulations wash water volume, wash water temperature and length of wash time that a protease variant might be exposed to. For example, detergent formulations used in different areas have different concentrations of their relevant components present in the wash water. For example, a European detergent typically has about 4500-5000 ppm of detergent components in the wash water while a Japanese detergent typically has approximately 667 ppm of detergent components in the wash water. In North America,
- 40 particularly the United States, a detergent typically has about 975 ppm of detergent components present in the wash water.

[0049] A low detergent concentration system includes detergents where less than about 800 ppm of detergent components are present in the wash water. Japanese detergents are typically considered low detergent concentration system as they have approximately 667 ppm of detergent components present in the wash water.

- 45 [0050] A medium detergent concentration includes detergents where between about 800 ppm and about 2000ppm of detergent components are present in the wash water. North American detergents are generally considered to be medium detergent concentration systems as they have approximately 975 ppm of detergent components present in the wash water. Brazil typically has approximately 1500 ppm of detergent components present in the wash water. [0051] A high detergent concentration system includes detergents where greater than about 2000 ppm of detergent
- ⁵⁰ components are present in the wash water. European detergents are generally considered to be high detergent concentration systems as they have approximately 4500-5000 ppm of detergent components in the wash water.
 [0052] Latin American detergents are generally high suds phosphate builder detergents and the range of detergents used in Latin America can fall in both the medium and high detergent concentrations as they range from 1500 ppm to
- 6000 ppm of detergent components in the wash water. As mentioned above, Brazil typically has approximately 1500
 ⁵⁵ ppm of detergent components present in the wash water. However, other high suds phosphate builder detergent geographies, not limited to other Latin American countries, may have high detergent concentration systems up to about
 6000 ppm of detergent components present in the wash water.

[0053] In light of the foregoing, it is evident that concentrations of detergent compositions in typical wash solutions

throughout the work) varies from less than about 800 ppm of detergent composition ("low detergent concentration geographies"), for example about 667 ppm in Japan, to between about 800 ppm to about 2000 ppm ("medium detergent concentration geographies"), for example about 975 ppm in U.S and about 1500 ppm in Brazil, to greater than about 2000 ppm ("high detergent concentration geographies"), for example about 975 ppm in U.S and about 4500 ppm to about 5000 ppm in Europe and about 6000 ppm in high suds phosphate builder geographies.

- and about 6000 ppm in high suds phosphate builder geographies.
 [0054] The concentrations of the typical wash solutions are determined empirically. For example, in the U.S., a typical washing machine holds a volume of about 64.4 L of wash solution. Accordingly, in order to obtain a concentration of about 975 ppm of detergent within the wash solution about 62.79 g of detergent composition must be added to the 64.4 L of wash solution. This amount is the typical amount measured into the wash water by the consumer using the
 measuring cup provided with the detergent.
 - **[0055]** As a further example, different geographies use different wash temperatures. The temperature of the wash water in Japan is typically less than that used in Europe.

[0056] Accordingly one aspect of the present invention includes a protease variant that shows improved wash performance in at least one set of wash conditions.

- ¹⁵ [0057] In another aspect of the invention, it has been determined that substitutions at positions corresponding to 103 and 245 in combination with one or more substitutions selected from the group consisting of positions corresponding 1, 3, 4, 8, 10, 12, 13, 16, 17, 18, 19, 20, 21. 22, 24, 27, 33, 37, 38, 42, 43, 48, 55, 57, 58, 61, 62, 68, 72, 75, 76, 77, 78, 79, 86, 87, 89, 97, 98, 99, 101. 102, 104, 106, 107, 109, 111, 114, 116, 117, 119, 121, 123, 126, 128, 130, 131, 133, 134, 137, 140, 141, 142, 146, 147, 158, 159, 160, 166, 167, 170, 173, 174, 177, 181, 182, 183, 184, 185, 188,
- ²⁰ 192, 194, 198, 203, 204, 205, 206, 209, 210, 211. 212, 213, 214, 215, 216, 217, 218, 222, 224, 227, 228, 230, 232, 236, 237, 238, 240, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259. 260. 261, 262, 263, 265, 268, 269. 270. 271, 272, 274 and 275 of *Bacillus amyloliquefaciens* subtilisin are important in improving the wash performance of the enzyme.

[0058] These substitutions are preferably made in *Bacillus lentus* (recombinant or native-type) subtilisin, although the substitutions may be made in any *Bacillus* protease.

[0059] Based on the screening results obtained with the variant proteases, the noted mutations in *Bacillus amyloliq-uefaciens* subtilisin are important to the proteolytic activity, performance and/or stability of these enzymes and the cleaning or wash performance of such variant enzymes.

- [0060] Many of the protease variants of the invention are useful in formulating various detergent compositions or personal care formulations such as shampoos or lotions. A number of known compounds are suitable surfactants useful in compositions comprising the protease mutants of the invention. These include nonionic, anionic, cationic, or zwitterionic detergents, as disclosed in US 4,404,128 to Barry J. Anderson and US 4,261,868 to Jiri Flora, et al. A suitable detergent formulation is that described in Example 7 of US Patent 5,204,015 (previously incorporated by reference). The art is familiar with the different formulations which can be used as cleaning compositions. In addition
- ³⁵ to typical cleaning compositions, it is readily understood that the protease variants of the present invention may be used for any purpose that native or wild-type proteases are used. Thus, these variants can be used, for example, in bar or liquid soap applications, dishcare formulations, contact lens cleaning solutions or products, peptide hydrolysis, waste treatment, textile applications, as fusion-cleavage enzymes in protein production, etc. The variants of the present invention may comprise enhanced performance in a detergent composition (as compared to the precursor). As used
- ⁴⁰ herein, enhanced performance in a detergent is defined as increasing cleaning of certain enzyme sensitive stains such as grass or blood, as determined by usual evaluation after a standard wash cycle.
 [0061] Proteases of the invention can be formulated into known powdered and liquid detergents having pH between 6.5 and 12.0 at levels of about 0.01 to about 5% (preferably 0.1% to 0.5%) by weight. These detergent cleaning compositions can also include other enzymes such as known proteases, amylases, cellulases, lipases or endoglycosidases,
- as well as builders and stabilizers.
 [0062] The addition of proteases of the invention to conventional cleaning compositions does not create any special use limitation. In other words, any temperature and pH suitable for the detergent is also suitable for the present compositions as long as the pH is within the above range, and the temperature is below the described protease's denaturing temperature. In addition, proteases of the invention can be used in a cleaning composition without detergents, again either alone or in combination with builders and stabilizers.
- [0063] The present invention also relates to cleaning compositions containing the protease variants of the invention. The cleaning compositions may additionally contain additives which are commonly used in cleaning compositions. These can be selected from, but not limited to, bleaches, surfactants, builders, enzymes and bleach catalysts. It would be readily apparent to one of ordinary skill in the art what additives are suitable for inclusion into the compositions.
- ⁵⁵ list provided herein is by no means exhaustive and should be only taken as examples of suitable additives. It will also be readily apparent to one of ordinary skill in the art to only use those additives which are compatible with the enzymes and other components in the composition, for example, surfactant

[0064] When present, the amount of additive present in the cleaning composition is from about 0.01% to about 99.9%,

preferably about 1% to about 95%, more preferably about 1% to about 80%

[0065] The variant proteases of the present invention can be included in animal feed such as part of animal feed additives as described in, for example, US 5,612,055; US 5,314,692; and US 5,147,642.

[0066] One aspect of the invention is a composition for the treatment of a textile that includes variant proteases of the present invention. The composition can be used to treat for example silk or wool as described in publications such as RD 216,034; EP 134,267; US 4,533,359; and EP 344,259.

[0067] The following is presented by way of example and is not to be construed as a limitation to the scope of the claims.

10 Example 1

5

[0068] A large number of protease variants were produced and purified using methods well known in the art. All mutations were made in *Bacillus lentus* GG36 subtilisin. The variants are shown in Table 3.

15			
20			
25			
30			
35			
40			
45			
50			
55			

5																		
10																		
15																		
20	Table 3																	
25	Tab																	
30										0								
35		25	141	141	N2	141	70	141	3D N218I	041 N248D	041	10	01	6C	141)41)41 A174V	141
40		V1041 M222S	S103A V104	S103A V1041	V1041 1107V	S103A V104	V1041 1246V	S103A V104I	V1041 N183D	S103A V1041	S103A V104I	V1041 N261D	V104 S160T	V1041 S216C	S103A V104	S103A V104I	S103A V1041	S103A V104
45		S103A	A98E	S78T (S103A	N76D	S103A	N77D	S103A	N76D	N76D	S103A	S103A	S103A	N76D	N76D	N77D	N76D
50		N76D	N76D	N76D	N76D	V4E	N76D	N76D	N76D	A16T	A1E	N76D	N76D	N76D	H17Q	S37T	N76D	T38S

.

5																			
10																			
15																			
20																			
25																			
30																			
35	K2370											N185D	T274A			S240T			
	V1041	V1041	N183D	V1041	V1041	V104I	N184D	+	S259C	K251T	V104I	V104I	K237E	S160L	A228V	V104I	A254T	N204T	N204D
40	S103A	S103A	V1041	S103A	S103A	S103A	V1041	V104I	V1041	V104I	S103A	S103A	V104I	V104I	V104I	S103A	V1041	1104N	V104I
45	N76D	N76D	S103A	N76D	N76D	N76D	S103A	S103A	S103A	S103A	P86S	N76D	S103A	S103A	S103A	N76D	S103A	S103A	S103A
	T38S	187	N76D	R 19L	A13V	R19C	N76D	N76D	N76D	N76D	N76D	172V	N76D	N76D	N76D	P55S	N76D	N76D	N76D
50		·											·····				· · · · · ·		

.

50

5																			
10																			
15																			
20																			
25																			
30											K251R								
35	041	069	V1041 V177A	041	٨٥/	35D	V104I	2M	041	V104I	S166G Q236R	V1041 K237E	30L	Q109R	V1041 N204T	31N	V1041	S212P E271V	52K N261Y
40	S103A V104I	V1041 G159D	S103A V1(S103A V104I	V104I A270V	V1041 N185D	S103A V1	V1041 L262M	S103A V1041	S103A V1	V1041 S16	S103A V1	V1041 S130L	V1041 Q10	S103A V1	V104I D181N	S103A V1	V1041 S21	V104I N252K
45	N76D	S103A	N76D	N76D	S103A	S103A	N76D	S103A	S78P	N76D	S103A	N76D	S103A	S103A	S99R	S103A	N76D	S103A	S103A
50	N43S	N76D	R10H	T58S	N76D	N76D	K27N	N76D	N76D	S24P	N76D	H17L	N76D	N76D	N76D	N76D	Q12R	N76D	N76D

EP 1 025 241 B1

5																			
10																			
15																			
20																			
25											90					 			
				N183I				Y263H			H2490 S265G	E271V							
30			S242T	N116K N				Q182R Y2	A272S	1246V	Q206R H2	N238Y E2		1198V	Q182R	Q137R	N248S	0206R	
35	S242T	E2710	V1041	V1041	G258R	E271G	V104I	V1041 C	Q182R A	Q109R	V1041 C	Q137R N		Q182R	V1041 C	M1191 C	Q137R N	V1041 0	Q206R
40	V104I	V104I	S103A	S103A	V104I	V104I	S103A	S103A	×1041	V104I	S.103A	V104I	A228T	V104I	S103A	V104I	V1041	S103A	V1041
45	S103A	S103A	N76D	N76D	S103A	S103A	N76D	N76D	S103A	S103A	S87G	S103A	V104I	S103A	N76D	S103A	S103A	N76D	S103A
	N76D	N76D	Q12R	N43S	N76D	092N.	G61R	T38S	N76D	N76D	N76D	N76D	S103A	N76D	L21M	N76D	N76D	A13T	N76D

.

																·			
5																			
10				+		+													
15												<u> </u>	 .						
			<u> </u>								 	 							
20											 							 	
05		<u> </u>						a		 		 							<u> </u>
25						 		K251Q	N252D	K251T									
30								L217E	L217E	N185D	V244A					G159D	Q236H		G159D
	G258R	E271G	N261D	Q206E	Q206E			G159D	G159D	A133T	Q206E	S188E	A158E	N185D	K251T	L111M	G159D	G159D	V104I
35	S212P	V104I	Q206E	V1041	V104I	A158E	Q206E	V1041	V7041	V104I	G159D	V104I	V104I	V1041	Q206E	V104	V1041	V104I	S103A
40	V1041	S103A	V1041	S103A	S103A	V1041	V104I	S103A	S103A	S103A	V1041	S103A	S103A	S103A	V1041	S103A	S103A	S103A	N76D
45	S103A	N76D	S103A	N76D	U77D	S103A	S103A	N76D	N76D	N77D	S103A	N76D	N76D	077N	S103A	N76D	N76D	N76D	N62H
	N76D	T58S	N76D	V4E	N76D	N76D	N76D	V4E	V4E	N76D	N76D	V4E	V4E	N76D	N76D	A48T	V68A	L42V	Q12H

55

EP 1 025 241 B1

.

5																			
10																			
15						 													
20																	>		
25									E271V	E271V					E271V	Q245R	Q236H E271V		
30					E271V		E271V	E271V	S212P	N243S					Q236H	Q236H (L2171 (
35	G159D	G159D	N238S	T224A	V268F		S212P	Q245L	S141N	Q236L	Q245R	P210L	V1041	Q236H	G159D	G159D	G159D	V1041	
	V104I	G146S	G159D	G159D	S212P	V104I	V104I	S212P	T134S	S212P	Q109R	Q109R	S103A	V1041	V104I	V104I	V104I	S103A	V104I
40	S103A	V104I	V104I	V104I	V104I	S103A	S103A	V104I	V1041	V104I	V104I	V1041	N76D	S103A	S103A	S103A	S103A	N76D	S103A
45	N76D	S103A	S103A	S103A	S103A	E89A	S87R	S103A	S103A	S103A	S103A	S103A	N62S	N76D	N76D	N76D	N76D	V68A	N76D
	L421	N76D	G20V	V68A	V68A	V68A	VGBA	H17Q	V68A										

55

EP 1 025 241 B1

-

5																			
10																			
15																			
20	 		I Q245R																
25			0 Q236H		H T253K	3 Q236H				H249Y	a	 							
25		Q236H	G159D	Q236H	Q236H	N184S	N2431	Q245L		Q236H	H249Q					Y263F			
30	Q236R	G159D	V1211	G159D	Y209S	G159D	Q236H	Q236H	G159D	G159D	Q236H		H249R			K237R		E271D	
35	G159D	V104I	A114V	V104I	G159D	N117K	G159D	G159D	A142V	N123S	G159D	Q245R	M222S	M222S	Y263F	M222S	M222S	M222S	M222S
	V104I	S103A	S103A	S103A	V104I	V104I	V104I	V1041	V1041	V1041	V104I	M222S	Q12R	N173R	M222S	V104I	Q109R	Q109R	V1041
40	S103A	N76D	N76D	N76D	S103A	S103A	S103A	S103A	S103A	S103A	S103A	V104I	V104I	V104I	V104I	S103A	V104I	V104I	S103A
45	N76D	L75R	N76D	V68A	N76D	N76D	N76D	N76D	N76D	N76D	N76D	S103A	S103A	S103A	S103A	N76D	S103A	S103A	N76D
	V68A	V68A	V68A	Q12R	V68A	V68A	V68A	V68A	V68A	V68A	V68A	N76D	N76D	N76D	N76D	L21M	N76D	N76D	G61R

EP 1 025 241 B1

.

.

5																			
10																			
15																T260A			
20					T255S		Q245R		Q245R		Q245R			Q245R		Q245R			
				N261D	Q245R	R247H	Q236H	Q245R	Q236H	Q245R	Q236H			Q236H	N252K	Q236H			
25				Q245R	Q236H	Q245R	N204D	Q236H	N218D	Q236H	V203A			A232V	Q245R	A232V	Q245R		Q245R
30		N248S		Q236H	G159D	0236Н	A174V	N204D	G159D	A232V	A1941	Q245R		G159D	Q236H	T213R	V244I	Q245R	M222S
25	M222S	M222S	H249R	G159D	S141N	G159D	G159D	G159D	A133V	G159D	G159D	M222S	Q245R	V104	A232V	G159D	M222S	P210T	S130T
35	Q137R	Q109R	M222S	V1041	V104I	V104I	V104I	V1041	V1041	V104I	V104I	V104I	A232V	S103A	G159D	V104I	1104T	M222S	1104T
40	V104I	V104I	V1041	S103A	V1041	N76D	V1041	S103A	S103A	S103A	S103A								
45	S103A	S103A	S103A	N76D	S103A	V68A	S103A	N76D	N76D	N76D	N76D								
	N76D	N76D	N76D	V68A	Q12R	N76D	S24T	V68A	V68A	Q12R	Q12R	Q12R							

5																			
10																			
15									R275S							N269D	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Q245R	
20			N252K		N252K	N252K		N252K	N252K	L262M		L262S				L262S	K251Q	N243D	
			N248D		Q245R	Q245R	Q245R	Q245R	Q245R	N248S	Q245R	Q245R	Q245R	N261D		Q245R	Q245R	M222S	V268A
25			Q245R	Q245R	Q236H	0236Н	Q236H	0236Н	Q236H	Q245R	M222S	V227A	M222S	Q245R		M222S	M222S	N185D	Q245R
30			0236Н	0236Н	A232V	A232V	A232V	A232V	A232V	M222S	A215V	M222S	A215T	M222S	Q245R	N218D	S130T	R170S	M222S
	V1041		A232V	A232V	G159D	G159D	G159D	G159D	G159D	S130T	S130T	S130T	S130T	S130T	M222S	S130T	11047	S130T	S130T
35	S103A	N184D	G159D	G159D	N140D	V1041	V104I	V104I	V104I	11047	1104T	1104T	1104T	1104T	S130T	1104T	S103A	1104T	1104T
40	N76D	S103A	V1041	V1041	V1041	S103A	1104T	S103A	N76D	S103A	S103A								
45	V68A	N76D	S103A	S103A	S103A	V68A	V68A	V68A	S87G	N76D	N76D	N76D	N76D	N76D	S103A	N76D	S57P	N76D	N76D
	T22K	V68A	V68A	V68A	V68A	N43S	N43K	N43D	V68A	Q12R	Q12R	Q12R	Q12R	Q12R	N76D	Q12R	Q12R	Q12R	Q12R

 						-		 										
							Q245R		Q245R							Q245R	L257V	
Q245R	L257V	Q245R	N248D	Q245R	Q245R	Q245R	Q236H	Q245R	Q236H	Q245R	Q245R	Q245R	Q245R	N248S	Q245R	0236Н	Q245R	
P210S	Q245R	Q236H	Q245R	0236Н	Q236H	K237E	A232V	Q236H	A232V	Q236H	Q236H	Q236H	Q236H	Q245R	Q236H	A232V	Q236H	
M222S	Q236H	A232V	Q236H	A232V	A232V	Q236H	G159D	A232V	0206L	A232V	A232V	A232V	A232V	Q236H	A232V	P210R	A232V	
S130T	A232V	G159D	A232V	G159D	V203E	A232V	V104I	N183D	A174V	S188C	A230T	G159D	A215T	A232V	G159D	G159D	G159D	
1104T	G159D	N116D	G159D	V104I	G159D	G159D	S103A	G159D	G159D	G159D	G159D	V104I	G159D	G159D	V104I	V1041	V1041	
S103A	V1041	V1041	V104I	S103A	V1041	V1041	N6/1	V104I	V104I	V1041	V104I	S103A	V1041	V104I	S103A	S103A	S103A	
N76D	S103A	S103A	S103A	V68A	S103A	S103A	N76D	S103A	S103A	S103A	S103A	A98T	S103A	S103A	N76D	N76D	N76D	
Q12R	V68A	V68A	V68A	R10C	V68A													

							Q245R			S259G	T260V					Q245R		
R275H		L257V		Q245R	Q245R	Q245R	Q236H	Q245R	Q245R	Q245R	Q245R	N261G	N261W		Q245R	Q236H		
L257V		Q245R	L257V	Q236H	Q236H	Q236H	A232V	Q236H	Q236H	Q236H	Q236H	Q245R	Q245R		Q236H	A232V		Q245R
Q245R		Q236H	Q245R	A232V	A232V	A232V	Y214L	A232V	A232V	A232V	A232V	Q236H	Q236H	Q245R	A232V	G159D		Q236H
Q236H		A232V	Q236H	Y209W	G211R	G211V	G159D	A215R	G159D	G159D	G159D	A232V	A232V	S242P	P210L	V104I	Q245R	A232V
A232V	R275H	T224A	A232V	G159D	G159D	G159D	V1041	G159D	V1041	V1041	V104I	G159D	G159D	0236Н	G159D	S103A	Q236H	Y192F
G159D	L257V	G159D	G159D	V1041	V104I	V1041	S103A	V 1041	S103A	S103A	S103A	V104I	V104I	A232V	V104I	N76D	A232V	G159D
V104I	V104I	V104I	V1041	S103A	S103A	S103A	N76D	S103A	N76D	N76D	N76D	S103A	S103A	V1041	S103A	V68A	V1041	V1041
S103A	S103A	S103A	S103A	N76D	N76D	N76D	V68A	N76D	V68A	VGBA	S87R	N76D	N76D	S103A	N76D	A48V	S103A	S103A
V68A	N76D	V68A	N76D	V68A	V68A	V68A	Q12R	V68A	Q12R	G20R	V68A	V68A	V68A	N76D	V68A	Q12R	N76D	N76D

5																			
10							Q245R				N252K								
15	K251R	A272S	Q245R				Q236H	N252K	N252K	N252K	N248D		N252K	N252K	N252K	N252K	N261D	N252K	N252K
20	N248S	Q245R	Q236H	S256R	Q245R	Q245R	A232V	N248D	N248D	N248D	Q245R		N248D	N248D	N248D	N248D	N252K	N248D	N248D
	Q245R	Q236H	A232V	Q245R	Q236H	Q236H	N185S	Q245R	Q245R	Q245R	Q236H	N252K	Q245R	Q245R	Q245R	Q245R	N248D	Q245R	Q245R
25	Q236H	A232V	Q206L	Q236H	A232V	A232V	R170S	Q236H	Q236H	Q236H	A232V	N248D	Q236H	Q236H	Q236H	Q236H	Q245R	Q236H	Q236H
30	A232V	G159D	N183K	A232V	Q206R	G159D	G159D	A232V	A232V	A232V	N184D	Q245R	A232V	A232V	A232V	A232V	Q236H	A232V	A232V
6 5	G159D	V104I	G159D	G159D	G159D	V1041	N116T	G159D	G159D	S212P	G159D	Q236H	Y209W	G159D	G159D	Y209F	A232V	N185D	P210R
35	V147I	S103A	V104I	V1041	V1041	S103A	V104I	V1041	V1041	G159D	N66S	A232V	G159D	Q109R	V104I	G159D	G159D	G159D	G159D
40	V104I	N76D	S103A	S103A	S103A	N76D	S103A	S103A	S103A	V1041	V1041	G159D	V1041	V1041	S103A	V1041	V1041	V104I	V104I
45	S103A	V68A	N76D	N76D	N76D	V68A	N76D	V68A	V68A	S103A	S103A	V104I	S103A	S103A	V68A	S103A	S103A	S103A	S103A
	N76D	Q12R	V68A	V68A	V68A	K27R	V68A	G61E	N43D	V68A	V68A	S103A	V68A	V68A	G20R	V68A	V68A	V68A	V68A

EP 1 025 241 B1

.

.

		N252K																
N252K	N252K	N248D	N252K	N252K	N252K	N252K	N252K		N252K									
N248D	N248D	Q245R	N248D	N248D	N248D	N248D	N248D	N252K	N248D									
Q245R	Q245R	Q236H	Q245R	Q245R	Q245R	Q245R	Q245R	N248D	Q245R									
Q236H	Q236H	A232V	Q236H	Q236H	Q236H	Q236H	Q236H	Q245R	Q236H									
A232V	A232V	P210L	A232V	A232V	A232V	A232V	A232V	Q236H	A232V									
P210T	P210S	N185D	P210L	S212A	S212G	S212E	T213E	A232V	T213E	T213R	T213G	A215V	A215R	S216T	S216V	S216C	G159D	N173D
G159D	T213S	G159D	V104I	G159D														
V104I	V1041	V104I	V104I	V104I	V104I	V104I	V1041	V104I	V104I	V104I	V104I	V1041	V104I	V104I	V104I	V104I	S103A	V104I
S103A	A103V	S103A	V68A	S103A														
V68A	G20A	V68A																

												06	0E					
N252K	N252K			N252F	T255V	S256N	S256E	S256R	T260R	L257R	G258D	N252K N269D	N252K T260E	N261R	N261D	N252K		
K251V N2	N248D N2	N252F	N252L	N248D N2	N252K T2	N252K S2	N252K S2	N252K S2	N252K T2	N252K L2	N252K G2	N248D N2	N248D N2	N252K N2	N252K N2	N248D N2		
	Q245R	N248D	N248D	Q245R	N248D	N248D	N248D	N248D	N248D 1	N248D	N248D	Q245R	Q245R	N248D	N248D	Q245R	N252K	N252K
Q236H Q245R N248D	Q236H	Q245R	Q245R	Q236H	Q245R	Q236H	Q236H	Q245R	Q245R	Q236H	N248D	Q245R N248D						
Q236H	A232V	Q236H	Q236H	A232V	Q236H	A232V	A232V	Q236H	Q236H	A232V	Q245R							
A232V	Q206R	A232V	A232V	G159D	A232V	G159D	G159D	A232V	A232V	G159D	Q236H	Q236H						
G159D	G159D	G159D	G159D	V1041	G159D	V1041	N116S	G159D	G159D	V104I	A232V	A232S						
V104I	V104I	V104I	V104I	S103A	V104I	S103A	V104I	V104I	V104I	S103A	V104I	G159D						
S103A	S103A	S103A	S103A	V68A	S103A	V68A	S103A	S103A	S103A	N76D	S103A	V1041						
V68A	V68A	V68A	V68A	P55S	V68A	18V	V68A	V68A	V68A	V68A	V68A	S103A						

EP 1 025 241 B1

.

							1				Ī					T		
			T260A			T260A				N252K								
			Q245R		N252K	Q245R	N252K		N252K	N248D				N252K	N252K	N252K		
	N252K		Q236H	N252K	N248D	Q236H	N248D		N248D	Q245R	N252K		N252K	N248D	N248D	N248D		
N252K	N248D	N252K	A232V	N248D	Q245R	A232V	Q245R		Q245R	Q236H	N248D	N252K	N248D	Q245R	Q245R	Q245R	N252K	N252K
N248D	Q245R	N248D	N218S	Q245R	Q236H	T213R	Q236H	Q245R	Q236H	A232V	Q245R	N248G	Q245R	Q236H	Q236H	Q236H	N248D	N248D
Q245R	Q236H	Q245V	T213R	Q236H	A232V	P210L	A232V	Q236H	A232V	G159D	Q236H	Q245R	Q236H	A232V	A232V	A232V	Q245R	Q245R
Q236R	A232V	Q236H	G159D	A232V	G159D	G159D	G159D	A232V	G159D	Q137R	A232V	Q236H	A232V	S160V	V1041	S167F	Q236H	Q236H
A232V	G159D	A232V	V1041	A228V	V104I	V1041	V104I	P2101	S130A	A133S	G159D	A232V	N218S	G159D	S103A	G159D	A232V	A232V
G159D	V104I	G159D	S103A	G159D	S103A	S103A	S103A	V2051	V104I	V104I	A133V	G159D	G159D	V104I	N76D	V1041	G159D	G159D
V104I	S103A	V104I	S101T	V104I	N76D	E89D	N76D	G159D	S103A	S103A	V104I	V104I	V1041	S103A	V68A	S103A	V104I	V104I
S103A	V68A	S103A	N76D	S103A	V68A	N76D	V68A	V104I	V68A	V68A	S103A	S103A	S103A	V68A	G61E	V68A	S103A	S103A
V68A	N18S	V68A	V68A	V68A	T33S	V68A	G61E	S103A	G61E	G61E	G61E	V68A	V68A	G61E	S3L	G61E	G97E	A98D

EP 1 025 241 B1

.

												N252K						
												N248D	N252K	N252K	N252K			
N252K	N252K	N252K	N252K	N252K	N252K	N261R	N252K	N252K	N252K	N252K	N252K	Q245R	N248D	N248D	N248D	N252K	N252K	N252K
N248D	N248D	N248D	N248D	N248D	N248D	N252K	N248D	N248D	N248D	N248D	N248D	Q236H	Q245R	Q245R	Q245R	N248D	N248D	N248D
Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	N248D	Q245R	Q245R	Q245R	Q245R	Q245R	A232V	Q236H	Q236H	Q236H	Q245R	Q245R	Q245R
Q236H	Q236H	Q236H	Q236H	Q236H	Q236H	Q245R	Q236H	Q236H	0236Н	Q236H	Q236H	T213R	A232V	A232V	A232V	Q236H	Q236H	0236Н
A232V	A232V	A232V	A232V	A232V	A232V	Q236H	A232V	A232V	A232V	A232V	A232V	G159D	T213R	L217E	Q206R	A232V	A232V	A232V
G159D	G159D	G159D	G159D	G159D	G159D	A232V	G159D	G169D	N184D	S166D	L217E	V1041	G159D	Q206R	G159D	G159D	G159D	G159D
V104I	V1041	V1041	V1041	S106E	Q109E	G159D	Q109R	V104I	G159D	G159D	G159D	S103A	V1041	G159D	V1041	S130G	P131V	V1041
S103A	S103A	S103A	S103A	V1.041	V104I	V1041	V1041	S103A	V104I	V104I	V104I	N62D	S103A	V1041	S103A	V1041	V104I	S103A
S99E	S101E	S101G	G102A	S103A	S103A	S103A	S103A	N62D	S103A	S103A	S103A	G20R	N62D	S103A	N62D	S103A	S103A	K27N

EP 1 025 241 B1

•

		E271G	T260A	T260A	T260A													
	T260A	T260A	Q245R	Q245R	Q245R	T260A												
N252K	Q245R	Q245R	Q236H	Q236H	Q236H	Q245R	T260A	T260A										L257V
Q245R N248D	Q236H	Q236H	A232V	A232V	A232V	Q236H	Q245R	Q245R	Q245R	Q245R	Q245R	0245R	Q245R	Q245R		T260A		Q245R
Q245R	A232V	A232V	T213R	T213R	T213R	A232V	Q236H	Q236H	Q236H	0236Н	Q236H	Q236H	Q236H	Q236H		Q245R		Q236H
Q236H	T213R	T213R	Y209W	P2101	V205I	P2101	A232V	Q245R	Q236H	Q245R	A232V							
A232V	G159D	G159D	G159D	G159D	G159D	G159D	T213R	T213R	Y209W	P2101	A230V	L126F	V205I	P210L	Q236H	A232V	Q236H	A174V
G159D	V1041	V1041	V1041	V104I	V104I	V104I	G159D	A230V	G159D	A232V	G159D							
V1041	S103A	S103A	S103A	S103A	S103A	S103A	V1041	V104I	V104I	V1041	V104I	V104I	V104I	V104I	G159D	V1041	G159D	V104I
S103A	N76D	N76D	N76D	N76D	N76D	N76D	S103A	V104I	S103A	V1041	S103A							
T38G	T38A	V68A	V68A	V68A	V68A	V68A	V68A	N76D	V68A	V68A	V68A	V68A	V68A	V68A	S103A	V68A	S103A	V68A

EP 1 025 241 B1

.

			N261W					T260A								T260A		
			T260A N26					0245R T26	T260A		T260A		Q245R	L257V		Q245R 726		
L257V	L257V		Q245R	N261W		N252K		Q236H	Q245R		Q245R	T260A	A232V Q236H	Q245R	L257V	Q236H	Q245R	
Q245R	Q245R		Q236H	L257V	T260A	N248D	L257V	A232V	Q236H		Q236H	Q245R	A232V	Q236H	Q245R	A232V	Q236H	Q245R
Q236H	Q236H	L257V	A232V	Q245R	Q245R	Q245R	Q245R	T213R	A232V	L257V	A232V	Q236H	P2101	A232V	Q236H	P2101	A232V	Q236H
A232V Q236H Q245R L257V	A232V	Q245R	T213R	Q236H	Q236H	Q236H	Q236H	P210L	T213R	Q245R	T213R	A232V	Y209W	P2101	A232V	Y209W	P2101	A232V
A194S	Y209W	Q236H	G159D	A232V	A232V	A232V	A232V	G159D	Y209W	Q236H	P2101	Y209W	V205I	Y209W	Y209W	V2051	Y209W	P2101
V104I G159D	G159D	A232V	V104I	G159D	T213R	P2101	Y209W	V1041	G159D	A232V	V205I	V205I	G159D	V205I	V205I	G159D	V205I	Y209W
V104I	V104I	G159D	S103A	V1041	G159D	G159D	G159D	S103A	V104I	Y209W	G159D	G159D	V104I	G159D	G159D	V1041	G159D	G159D
S103A	S103A	V104I	N76D	S103A	V104I	V104I	V1041	N76D	S103A	V104I	V1041	V104I	S103A	V104I	V104I	S103A	V104I	V1041
V68A	V68A	S103A	V68A	V68A	S103A	S103A	S103A	V68A	Q12R	S103A	S103A	S103A	V68A	S103A	S103A	V68A	S103A	S103A

							N252K	N252K	N252K							S256R	N252K	
				N252K	N261W	N252K	N248D	N248D	N248D	N252K						N252K	N248D	N252K
			Q245R	N248D	L257V	N248D	Q245R	Q245R	Q245R	N248D	N252K	N252K	N252K	N252K	N252K	N248D	Q245R	N248D
Q245R	Q245R		Q236H	Q245R	Q245R	Q245R	0236Н	Q236H	0236Н	Q245R	N248D	N248D	N248D	N248D	N248D	Q245R	Q236H	Q245R
Q236H	Q236H	Q245R	A232V	Q236H	Q236H	Q236H	A232V	A232V	A232V	Q236H	Q245R	Q245R	Q245R	Q245R	Q245R	Q236H	A232V	Q236H
A232V	A232V	Q236H	Y209W	A232V	A232V	A232V	S212G	S212G	S212G	A232V	Q236H	Q236H	Q236H	V244T	V244A	A232V	T213R	A232V
P2101	G159D	A230V	G159D	G159D	G159D	S212G	G159D	G159D	G159D	T213R	A232V	A232V	A232V	Q236H	Q236H	T213R	G159D	N185D
V2051	S128L	G159D	V1041	V104I	V104I	G159D	V104I	V 1041	V1041	G159D	G159D	N184S	N184G	A232V	A232V	G159D	V104I	G159D
G159D	V104I	V1041	S103A	S103A	S103A	V104I	S103A	S103A	S103A	V1041	P131V	G159D	G159D	G159D	G159D	V1041	S103A	V1041
V1041	S103A	S103A	V68A	V68A	V68A	S103A	G102A	G102A	G102A	S103A	V104I	V1041	V104I	V1041	V104	S103A	N62D	S103A
S103A	V68A	A48V	A48V	A48V	A48V	G102A	Q12R	S101G	A98L	G102A	S103A	S103A	S103A	S103A	S103A	N62D	Q12R	S101G

								N252K										
 				N252K		N252K	N252K	N248D			N252K				N252K	N252K	N252K	
N252K	N252K	N252K	N252K	N248D	N252K	N248D	N248D	Q245R			N248D	N252K	N252K	N252K	N248D	N248D	N248D	T260A
N248D	N248D	N248D	N248D	Q245R	N248D	Q245R	Q245R	Q236H			Q245R	N248D	N248D	N248D	Q245R	Q245R	Q245R	N252K
Q245R	Q245R	Q245R	Q245R	Q236H	Q236H	Q236H	Q236H	A232V			Q236H	Q245R	Q245R	Q245R	Q236H	Q236H	Q236H	N248D
Q236H	Q236H	Q236H	Q236H	A232V	A232V	A232V	A232V	T213R	N252K		A232V	Q236H	Q236H	Q236H	A232V	A232V	A232V	Q245R
A232V	A232V	A232V	A232V	S212G	S212G	T213R	T213R	S212G	N248D		T213R	A232V	A232V	A232V	T213R	T213R	T213R	Q236H
Q206E	T213Q	G159D	G159D	G159D	G159D	G159D	S212G	G159D	Q245R	Q245R	G159D	A232V						
G159D	G159D	V1041	V1041	V104I	V1041	Q109R	G159D	V 1041	A232V	A230V	S130G	S130G	S128G	S128L	V104I	S128G	S128L	G159D
V1041	V104I	S103A	S103A	S103A	S103A	V104I	V104I	S103A	G159D	G159D	V1041	V104I	V104I	V104I	S103A	V104I	V1041	V1041
S103A	S103A	G102A	G102A	G102A	G102A	S103A	S103A	S101G	V1041	V104I	S103A	S103A	S103A	S103A	S101G	S103A	S103A	S103A
S101G	S101G	A98L	S101G	A98L	A98L	N62D	N62D	N62D	S103A	S103A	N62D	S101G	S101G	S101G	N62D	N62D	N62D	S101G

EP 1 025 241 B1

.

											E271Q
											N252K
									N252K		N248D
N252K	N252K	N252K	N252K	N252K	N252K	N252K		N252K	N248D	N252K	
N248D	N248D	N248D	N248D	N248D	N248D	N248D		N248D	Q245R	N248D	Q236H Q245R
Q245R	Q245R	Q245R	Q245R		Q245R	Q245R		Q245R	Q236H	Q245R	A232V
Q236H	0236Н	0236Н	Q236H	A232V Q236H Q245R	Q236H	Q236H	Q245R	Q236H Q245R	A232V Q236H	Q236H	T213R
A232V	A232V	A232V	A232V	A232V	A232V	A232V	Q236H	A232V	A194P	A232V	Q206E
G159D	G159D	G159D	S212G	Y209W	P2101	V205I	A230V	A194P	G159D	A230V	N185D
P131V	V1041	V104I	G159D	G159D	G159D	G159D	G159D	G1\$9D	V104I	G159D	G159D
V1041	S103A	S103A	V104I	V1041	V1041	V1041	V1041	V1041	S103A	V1041	V1041
S103A	S101G	S101G	S103A	S103A	S103A	S103A	S103A	S103A	S101G	S103A	S103A
S101G S103A	A98V	599G	S101G S103A	S101G S103A	S101G S103A	S101G S103A	S101G S103A	S101G	N76D	S101G	N62D

Example 2

[0069] A large number of the protease variants produced in Example 1 were tested for performance in two types of detergent and wash conditions using a microswatch assay described in "An improved method of assaying for a preferred enzyme and/or preferred detergent composition", U.S. Serial No. 60/068,796.

•

[0070] Table 4 lists the variant proteases assayed and the results of testing in two different detergents. For column A, the detergent was 0.67 g/l filtered Ariel Ultra (Procter & Gamble, Cincinnati, OH. USA), in a solution containing 3 grains per gallon mixed Ca²⁺/Mg²⁺ hardness, and 0.3 ppm enzyme was used in each well at 20°C. For column B, the detergent was 3.38 g/l filtered Ariel Futur (Procter & Gamble, Cincinnati, OH, USA), in a solution containing 15 grains per gallon mixed Ca^{2+}/Mg^{2+} hardness, and 0.3 ppm enzyme was used in each well at 40°C.

10		Β	-	1.11	1.85	1.20	1.67	1.42	1.80	1.78	1.34	1.67	0.53	0.20	1.41	0.47	1.28	0.09	0.47	1.46
15		A	-	0.56	1.41	2.77	2.26	2.96	1.91	2.05	2.00	2.38	2.83	2.87	2.56	3.97	3.35	3.77	3.50	2.81
15																				
20																		N252K	N252K	N252K
25	e 4					N252K		N252K	N252K		N252K					R275H	L257V	N248D	N248D	N248D
	Table				N252K	N248D		Q245R	Q245R	Q245R	Q245R	L257V	N248D	Q245R	N252S	L257V	Q245R	Q245R	Q245R	Q245R
30					Q245R	Q245R	Q245R	Q236H	Q236H	Q236H	Q236H	Q245R	Q245R	K237E	Q245R	Q245R	Q236H	Q236H	Q236H	Q236H
35					Q236H	Q236H	Q236H	A232V	A232V	A232V	A232V	Q236H	Q236H	Q236H	Q236H	Q236H	A232V	A232V	A232V	A232V
					A232V	A232V	A232V	G159D	G159D	G159D	G159D	A232V	A232V	A232V	A232V	A232V	T224A	G159D	G159D	S212P
40					G159D	G159D	G159D	N140D	V104I	V1041	V104	G159D	G159D	G159D	G159D	G159D	G159D	V104I	V104I	G159D
45			V1041	A228T	V104I	V1041	V104I	V1041	S103A	S103A	S103A	V1041	V1041	V1041	V104I	V104I	V1041	S103A	S103A	V104I
			S103A	V1041	S103A	S103A	S103A	S103A	V68A	V68A	V68A	S103A	S103A	S103A	S103A	S103A	S103A	V68A	V68A	S103A
50			N76D	S103A	V68A	V68A	V68A	V68A	N43S	N43K	N43D	V68A	V68A	V68A	V68A	V68A	V68A	G61E	N43D	V68A

5

5	0.28	0.33	0.36	0.43	0.32	0.33	0.13	0.35	0.55	0.25	0.48	0.19	0.29	0.53	0.12	0.43	0.98	0.37	0.16	0.99
	1.56	1.22	1.13	1.22	1.12	1.54	1.04	1.09	1.11	1.50	1.11	1.05	1.32	1.19	0.92	1.31	1.00	1.70	1.12	1.13
10																				
15																				
20																				
25																				
30				N248D				A174V	K237Q									N185D	T274A	
35	V104I	V104I	V104I	V104I	V104I	N261D	S216C	V104I	V104I	N183D	V1041	V1041	N184D	N252D	S259C	K251T	V104I	V1041	K237E	A228V
40	S103A	S103A	S103A	S103A	S103A	V104I	V104I	S103A	S103A	V1041	S103A	S103A	V104I	V104i	V1041	V104I	S103A	S103A	V104I	V104I
	A98E	N76D	D77N	N76D	N76D	S103A	S103A	077N	N76D	S103A	N76D	N76D	S103A	S103A	S103A	S103A	P86S	N76D	S103A	S103A
45	N76D	V4E	N76D	A16T	A1E	N76D	N76D	N76D	T38S	N76D	R19L	R19C	N76D	N76D	N76D	N76D	N76D	172V	N76D	N76D

5	0.23	0.28	0.71	1.26	0.87	1.07	1.31	1.35	1.02	0.92	1.25	1.32	1.10	1.17	1.25	0.95	0.98	0.91	1.02	1.01
	1.88	1.29	0.52	0.23	0.21	0.24	0.61	0.69	0.37	0.98	0.63	0.49	0.39	0.34	0.57	0.22	0.24	0.13	0.16	0.31
10																				
15																				
20																		 		
25								 					N183I							
30		K237E			N204T			E271V	N261Y			S242T	N116K			1198V	Q182R	Q137R	N248S	Q206R
35	G159D	V104I	S130L	Q109R	V104I	D181N	V104I	S212P	N252K	S242J	E271Q	V104I	V1041	G258R	E271G	Q182R	V1041	M1191	Q137R	V104I
40	V1041	S103A	V104I	V1041	S103A	V104I	S103A	V104I	V104I	V104I	V104I	S103A	S103A	V104I	V1041	V1041	S103A	V104I	V104I	S103A
	S103A	N76D	S103A	S103A	S99R	S103A	N76D	S103A	S103A	S103A	S103A	N76D	N76D	S103A	S103A	S103A	N76D	S103A	S103A	N76D
45	N76D	H17L	N76D	N76D	N76D	N76D	Q12R	N76D	N76D	N76D	N76D	Q12R	N43S	N76D	N76D	N76D	L21M	N76D	N76D	A13T

5	1.02	1.06	1.26	0.04	0.05	0.04	0.16	0.88	0.03	0.04	0.04	0.04	0.04	0.06	0.16	0.09	0.17	0.14	0.18	0.19
	0.33	0.38	0.84	1.97	1.51	1.40	1.95	2.41	1.34	1.78	2.16	191	2.06	1.73	2.04	3.20	1.83	1.42	1.86	1.87
10																				
15																				
20		 																		
25									K251T											
20									N185D		V244A				G159D	Q236H		G159D		
30		G258R	E271G	N261D	Q206E	Q206E			A133T	N261D	Q206E	S188E	A158E	K251T	L111M	G159D	G159D	V104I	G159D	G159D
35	Q206R	S212P	V104I	Q206E	V1041	V104I	A158E	Q206E	V1041	Q206F	G159D	V104I	V1041	Q206E	V104I	V1041	V104I	S103A	V104I	G146S
40	V1041	V104I	S103A	V104I	S103A	S103A	V1041	V104I	S103A	V104I	V1041	S103A	S103A	V104I	S103A	S103A	S103A	N76D	S103A	V1041
	S103A	S103A	N76D	S103A	N76D	0,77N	S103A	S103A	077N	S103A	S103A	N76D	N76D	S103A	N76D	N76D	N76D	N62H	N76D	S103A
45	N76D	N76D	T58S	N76D	V4E	N76D	N76D	N76D	N76D	N76D	N76D	V4E	V4E	N76D	A48T	V68A	L42V	Q12H	L421	N76D

0.15	0.07	1.42	2.03	1.79	1.78	1.21	0.78	0.44	0.45	0.61	0.12	0.38	0.61	0.11	0.14	0.40	0.34	0.03	0.06	
1.90	1.61	0.44	0.39	0.62	0.11	0.12	1.63	2.37	2.97	3.00	2.71	2.46	2.46	3.31	3.06	3.11	3.12	3.18	2.78	
					-											Q245R				
											E271V					Q236H		T253K	Q236H	
									E271V	Q245R	Q236H				Q236H	G159D	Q236H	Q236H	N184S	
		E271V	E271V	E271V					Q236H	Q236H	L2171			Q236R	G159D	V1211	G159D	Y209S	G159D	
N238S	T224A	V268F	S212P	Q245L	Q245R	P210L	V104I	Q236H	G159D	G159D	G159D	V104I		G159D	V104I	A114V	V104I	G159D	N117K	
G159D	G159D	S212P	V1041	S212P	Q109R	Q109R	S103A	V104I	V104J.	V104I	V1041	S103A	V1041	V104I	S103A	V1041	S103A	V1041	V104I	
V104I	V104I	V104I	S103A	V104I	V104I	V104I	N76D	S103A	S103A	S103A	S103A	N76D	S103A	S103A	N76D	S103A	N76D	S103A	S103A	
S103A	S103A	S103A	S87R	S103A	S103A	S103A	N62S	N76D	N76D	N76D	N76D	V68A	N76D	N76D	L75R	N76D	V68A	N76D	N76D	
N76D	G20V	V68A	V68A	V68A	V68A	H17Q	V68A	V68A	V68A	V68A	Q12R	V68A	V68A							

.

0.57	0.03	0.03	0.04	0.03	0.62	0.03	0.02	0.02	0.03	0.58	0.13	1.73	1.13	1.54	0.8	1.5	0.15	1.09
2.49	3.37	3.11	3.15	3.31	3.26	2.78	3.28	3.34	3.28	2.91	2.86	1.30	1.83	1.28	3.72	0.6	1.91	1.92
												T260A						
					T255S		Q245R		Q245R		Q245R	Q245R		Q245R	L257V			
		Н249Ү		N261D	Q245R	R247H	Q236H	Q245R	Q236H	Q245R	Q236H	Q236H		Q236H	Q245R			L257V
	Q245L	Q236H	H249Q	Q245R	Q236H	Q245R	N204D	Q236H	N218D	Q236H	V203A	A232V		A232V	Q236H	L257V		Q245R
	Q236H	G159D	Q236H	Q236H	G159D	Q236H	A174V	N204D	G159D	A232V	A1941	T213R		P210R	A232V	Q245R		Q236H
<u>д236Н</u>	G159D	N123S	G159D	G159D	S141N	G159D	G159D	G159D	A133V	G159D	G159D	G159D	V104I	G159D	G159D	Q236H	R275H	A232V
V104I	V104I	V104I	V104I	V104I	V104I	V104I	V104I	V104I	V104	V104I	V104I	V104I	S103A	V1041	V104I	A232V	L257V	G159D
S103A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	S103A	N76D	S103A	S103A	V1041	V104I	V.1041
N76D	N76D	N76D	N76D	N76D	N76D	N76D	N76D	N76D	N76D	N76D	N76D	N76D	V68A	N76D	N76D	S103A	S103A	S103A
V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	V68A	T22K	V68A	V68A	N76D	N76D	N76D

5

15

20

25

30

35

40

45

50

55

EP 1 025 241 B1

0.99

3.57 1.92

Q245R

Q236H

G159D Y209W A232V

V1041

S103A

N76D

V68A

20)

1.76	1.06	1.92	1.45	1.72	1.59	1.49	0.68	1.37	1.2	0.76	1.86	1.44	1.14	1.29	1.81	1.53	1.72	1.62	1.08
1.74	3.15	2.33	1.67	2.16	2.77	2.62	2.92	2.17	0.48	2.92	2.09	0.51	1.60	1.35	1.92	1.17	2.01	2.09	3.00
		Q245R			S259G	T260V					Q245R			K251R	A272S	Q245R			
Q245R	Q245R	Q236H	Q245R	Q245R	Q245R	Q245R	N261G	N261W		Q245R	Q236H			N248S	Q245R	Q236H	S256R	Q245R	Q245R
Q236H	Q236H	A232V	Q236H	Q236H	Q236H	Q236H	Q245R	Q245R		Q236H	A232V		Q245R	Q245R	Q236H	A232V	Q245R	Q236H	Q236H
A232V	A232V	Y214L	A232V	A232V	A232V	A232V	Q236H	Q236H	Q245R	A232V	G159D		Q236H	Q236H	A232V	Q206L	Q236H	A232V	A232V
G211R	G211V	G159D	A215R	G159D	G159D	G159D	A232V	A232V	S242P	P210L	V104I	Q245R	A232V	A232V	G159D	N183K	A232V	Q206R	G159D
G159D	G159D	V104I	G159D	V104I	V104I	V104I	G159D	G159D	Q236H	G159D	S103A	Q236H	Y192F	G159D	V1041	G159D	G159D	G159D	V104I
V104I	V104I	S103A	V104I	S103A	S103A	S103A	V104I	V104I	A232V	V104I	N76D	A232V	G159D	V147I	S103A	V104I	V104I	V104I	S103A
S103A	S103A	N76D	S103A	N76D	N76D	S87R	S103A	S103A	V1041	S103A	V68A	V104I	V104I	V104I	N76D	S103A	S103A	S103A	N76D
N76D	N76D	V68A	N76D	V68A	V68A	N76D	N76D	N76D	S103A	N76D	A48V	S103A	S103A	S103A	V68A	N76D	N76D	N76D	V68A
V68A	V68A	Q12R	V68A	Q12R	G20R	V68A	V68A	V68A	N76D	V68A	Q12R	N76D	N76D	N76D	Q12R	V68A	V68A	V68A	K27R

QN	1.23	1.65	0.46	0.77	0.76	1.16	1.12	0.96	1.25	1.01	1.46	1.56	1.74	1.56	1.61	1.85	1.56	1.30	1.30
QN	1.01	0.57	0.86	1.24	1.18	0.52	0.56	0.43	0.42	1.15	0.53	0.69	0.66	0.52	0.70	0.79	0.78	1.25	1.29
Q245R																			
Q236H																			
A232V																	L262S		
N185S																Q245R	Q245R	N261D	
R170S					Y263F								Q245R	Q245R	Q245R	M222S	V227A	Q245R	
G159D		H249R			K237R		E271D				Q245R		V244I	P210T	M222S	A215V	M222S	M222S	Q245R
N116T	Q245R	M222S	M222S	Y263F	M222S	M222S	M222S	M222S	M222S	H249R	M222S	Q245R	M222S	M222S	S130T	S130T	S130T	S130T	M222S
V104I	M222S	V104I	N173R	M222S	V104I	Q109R	Q109R	V1041	Q13ZR	M222S	V1041	A232V	1104T	V104I	1104T	1104T	1104T	1104T	S130T
S103A	V1041	S103A	V104I	V104I	S103A	V104I	V1041	S103A	V104I	V104I	S103A	V104I	S103A	S103A	S103A	S103A	S103A	S103A	1104T
N76D	S103A	N76D	S103A	N76D	N76D	N76D	N76D	N76D	N76D	S103A									
V68A	N76D	Q12R	N76D	N76D	L21M	N76D	N76D	G61R	N76D	N76D	Q12R	N76D	Q12R	Q12R	Q12R	Q12R	Q12R	Q12R	N76D

	[0071] Table 5 lists the variant proteases assayed from Example 1 and the results of testing in four different deter-
	gents. The same performance tests as in Example 2 were done on the noted variant proteases with the following
5	detergents. For column A, the detergent was 0.67 g/l filtered Ariel Ultra (Procter & Gamble, Cincinnati, OH, USA), in
	a solution containing 3 grains per gallon mixed Ca ²⁺ /Mg ²⁺ hardness, and 0.3 ppm enzyme was used in each well at
	20°C. For column B, the detergent was 3.38 g/l filtered Ariel Futur (Procter & Gamble, Cincinnati, OH, USA), in a
	solution containing 15 grains per gallon mixed Ca ²⁺ /Mg ²⁺ hardness, and 0.3 ppm enzyme was used in each well at

EP 1 025 241 B1

0.86

2.09

Q245R

Q236H

A232V

G159D

V104I

S103A

N76D

V68A

•

0.16

1.44

0.04 1.60 1.66

2.01 0.77 0.73

Q245R

N243D

M222S

N185D

R170S

1104T

N76D N76D N76D

V268A

M222S Q245R

S130T S130T

1104T 1104T

Q12R Q12R

S103A

M222S P210S Q245R

S130T M222S Q245R K251Q

1104T S130T

S103A

N76D S103A S103A

S57P

Q12R Q12R

50

45

55

Example 3
[0071] Table 5 lists the variant proteases assayed from Example 1 and the results of testing in four d gents. The same performance tests as in Example 2 were done on the noted variant proteases with detergents. For column A, the detergent was 0.67 g/l filtered Ariel Ultra (Procter & Gamble, Cincinnati, a solution containing 3 grains per gallon mixed Ca ²⁺ /Mg ²⁺ hardness, and 0.3 ppm enzyme was used in 20°C. For column B, the detergent was 3.38 g/l filtered Ariel Futur (Procter & Gamble, Cincinnati, O

25

30

35

10

5

40°C. For column C, 3.5g/l HSP1 detergent (Procter & Gamble, Cincinnati, OH, USA), in a solution containing 8 grains per gallon mixed Ca^{2+}/Mg^{2+} hardness, and 0.3 ppm enzyme was used in each well at 20°C. For column D, 1.5 ml/l Tide KT detergent (Procter & Gamble, Cincinnati, OH, USA), in a solution containing 3 grains per gallon mixed Ca^{2+}/Mg^{2+} hardness, and 0.3 ppm enzyme was used in each well at 20°C.

10			
15			
20			
25			
30			
35			
40			
45			
50			
55			

Table 5

	-	1.26	2.35	1.19	1.31	2.02	2.70	0.80	2.88	1.78	2.07	2.01	2.66	2.78	0.75	2.01	1.06	1 54
Ö	1	1.39	1.65	1.20	1.66	1.60	1.48	1.23	1.41	1.55	1.63	1.62	1.36	1.27	1.31	1.12	1.37	1 53
8	-	1.41	1.49	1.41	1.72	1.38	0.91	1.39	0.86	1.43	1.43	1.47	0.56	0.50	1.38	0.15	1.42	1 40
Ā	-	1.44	2.34	1.05	1.81	2.19	2.91	0.93	2.67	2.22	2.30	2.31	2.63	2.75	1.11	2.27	1.37	2.14
									N252K									
			N252K	N252K	N252K	N252K	N252K	N252K	N248D	N252K	N252K	N252K	N252K	N252K		N252K	N252K	N252K
			N248D	N248D	N248D	N248D	N248D	N248D	Q245R	N248D	N248D	N248D	N248D	N248D	N252K	N248D	N248D	N248D
		N252K	Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	Q236H	Q245R	Q245R	Q245R	Q245R	Q245R	N248D	Q245R	Q245R	Q245R
		N248D	Q236H	Q236H	Q236H	Q236H	Q236H	Q236H	A232V	Q236H	Q236H	Q236H	Q236H	Q236H	Q245R	Q236H	Q236H	Q236H
		Q245R	A232V	A232V	A232V	A232V	A232V	A232V	P210L	A232V	A232V	A232V	A232V	A232V	Q236H	A232V	A232V	A232V
		Q236H	Y209W	G159D	G159D	Y209F	N185D	P210R	N185D	P210L	S212C	S212G	S212E	T213E	A232V	T213E	T213R	A215V
		A232V	G159D	Q109R	V1041	G159D	T213S	G159D	G159D	G159D								
	V1041	G159D	V104I	V1041	S103A	V104I	V104I	V1041	V104I	V104I	V104I	V104I	V1041	V104I	V1041	V1041	V1041	V104I
	S103A	V104I	S103A	S103A	V68A	S103A	A103V	S103A	S103A									
	N76D	S103A	V68A	V68A	G20R	V68A												

45

50	

1.47 1.20	1.56 1.56	1.47 1.87	1.07 2.89	1.29 2.42	1.24 0.95	1.42 2.42	1.30 1.85	1.43 3.22	1.58 1.72	1.59 1.65	1.33 2.58	1.46 0.94	1.31 1.05	0.85 1.18	1.30 2.64	1.37 0.84	1.32 0.73	1.41 2.67	1.53 1.57	
58 1	1.36 1.	1.36 1.	0.33 1.	0.46 1.	1.46 1.	1.00 1.	1.13 1	0.91 1.	1.36 1.	1.46 1.	0.77 1.	1.52 1.	1.41 1.	1.41 0.	0.59 1.	1.4.7	1.50 1.	0.93 1.	1.38 1.	_
1.22 1.	2.12 1.	1.88 1.	2.24 0.	2.43 0.	0.98 1.	2.52 1.	2.05 1.	2.61 0.	2.18 1.	2.14 1.	2.46 0.	1.31 1.	1.21 1.	1.51 1.	2.56 0.	1.02 1.	1.04 1.	2.60 0.	2.31 1.	
+	2.		2	2.		2.	2	2.	2	2.	2		-	-	2.	-		2	2	
				~																
N252K	N252K	N252K	N252K	N252K	N252K			N252F	T255V	S256N	S256E	S256R	T260R	L257R	G258D	N261R			NZ52K	
N248D	N248D	N248D	N248D	N248D	N248D	N252F	N252L	N248D	NZ52K	NZ52K	N252K	N252K	N252K	N252K	N252K	N252K		N252K	N248D	0
Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	N248D	N248D	Q245R	N248D	N252K	N248D	Q245R	10000							
Q236H	Q236H	Q236H	Q236H	Q236H	Q236H	Q245R	Q245R	Q236H	Q245R	N248D	Q245V	Q236H	11000							
A232V	A232V	A232V	A232V	A232V	A232V	Q236H	Q236H	A232V	Q236H	Q245R	Q236H	A232V								
A215R	S216T	S216V	S216C	N173D	Q206R	A232V	A232V	G159D	A232V	A232V	A232N .	A232V	A232V	A232V	A232V	A232V	Q236H	A232V	A228V	10010
G159D	V1041	G159D	A232V	G159D	G159D	111011														
V1041	V104I	V1041	V104I	V1041	V104I	V104I	V104I	S103A	V1041	V1041	V1041	V1041	V104I	V1041	V104I	V1041	V1041	V1041	V1041	C102A
S103A	V68A	S103A	1/201																	
V68A	P55S	V68A																		

1	5

30	

70
15
45

50	

2.29	1.27	1.56	1.15	1.28	3 2.25	1.28	1.45	1.55	1.40	1.72	1.71	1.90	1.33	1.69	2.71	2.40	2.58	1.82	2.46	2 84
1.36	0.89	1.62	1.67	1.11	1.43	Q	Q	g	Q	Q	Q	QN	g	g	Q	QN	QN	Q	Q	C Z
0.97	1.54	1.50	1.72	1.30	0.83	0.07	0.60	0.79	0.41	0.68	0.68	0.27	1.80	1.33	0.55	1.05	2.19	2.16	0.13	1 36
2.10	1.37	2.30	1.72	1.32	2.50	4.20	3.47	4.32	3.14	2.71	2.97	3.50	2.24	3.35	4.88	4.22	5.45	3.76	7.42	543
				T260A																
				Q245R		N252K	N252K	N252K												
N252K		N252K	N252K	Q236H	N252K	N248D	N248D	N248D												
N248D	N252K	N248D	N248D	A232V	N248D	Q245R	Q245R	Q245R	N252K	N252K	N252K	N252K	N252K	N252K	N252K	N252K	N261R	N252K	N252K	N252K
Q245R	N248G	Q245R	Q245R	T213R	Q245R	Q236H	Q236H	Q236H	N248D	N248D	N248D	N248D	N248D	N248D	N248D	N248D	N252K	N248D	N248D	N248D
Q236H	Q245R	Q236H	Q236H	P210L	Q236H	A232V	A232V	A232V	Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	N248D	Q245R	Q245R	Q245R
A232V	Q236H	A232V	A232V	G159D	A232V	S160V	V104I	Y167F	Q236H	, a236H	Q236H	Q236H	Q236H	Q236H	Q236H	Q236H	Q245R	Q236H	Q236H	Q236H
G159D	A232V	N218S	G159D	V1041	G159D	G159D	S103A	G159D	A232V	A232V.	A232V	A232V	A232V	A232V	A232V	A232V	0236H	A232V	A232V	A232V
A133V	G159D	G159D	V1041	S103A	V104I	V104I	N76D	V1041	G159D	G159D	G159D	G159D	G159D	G159D	G159D	G159D	A232V	G159D	G159D	N184D
V1041	V104I	V1041	S103A	E89D	S103A	S103A	V68A	S103A	V104I	V104I	V104I	V104I	V104I	V104I	S106E	Q109E	G159D	Q109R	V1041	G159D
S103A	S103A	S103A	V68A	N76D	N76D	V68A	G61E	V68A	S103A	S103A	S103A	S103A	S103A	S103A	V1041	V1041	V1041	V1041	S103A	V1041
G61E	V68A	V68A	G20R	V68A	V68A	G61E	S3L	G61E	G97E	A98D	S99E	S101E	S101G	G102A	S103A	S103A	S103A	S103A	N62D	S103A

3.97	3.09	2.60	2.54	1.10	2.55	2.40	1.86	1.95	2.47	1.82	1.44	1.99	5.39	1.92	1.36	1.01	2.88	3.84	3.19	2.17
an	QN	QN	QN	QN	QN	DN	QN	QN	QN	QN	Q	QN	Q	QN	Q	DN	QN	QN	Q	QN
1.21	0.95	2.83	1.92	2.61	2.46	2.08	2.04	2.11	1.56	2.09	2.66	2.78	0.94	1.41	0.57	1.86	0.50	1.20	2.10	2.67
5.12	6.38	3.17	4.38	3.05	4.09	2.32	2.34	2.24	2.81	2.30	2.63	2.01	7.74	5.14	4.97	2.41	4.42	5.86	5.87	2.98
													E271Q							
													N252K							
		N252K									S256R	N252K	N248D							N252K
		N248D	N252K	N252K	N252K						N252K	N248D	Q245R	N252K	N252K	N252K	N252K	N252K	N252K	N248D
N252K	N252K	Q245R	N248D	N248D	N248D	N252K	N252K	N252K	N252K	N252K	N248D	Q245R	Q236H	N248D	N248D	N248D	N248D	N248D	N248D	Q245R
N248D	N248D	Q236H	Q245R	Q245R	Q245R	N248D	N248D	N248D	N248D	N248D	Q245R	Q236H	A232V	Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	Q236H
Q245R	Q245R	A232V	Q236H	Q236H	Q236H	Q245R	Q245R	Q245R	Q245R	Q245R	Q236H	A232V	T213R	Q236H	0236H	a236H	Q236H	Q236H	Q236H	A232V
Q236H	Q236H	T213R	A232V	A232V	A232V	Q236H	V244T	V244A	Q236H	Q236H	A232V	T213R	Q206E	A232V	A232V	A232V	A232V	A232V	A232V	S212G
A232V	A232V	G159D	T213R	L217E	Q206R	A232V	Q236H	Q236H	A232V	A233V ,	T213R	G159D	N185D	N185D	Q206E	72130	G159D	G159D	S212G	G159D
S166U	L217E	V1041	G159D	Q206R	G159D	·N184G	A232V	A232V	G159D	G159D	G159D	V1041	G159D	G159D	G159D	G159D	V1041	V1041	G159D	V1041
G159D	G159D	S103A	V104I	G159D	V104I	G159D	G159D	G159D	V1041	V1041	V1041	S103A	V1041	V1041	V104I	V1041	S103A	S103A	V104I	S103A
V1041	V1041	N62D	S103A	V1041	S103A	V1041	V104I	V1041	S103A	S103A	S103A	N62D	S103A	S103A	S103A	S103A	G102A	G102A	S103A	G102A
S103A	S103A	G20R	N62D	S103A	N62D	S103A	S103A	S103A	K27N	T38G	N62D	Q12R	N62D	S101G	S101G	S101G	A98L	S101G	G102A	Q12R

5

15

20

25

30	
35	
40	
45	

55

4.02 0.41 ND 2.25	6.63 2.07 ND 2.08	2.03 2.48 ND 2.25	2.96 2.76 ND 2.34	2.74 2.10 ND 1.86	2.11 2.35 ND 1.49	3.42 0.71 ND 2.58	2.59 1.32 ND 1.61	1.30 1.23 ND 9.0	2.94 0.71 ND 1.08	3.17 0.83 ND 2.35	2.15 1.38 ND 1.77	3.07 0.07 ND 1.45	2.26 1.16 ND 3.05	1.82 1.34 ND 1.08	2.16 1.47 ND 1.20	1.79 1.38 ND 1.01	1.15 1.18 ND 8.7	1.47 1.23 ND 1.03	
N252K	N252K		N252K			NZ52K				N252K	N252K	N252K							
N248D	N248D	N252K	N248D			N248D	N252K	N252K	N252K	N248D	N248D	N248D	N252K	N252K	N252K	N252K	N252K	N252K	102011
0245R	Q245R	N248D	Q245R			Q245R	N248D	N248D	N248D	Q245R	Q245R	Q245R	N248D	N248D	N248D	N248D	N248D	N248D	007014
Q236H	Q236H	Q245R	Q236H			Q236H	Q245R	Q245R	Q245R	Q236H	Q236H	Q236H	Q245R	Q245R	Q245R	Q245R	Q245R	Q245R	03700
A232V	A232V	Q236H	A232V	N252K		A232V	Q236H	а236Н	Q236H	A232V	A232V	A232V	Q236H	0236Н	Q236H	а236Н	Q236H	0236H	119000
S212G	S212G	A232V	T213R	N248D		T213R	A232V	A232V	A232V	T213R	T213R	T213R	A232V	A232V	A232V	A232V	A232V	A232V	11000
G159D	G159D	T213R	G159D	Q245R	Q245R	G159D	G159D	G159D	G159D	G1590 .	G159D	G159D	G159D	G159D	G159D	S212G	Y209W	P2101	12061
V104I	V104I	G159D	Q109R	A232V	A230V	S130G	S130G	S128G	S128L	V1041	S128G	S128L	P131V	V104I	V104I	G159D	G159D	G159D	C1500
S103A	S103A	V104I	V104I	G159D	G159D	V1041	V1041	V1041	V1041	S103A	V1041	V1041	V104I	S103A	S103A	V104I	V1041	V104I	11041
G102A	G102A	S103A	S103A	V104I	V1041	S103A	S103A	S103A	S103A	S101G	S103A	S103A	S103A	S101G	S101G	S103A	S103A	S103A	V 1010
A98L	S101G	G102A	N62D	S103A	S103A	N62D	S101G	S101G	S101G	N62D	N62D	N62D	S101G	A98V	966S	S101G	S101G	S101G	01010

66

EP 1 025 241 B1

1.10 1.25

g Q

1.30 0.80

1.96 2.49

Q245R N248D N252K N252K

N248D

Q245R Q236H

Q236H A232V

A232V A194P

A194P G159D

G159D V1041

S103A S101G

S101G N76D

S103A V104I

5			
10			
15			
20			
25			
30			
35			
40			
45			
50			
55			

Claims

- A protease variant comprising an amino acid substitution at a residue position corresponding to position 103 and an amino acid substitution at a residue position corresponding to position 245 of Bacillus amyloliquefaciens sub-5 tilisin and one or more amino acid substitutions at residue positions selected from the group consisting of residue positions corresponding to positions 1, 3, 4, 8, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 27, 33, 37, 38, 42, 43, 48, 55, 57, 58, 61, 62, 68, 72, 75, 76, 77, 78, 79, 86, 87, 89, 97, 98, 99, 101, 102, 104, 106, 107, 109, 111, 114. 116, 117, 119, 121, 123, 126, 128, 130. 131, 133, 134, 137, 140, 141, 142, 146, 147, 158, 159, 160, 166, 167, 170, 173, 174, 177, 181, 182, 183, 184, 185, 188, 192, 194, 198, 203, 204, 205, 206, 209, 210, 211, 212, 213, 10 214, 215, 216, 217, 218, 222, 224, 227, 228, 230, 232, 237, 238, 240, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 265, 268, 269, 270, 271, 272, 274 and 275 of Bacillus amyloliquefaciens subtilisin; wherein when a substitution at a position corresponding to residue position 103 is combined with a substitution at a position corresponding to residue position 76, there is also a substitution at one or more residue positions other than residue positions corresponding to positions 27, 99, 101, 104, 107, 109, 123,
- 15

20

25

30

- 128, 166, 204, 206. 210, 216, 217, 218, 222, 260, 265, or 274 of Bacillus amyloliquefaciens subtilisin.
- 2. The protease variant of claim 1 including substitution of the amino acid residues at position 236.
- The protease variant of claim 1 including substitutions of the amino acid residues at positions 103 and 245 and al 3. one or more of positions 1, 9, 12, 61, 62, 68, 76, 97, 98, 101, 102, 104, 109, 130, 131, 159, 170, 183, 185, 205, 209, 210, 211, 212, 213, 215, 217, 222, 230, 232, 248, 252, 257, 260, 261, 270 and 275.
 - The protease variant of claim 1 including substitutions of the amino acid residues at positions 103, 236 and 245 4. and at one or more of positions 1, 9, 12, 61, 62, 68, 76, 97, 98, 101, 102, 104, 109, 130, 131, 159, 183, 185, 205, 209, 210, 211, 212, 213, 215, 217, 230, 232, 243, 248, 252, 257, 260, 270 and 275.
 - 5. The protease variant of any one of claims 1 to 4 including a substitution of the amino acid residue at position 159.
- 6. The protease variant according to claim 1 which is derived from a Bacillus subtilisin.
 - 7. The protease variant according to claim 6 which is derived from Bacillus lentus subtilisin.
 - 8. A DNA encoding a protease variant of claim 1.
- 35 9. An expression vector encoding the DNA of claim 8.
 - **10.** A host cell transformed with the expression vector of claim 9.
 - **11.** A cleaning composition comprising the protease variant of claim 1.
- 40
- **12.** An animal feed comprising the protease variant of claim 1.
- **13.** A composition for treating a textile comprising the protease variant of claim 1.
- 45 14. The protease variant according to claim 1 comprising a substitution set selected from the group consisting of residue positions corresponding to positions in Table 1 of Bacillus amyloliquefaciens subtilisin.
 - 15. The protease variant according to claim 14 comprising a substitution set selected from the group consisting of residue positions corresponding to positions in Table 3 of Bacillus amyloliquefaciens subtilisin.
- 50
- 16. The protease variant according to claim 14 comprising a substitution set selected from the group consisting of residue positions corresponding to positions in Table 2 of Bacillus amyloliquefaciens subtilisin.

55 Patentansprüche

1. Protease-variante, umfassend eine Aminosäuresubstitution an einer Position eines Rest, welche Position 103 von Bacillus amyloliquefaciens-Subtilisin entspricht, und eine Aminosäuresubstitution an einer Position eines Rests,

welche Position 245 von *Bacillus amyloliquefaciens*-Subtilisin entspricht, und eine oder mehrere Aminosäuresubstitutionen an Positionen von Resten, ausgewählt aus der Gruppe bestehend aus Positionen von Resten entsprechend den Positionen 1, 3, 4, 8, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 27, 33, 37, 38, 42, 43, 48, 55, 57, 58, 61, 62, 68, 72, 75, 76, 77, 78, 79, 86, 87, 89, 97, 98, 99, 101, 102, 104, 106, 107, 109, 111, 114, 116, 117, 119, 121, 123, 126, 128, 130, 131, 133, 134, 137, 140, 141, 142, 146, 147, 158, 159, 160, 166, 167, 170, 173, 174, 177, 181, 182, 183, 184, 185, 188, 192, 194, 198, 203, 204, 205, 206, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 222, 224, 227, 228, 230, 232, 237, 238, 240, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 265, 268, 269, 270, 271, 272, 274 und 275 von *Bacillus amyloliquefaciens*-Subtilisin; wobei, wenn eine Substitution an einer Position, die der Position eines Rests 103 entspricht, mit einer Substitution an einer Position, die der Position eines Rests 76 entspricht, kombiniert wird, es auch eine Substitution an einer oder mehreren anderen Positione von Resten als den Positionen von Resten, die den Positionen 27, 99, 101, 104, 107, 109, 123, 128, 166, 204, 206, 210, 216, 217, 218, 222, 260, 265 oder 274 von *Bacillus amyloliquefaciens*-Subtilisin entsprechen, gibt.

- ¹⁵ **2.** Protease-Variante nach Anspruch 1, welche eine Substition der A-minosäurereste an Position 236 umfasst.
 - **3.** Protease-Variante nach Anspruch 1, welche Substitutionen der Aminosäurereste an den Positionen 103 und 245 und an einer oder mehreren der Positionen 1, 9, 12, 61, 62, 68, 76, 97, 98, 101, 102, 104, 109, 130, 131, 159, 170, 183, 185, 205, 209, 210, 211, 212, 213, 215, 217, 222, 230, 232, 248, 252, 257, 260, 261, 270 und 275 umfasst.
 - **4.** Protease-Variante nach Anspruch 1, welche Substitutionen der Aminosäurereste an den Positionen 103, 236 und 245 und an einer oder mehreren der Positionen 1, 9, 12, 61, 62, 68, 76, 97, 98, 101, 102, 104, 109, 130, 131, 159, 183, 185, 205, 209, 210, 211, 212, 213, 215, 217, 230, 232, 243, 248, 252, 257, 260, 270 und 275 umfasst.
- Protease-Variante nach einem der Ansprüche 1 bis 4, welche eine Substitution des Aminosäurerests an Position 159 umfasst.
 - 6. Protease-Variante nach Anspruch 1, die. von einem Bacillus-Subtilisin abgeleitet ist.
- 30 7. Protease-Variante nach Anspruch 6, die von einem *Bacillus lentus*-Subtilisin abgeleitet ist.
 - 8. DNA, welche eine Protease-Variante nach Anspruch 1 kodiert.
 - 9. Expressionsvektor, der die DNA nach Anspruch 8 kodiert.
 - 10. Wirtszelle, die mit dem Expressionsvektor nach Anspruch 9 transformiert ist.
 - 11. Reinigungszusazrunensetzung, die die Protease-Variante nach Anspruch 1 umfasst.
- 40 **12.** Tierfutter, umfassend die Protease-Variante nach Anspruch 1.
 - 13. Zusammensetzung zur Behandlung eines Gewebes, umfassend die Protease-Variante nach Anspruch 1.
 - 14. Protease-Variante nach Anspruch 1, umfassend einen Satz von Substitutionen, ausgewählt aus der Gruppe bestehend aus Positionen von Resten, welche Positionen in Tabelle 1 von *Bacillus amyloliquefaciens*-Subtilisin entsprechen.
 - **15.** Protease-Variante nach Anspruch 14, umfassend einen Satz von Substitutionen, ausgewählt aus der Gruppe bestehend aus Positionen von Resten, welche Positionen in Tabelle 3 von *Bacillus amyloliquefaciens*-Subtilisin entsprechen.
- -1----
 - **16.** Protease-Variante nach Anspruch 14, umfassend einen Satz von Substitutionen, ausgewählt aus der Gruppe bestehend aus Positionen von Resten, welche Positionen in Tabelle 2 von *Bacillus amyloliquefaciens*-Subtilisin entsprechen.
- 55

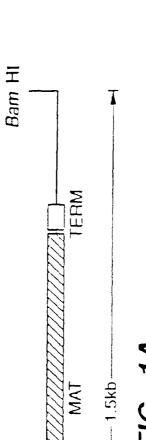
10

20

35

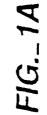
45

50


Revendications

- Variante de protéase comprenant une substitution d'acide aminé à une position d'un résidu correspondant à la 1. position 103 et une substitution d'acide aminé à une position d'un résidu correspondant à la position 245 de la 5 subtilisine de Bacillus amyloliquefaciens et une ou plusieurs substitutions d'acides aminés aux positions des résidus choisies dans le groupe constitué par les positions des résidus correspondant aux positions 1, 3, 4, 8, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 27, 33, 37, 38, 42, 43, 48, 55, 57, 58, 61, 62, 68, 72, 75, 76, 77, 78, 79, 86, 87, 89, 97, 98, 99, 101, 102, 104, 106, 107, 109, 111, 114, 116, 117, 119, 121, 123, 126, 128, 130, 131, 133, 134, 137, 140, 141, 142, 146, 147, 158, 159, 160, 166, 167, 170, 173, 174, 177, 181, 182, 183, 184, 185, 188, 192, 10 194, 198, 203, 204, 205, 206, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 222, 224, 227, 228, 230, 232, 237, 238, 240, 242, 243, 244, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 265, 268, 269, 270, 271, 272, 274 et 275 de la subtilisine de Bacillus amyloliguefaciens ; dans laquelle lorsqu'une substitution à une position correspondant à la position du résidu 103 est combinée à une substitution à une position correspondant à la position du résidu 76, il y a aussi une substitution à une ou plusieurs positions de 15 résidus autres que les positions de résidus correspondant aux positions 27, 99, 101, 104, 107, 109, 123, 128, 166, 204, 210, 216, 217, 218, 222, 260, 265, ou 274 de la subtilisine de Bacillus amyloliquefaciens.
 - 2. Variante de protéase selon la revendication 1, comprenant une substitution des résidus d'acides aminés à la position 236.
- 20
- 3. Variante de protéase selon la revendication 1, comprenant des substitutions des résidus d'acides aminés aux positions 103 et 245 et à une ou plusieurs des positions 1, 9, 12, 61, 62, 68, 76, 97, 98, 101, 102, 104, 109, 130, 131, 159, 170, 183, 185, 205, 209, 210, 211, 212, 213, 215, 217, 222, 230, 232, 248, 252, 257, 260, 261, 270 et 275.
- 25 4. Variante de protéase selon la revendication 1, comprenant des substitutions des résidus d'acides aminés aux positions 103, 236 et 245 et à une ou plusieurs des positions 1, 9, 12, 61, 62, 68, 76, 97, 98, 101, 102, 104, 109, 130, 131, 159, 183, 185, 205, 209, 210, 211, 212, 213, 215, 217, 230, 232, 243, 248, 252, 257, 260, 270 et 275.
 - 5. Variante de protéase selon l'une quelconque des revendications 1 à 4, comprenant une substitution du résidu d'acide aminé à la position 159.
 - 6. Variante de protéase selon la revendication 1, qui est dérivée d'une subtilisine de Bacillus.
 - 7. Variante de protéase selon la revendication 6, qui est dérivée de la subtilisine de Bacillus lentus.
 - ADN codant pour une variante de protéase selon la revendication 1. 8.
 - Vecteur d'expression codant pour l'ADN selon la revendication 8. 9.
- 40 10. Cellule hôte transformée avec le vecteur d'expression selon la revendication 9.
 - **11.** Composition de nettoyage comprenant la variante de protéase selon la revendication 1.
 - **12.** Aliment pour animaux comprenant la variante de protéase selon la revendication 1.
 - **13.** Composition destinée au traitement d'un textile comprenant la variante de protéase selon la revendication 1.
 - 14. Variante de protéase selon la revendication 1, comprenant un jeu de substitutions choisi dans le groupe constitué par les positions des résidus correspondant aux positions dans le tableau 1 de la subtilisine de Bacillus amyloliquefaciens.
 - 15. Variante de protéase selon la revendication 14, comprenant un jeu de substitutions choisi dans le groupe constitué par les positions des résidus correspondant aux positions dans le tableau 3 de la subtilisine de Bacillus amyloliquefaciens.
- 55
- 16. Variante de protéase selon la revendication 14, comprenant un jeu de substitutions choisi dans le groupe constitué par les positions des résidus correspondant aux positions dans le tableau 2 de la subtilisine de Bacillus amyloliquefaciens.

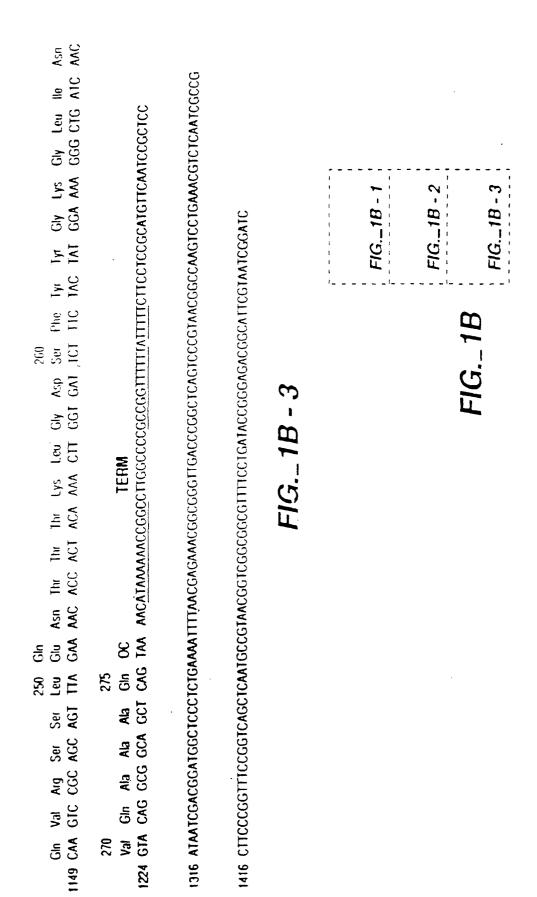
45


50

30

Cla I Pvu II

<u></u>


RBS - PRE - PRO

	Ser 1CC	Met ATG	Ata GCA	Asp GAT	CAA C	Val GIA
	Thr ACA	The ACG	Asp	Clu GM	Ser TCT	Lys AAG
-107 Mel GTG	Ser	Ser AGC	Val GIA	Or Gu	His CAC	Leu 17A
AAGA	Col Col	-60 Met ATG	זאד 1 אד	Cal GTI GTI	Lei CIG	Asp GAT
<u>i</u> <u>G</u> ATA	Phe TTC	Thr ACA	۶ ۲	1yr TAC	Ala GCT	40 Pro CCT
HBS	Ala GCG	Gh CAG	Phe TTC	Ala GCT	Pro	His CAT
H	Met ATG	Lys AM	CAA CAA	Val GTC	Ala GCC	Ser TCT
WW	ACG	Phe TTT	Lys AGG	Ser AGC	Lys AAA	Ser TCT
MATG	Phe	Gly GGG	CAA CAA	Pro CCG	ATT ATT	Asp GAT
CLGCA	ATC	Val GTC	Val GIG	onc GAC	C G C	lle AIC
ταιτο	Ala Leu GCG TTA	o ≝ PIT	کر کر	₹ ^L	Ser TCA	Gly 661
	Ata GCG	PRO Tyi lle TAT AT	Gly GGG	₹ ¹	Val GI A	Ser AGC
ICTM	Leu Leu	کم کم	Gly GGC	Leu TTG	Gy GGC	Asp GAC
1010	Ata GCT	-70 Lys MG	AN Lys	CAA Glu	Tyr TAC	llo ATC
ννταν	Phe	Glu G∕A	Glu	MM MM	Pro CCT	30 GTT GTT
ACAG		Gly GGG	Ser 1C1	CIA GIA	Val GTG	Ma GCG
ATAC	PRE Leu Leu TTG CTG	Asn AAC	lle ATT	Ala GCT MAT	Ser TCC	Val GTA
WITA	Ser AGT	Ser TCA	val GTĆ	SA I	Gh CAG	Lys AAA
) ATACI	-100 lle ATC	MA	So Asp GAT	Glu	- Na GCG	Val GIT
VIACT	1 ¹⁰	Gly Lys GGG ANA	AM	Asn AAC	Tyr TAC	Asn AAT
	Val GTA	Ala SCA	Lhs Ang	Leu	Ala GCG	Ser TCA
ATTA	Lys AAA	Gin Ala / CAG GCG (Lys	Thr ACA	His CAT	Gly GGA
P	AVA	C Qu C Qu	Ala GCT	Ala GCT	Ala GCA	Thr ACT
D P CETECTAAAATATTATTCCAIACIAITAATACACAGAATAATCGGACAGAAAAAGGGGATAAAGG GTG	Gly Lys I GGC AAA /	Aa GCC	Ala GCC	-30 Ser 1CA	Val GTA	Tyr TAC
5)	Arg AGA	Ser	Ser AGC	Ala GCT	His CAC	CC CC CC S
· -	66	174	249	324	333	474

FIG._1B - 1

Ala GCC	Lrs M	Met	Ala GCA	Gly GGT	Pro CCT	Gly GGT	Ihr ACT
	Val Ly GTA N		Val A GIT G	Pro G CCT G	Cly CGA CCA C		Asn It AAC AC
C GIT		Asn MI					
His CAC	Ala GCT	Asn AC	Ala GCC	Tyr TAC		1yr 1AC	Thi
Thr ACT	Tr TAC	Ala GCA	M Lr		Ser AGC		1p 166
Gly GGA	90 BL	IIe ATC	140 Asp GAT		Ser Ser 190		240 Asn AAC
His CAC	Ala Ser TCA	Ala GCG	Val GTT		Phe	Ty TAC	Pro CCG
Ser TCT	Ser Ala GCA	Trp TGG	Ala GCA	Ser AGC	Ser TCT	VV VV	His CAC
Asn AAC	Ser AGC	Glu	Ala GCG		Ala GC A	Asn	Lys AAG
Asn Asn AAC	Pro CCA	A AIC 0	Ly5 AAA	Ser AGC	Arg AGA	Gly GGA	
60 CAC GAC	Ala GCG	GCV GGV GGV	Leu TIA	160 Gly GGC	C AA	210 Pro CCT	Leu CTT
CAA CAA	kal GTT	Asn	Ala GCT	Thr Ser TCC	Asn MC	Leu	
Phe TTC	Gly GGC	lle ATT	Ala GCT	Ser Thr ACT	Sei Ser AGC AGC	Thr ACG	I TG
Asn Pro CCT	Leu TIA	lle ATC	Ser TCT	Cly GGC			
Pro Asn AAT	Val GTA	1rp 166	Gly GGT	Glu	Asp GAC	CAA CAA CIn	Aa GCT
Ihr ACA	80 Gly GGT	Ser AGC	130 Ser TCT	Asn AAC	teo Val GTT		230 Gly Ala Ala Ala Leu Ile L 5 GGA GCG GCT GCT TTG ATT C FIG1B - 2
Glu GAA	lle ATC	Tyr TAC	Pro CCT	Gly GGT	Ala GCT		CGA GGA
Ser TCT	Ser TCA	CAA CAA	Gly⊅° Gly GGÇ, GGA	Ala GCC	Gly GGC		Ala GC(
Pro CCT	Asn AAC	Gly GGC	Cly *	Ala GCA	Val GTA	Gly GGC	Val GIT
Val GTT	Asn AAT	Ser TCC	Leu CTC	Ata GCG	Ala GCA	Pro	His CAC
50 Met ATG	Leu	100 GGY GGT	Ser AGC	tso Val GTT	lle ATT	200 Ala GCA	Pro
Ser AGC	Ala GCT	Ala Asp GAC	Met	val GTC	Val GTC	Met ATG	Ser ICT
Ala	Ala GCG	Asp Ala GCT	Asn AAC	Val GTA	Ser TCT	Val GTC	Ala GCA
GIY GGA	Val GTT	GU GGT	ATT ATT	Val GTC	Pro	Asp GAT	Met ATG
Cly GGC	Thr ACA	Leu CTC	Val GTT	CGC CGV	Tyr TAC	Leu	Ser 1CA
Ala GCA	000 000 200	Val GIT	120 Asp GAC	Ser TCC	M M	Glu GAG	220 11hr ACG
549	024	669	774	849	924	666	1074

.

CONSERVED RESIDUES IN SUBTILISINS FROM BACILLUS AMYLOLIQUEFACIENS																		
1 A Q	s	v	P	•	G	•	•	1(•)	•	A	P	A	•	н	•	•	20 G
21 . T	G	s	•	v	R	v	A		о	D	•	G	•		•	•	н	40 P
41 D L	•	•	•	G	G	A	s	5(•	v	P	•	•	•	•	•	•	Q	60 D
61 . N	•	H	G	Т	H	v	A			•		A	L	N	N	S	I	80 G
81 V L	G	v	A	P	S	A	•	9(L			v	R	v	L	G	A		.00 G
101 S G		•	s	٠	L	•		L10 G		E	W	A		N		•		.20
121 V .		•	S	L	G	•		130 S		S	•	•	•		•	A		40 •
141	•			G	v	•	v v	L50 V) A	A	•	G	N		G	•		.60 •
161 		•	•	•	Y			.70			•	٩	•	A	v	G		80 j
181 D .		ท	•	•	A		F	.90 S			G	•	•	L	D		2	
201 P G	v	•	•	Q	S	T		210 P		•	•	Y	•	•	•	N	2 G	
221 S M		•	P	н	v	A		230 A		A	L	•	•	•	ĸ	•		4 0 •
241 W .	•		Q	•	R	•		250 L		N	т	•		•	L	G	2	60
· 261		G	•	G	L			270		A	A	•	•					

CONSERVED RESIDUES IN SUBTILISING FROM

FIG._2

	4 4 4 A	0000	додн	0 0 0 N
	нншн	нччч	$\Sigma \Sigma \Sigma \Sigma$	0 ~ ~ ~
	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	S S F S	zzuu	A N N H
	NNAF	z z z z	z z z z	0000
	adas	ZZQZ	A S F N	8 800
	ннн	гггг	ннғо	z z z z
	0000	RRAR	K K K K	0000
	S S F F	AAAA	3333	~ < < < \since s
	<u> </u>	ッエッエ	ម្លាម	KKKK
	сгнч С	0 4 4 4 4	10	50 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	0000000	0000	HOOOO	
	\mathbf{x} \mathbf{x} \mathbf{x}	* * * *	ατνα	> > > >
	> > > >	ightarrow	H H $>$ \blacktriangleleft	て へ へ へ
	x x x x	ннн	нннн	シェッシ
	> > > >	* * * *	3 3 U N	0000
	zzzo	0000	νυνυ	N N K K
	ນ າ ∧ ນ	$H \equiv H \equiv$	へよよよ	4 5 4 5
	0000	0000	αανν	マッド
	H H X H	ΧωΧΧ	0000	AAAA
	L F K 0	o z u u u	000000	0 X X X N
	00000			H D D D X
	adam	aafa		
W:	N N N	5 · · · · · · · · · · · · · · · · · · ·	A 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A > A A
FROM:	HHOH	A A X S	UQZU	A F Q Q
	A C C C	ZZXA	コロロレ	ししぼし K K K E
SEQUENCES	4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	88888 8888	K K K K > > > > >	A A A T I I Y I
N N N	A H H A H H A H H	- NNGG		AHHA
au	K X K Q	0, 0, 0 0 0, 0, 0 0	AAAA	<u>.</u>
SE	ннн>	>>>>	· · · · · · · · · · · · · · · · · · ·	
NIS	H C C L C L C L C L C L C L C L C L C L	о 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	оралал	8 H 8 H 8 H 8 H 8 H 8 H 8 H 8 H 8 H 8 H
	N N N N N	0 0 0 0 0 0 0 0 0	ស្ត្រស្ត	<u>6</u> , 6, 6 , 6,
18 2	>ннн	AAAA	AAPA	0000
SU	0000	0000	ສູນສູນ	0000
OF aci	X X X X	0.00.0	<u> </u>	2222
NC Im	ם ם ם ם ם	4 H > H	ANAA	νυνυ
lig ifo	>>>>	>>>H	>>>>	MMM
AF ylo ytii nen tus	N N F N	× z z z	0000	z z z z
M M M	aaaa	адада	адад	чннч
MPARISON OF SUBTILISIN S myloliquefaciens B. subtilis B. licheniformis B. lentus	0 A A A A	4 0000	8 > > > >	4 2 2 2 2

FIG._3A

			, -,
			- A
AAAA	NHNN		FIG3A
$\Sigma \Sigma \Sigma >$	5 6 6 6 6		FIG
> > > H	HHHN		
	K X K X		
н ц ц ц	συνα		ι Ω
ыпыр	ししして	adar	91
4 N K K	н н н >	AAAH	5
0000	нана на	AAAA	E L
マスマズ	AAAA	AAAA	
00 x x x Q	30	E 0	
	NEEEE	27 27 1 4 4 4 7 1 4 7 1 4 7 1 4 7 1 4 7 1	
	0000	ZZZZ	
νυνα	A A A A	ннн>	
~ ~ ~ ~		רבר סממ	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	н н н а а а	X X X N O O O O O	
a a z z z z s z	о т о т и и и	5000	
2202 0022	A A A A	X X X X	
00044 00004	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	「ススス	B
OQZQQ	0 0 0 0 0 0	OHEHZ	<i>ω</i>
$\mathbf{T} \mathbf{V} \mathbf{V} \mathbf{I} \mathbf{I} \mathbf{R} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$	4445	H 2 2 6	
AAAA	0000	σχνν	FIG.
0000	ZZZZ	0000	Ē
>>>>	てはよよ	сттг	
AAAA	A A F N	と ア ア ら	
нннΣ	৩ ৩ ৰ ৰ	8 8 8 8 8	
\mathbf{r}	ホムよス	HAAA	
s s s z	K H H H	888	
	ΧΩΧ Ω	x n n z	
KKKKO	OUDFD	<u>о н н о к</u>	
1 X X X X 7	1 24444	U L L L L L L L L L L L L L L L L L L L	
UAAA	KKE	У К К Н	
	8 8 8 8 8 °	SAZZ	
太太太太	ນ ນ ນ ນ	K K K K	
0000	aaxa	> $>$ $>$ H	
ightarrow $ ightarrow$ $ ig$	н н > >	aaaa	
E+ E+ E+ +	0 0 0 2	ホネジン	
ທ ທ Z *	ightarrow	ZZĘZ	
1 2 5 5 5 4 7 9 7 9 7 1 9 7	00000 0000	4 H H N N	
+ v v v +	7 4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 3 3 1 3	