(12)

Europäisches Patentamt
European Patent Office

Office européen des brevets

EP 1 029 791 A2

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:23.08.2000 Patentblatt 2000/34

(21) Anmeldenummer: 00100453.0

(22) Anmeldetag: 10.01.2000

(51) Int. CI.⁷: **B65B 57/10**

(11)

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

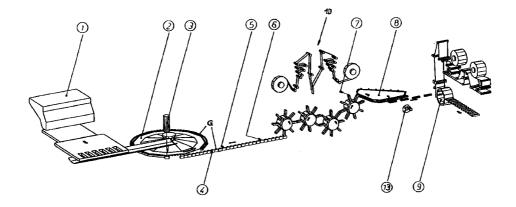
(30) Priorität: 18.02.1999 DE 19906837

(71) Anmelder:

Pactec Verpackungsmaschinen-Fabrik Theegarten GmbH & Co. KG 01237 Dresden (DE) (72) Erfinder:

- Wehner, Gert 01474 Rockau (DE)
- Seibt, Wilfried 01189 Dresden (DE)
- Stephan, Eberhard 01307 Dresden (DE)

(74) Vertreter:


Grünecker, Kinkeldey, Stockmair & Schwanhäusser Anwaltssozietät Maximilianstrasse 58 80538 München (DE)

(54) Verfahren und Vorrichtung zum Verpacken kleinstückiger Günter in gestapelter Anordnung

(57) Bei einem Verfahren zum Verpacken kleinstükkiger Güter in gestapelter Anordnung, bei dem die Güter einzeln aufeinanderfolgend angefördert werden, werden die angeförderten Güter erfaßt und auf Fehler und/oder auf vollständiges Fehlen hin untersucht. Mehrere erfaßte Güter werden einer bestimmten Stapelverpackung zugeordnet. Bei Feststellung eines fehlerbehafteten oder vollständig fehlenden Gutes wer-

den alle derjenigen Stapelverpackung zugeordneten Güter vor einem Endverpackungsvorgang ausgesondert, der auch das fehlerbehaftete oder fehlende Gut zugeordnet ist. Weiterhin wird eine entsprechende Vorrichtung angegeben. Hierdurch läßt sich bei hohem Durchsatz die Fehlerrate von fertigen Stangenverpakkungen verringern.

Fig.1

Beschreibung

[0001] Die Erfindung betrifft ein Verfahren zum Verpacken kleinstückiger Güter in gestapelter Anordnung, bei dem die Güter einzeln aufeinanderfolgend angefördert werden. Weiterhin betrifft die Erfindung eine Vorrichtung zum Verpacken kleinstückiger Güter in gestapelter Anordnung mit Fördervorrichtungen zum aufeinanderfolgenden Transport der einzelnen Güter zu einer Endverpackungsvorrichtung zur Einhüllung von mehreren Gütern in gestapelter Anordnung in einer Stapelverpackung.

[0002] Unter kleinstückigen Gütern werden räumlich kompakte Körper verstanden, wie beispielsweise Bonbons, Karamellen oder Konfekt oder vergleichbare Produkte der Süßwarenindustrie. Diese werden bisweilen dem Endverbraucher in gestapelter Anordnung in sogenannten Stapel- bzw. Stangenverpackungen angeboten, wobei mehrere einzelne Güter in dichter Anlage hintereinander gemeinsam zusammengepackt und mit einem Packmittel umhüllt sind. Die einzelnen Güter können dabei selbst wiederum individuell in eine Verpakkung eingeschlagen sein. Alternativ hierzu können die Güter auch ohne Einzelverpackung zusammengepackt werden. Solche Stapel- bzw. Stangenverpackungen sind aus dem Stand der Technik generell bekannt.

[0003] Das Zusammenpacken mehrerer Einzelgüter in gestapelter Anordnung in einer gemeinsamen Verpackung ist relativ fehleranfällig, da bei herkömmlichen Stapel- bzw. Stangenverpackungen ein Fehler bei einem einzigen Gut oder ein Fehler während des Anstapelns oder Einschlagens in die gemeinsame Endverpackung zu einem Ausschuß nicht nur des betreffenden Gutes, sondern der gesamten Stangenverpackung und folglich sämtlicher, mit dem betreffenden Gut gemeinsam verpackter Güter führt. Kleine Fehler führen somit bereits schnell zu relativ großen Effizienzeinbußen.

[0004] In der gegenwärtigen Verpackungstechnologie besteht ein starkes Bestreben, die Verpackungsgeschwindigkeit, d.h. den Durchsatz an zu verpackenden Gütern je Maschine und Zeiteinheit zu erhöhen. Mit der Erhöhung der Verpackungsgeschwindigkeit wächst tendentiell auch die Fehlerrate, beispielsweise durch zunehmende Beschädigung von einzelnen Gütern aufgrund der erhöhten Geschwindigkeit sowie hieraus resultierende Störungen, die zu Fehlern in der Anförderung der einzelnen Güter führen können, so daß beispielsweise an einer vorgesehenen Stelle innerhalb der Stangenverpackung kein Gut vorhanden oder der Verpackungszustand der Einzelverpackung eines Gutes unvollkommen ist.

[0005] Werden keine Maßnahmen gegen das Auftreten fehlerhafter Güter bzw. das Auftreten von Leerstellen in einer Stangenverpackung ergriffen, so führt dies zu einer fehlerhaften Endverpackung (Stangenverpackung), die dann ausgesondert werden muß.

[0006] Herkömmlich werden auftretende Leerstellen mit Hilfe sogenannter Güternachlegeeinrichtungen

beseitigt, bei denen eine Leerstelle durch ein außer der Reihe extern zugeführtes Gut gefüllt wird. Bei dieser Lösung ist nachteilig, daß insbesondere bei direkt aufeinanderfolgenden Leerstellen die Nachlegeeinrichtung die gleiche Geschwindigkeit erreichen muß wie die Verpackungsvorrichtung. Die Leistungsgrenze solcher Nachlegeeinrichtungen liegt bei einer Arbeitsgeschwindigkeit von ca. 1.000 Gütern pro Minute. Hierin liegt eine deutliche Leistungsgrenze für Verfahren bzw. Vorrichtungen zum Verpacken kleinstückiger Güter in gestapelter Anordnung im Hinblick auf Steigerungsmöglichkeiten des Durchsatzes an Gütern. Außerdem ist das Einschleusen von fehlenden Gutstücken wegen der Störung des Hauptprozesses störanfällig.

[0007] Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren sowie eine Vorrichtung zum Verpacken kleinstückiger Güter in gestapelter Anordnung anzugeben, das bei geringer Fehlerrate eine hohe Verpackungsgeschwindigkeit ermöglicht.

[0008] Diese Aufgabe wird verfahrensseitig bei einem Verfahren der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß die angeförderten Güter erfaßt und auf Fehler und/oder auf vollständiges Fehlen, d.h. das Vorhandensein einer Fehlstelle in Bezug auf die spätere Stangenverpackung, untersucht werden, mehrere, erfaßte Güter einer bestimmten Stapelverpackung zugeordnet werden, und bei Feststellung eines fehlerbehafteten oder vollständig fehlenden Gutes (Fehlstelle) alle die einer bestimmten Stapelverpackung zugeordneten Güter vor einem Endverpakkungsvorgang (Stapelpacken) ausgesondert werden, der auch das fehlerbehaftete oder fehlende Gut, d.h. die Fehlstelle, zugeordnet ist.

[0009] Die vorgenannte Aufgabe wird vorrichtungsseitig bei einer Vorrichtung der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß den Fördervorrichtungen eine Gutkontrollvorrichtung zur Untersuchung der angeförderten Güter auf Fehler und/oder Fehlen zugeordnet ist, die zur Erzeugung einer entsprechenden Fehlerinformation ausgebildet ist, eine Steuervorrichtung zur Zuordnung einer empfangenen Fehlerinformation zu einer bestimmten Stapelverpakkung vorgesehen ist, und eine Aussonderungsvorrichtung der Endverpackungsvorrichtung vorgeschaltet ist, die mit der Steuervorrichtung zusammenwirkt, zur - bei Vorliegen einer Fehlerinformation - gezielten Aussonderung aller derjenigen Güter aus den Fördervorrichtungen, die derselben bestimmten Stangenverpackung zugeordnet sind.

[0010] Hierdurch läßt sich einerseits sicherstellen, daß stets nur fehlerfreie Güter in vollständiger Endverpackungsanzahl in eine Endverpackung gelangen, andererseits die bisher bestehenden Leistungsgrenzen im Hinblick auf eine Durchsatzsteigerung überwunden werden, so daß sich die erfindungsgemäße Lösung besonders für den Einsatz im Hochleistungsbereich eignet. Mit der erfindungsgemäßen Lösung wird insbesondere ausgeschlossen, daß in einer Endver-

25

packung beispielsweise ein Gut fehlt.

[0011] Gemäß einer vorteilhaften Ausgestaltung der Erfindung erfolgt das Aussondern der Güter durch ein Ausblasen aus der Reihe der aufeinanderfolgend geförderten Güter, vorzugsweise indem diese einzeln entfernt werden, wodurch sich eine technisch besonders einfache und wirkungsvolle Lösung ergibt.

[0012] Nach einer weiteren vorteilhaften Ausgestaltung erfolgt eine Trennung der ausgesonderten Güter in defekte und wiederverwendbare Güter, wobei die wiederverwendbaren Güter dem Verpackungsverfahren eingangsseitig wieder zugeführt werden. Hierdurch ergibt sich gegenüber Verfahren, bei denen die Aussonderung erst nach Fertigstellung der Endverpackungen erfolgt, eine bessere Ausnutzung der angeförderten Güter, so daß insgesamt eine hohe Durchsatzeffizienz mit geringstmöglichem Ausschuß von an sich brauchbaren Gütern verwirklicht werden kann.

[0013] Vorzugsweise erfolgt eine Anstapelung und nachfolgende Verpackung der Güter unter Gruppierung in einer servogetriebenen Gruppiereinrichtung schwellend oszillierend.

[0014] Es ist aber auch möglich, die Gruppenbildung der einzeln angeförderten Gutstücke taktweise intermittierend herbeizuführen.

[0015] Nach einer vorteilhaften Weiterbildung der Erfindung wird bei einer Aussonderung einer solchen Gruppe von Gütern, die einer bestimmten Stapelverpackung zugeordnet sind, der Anstapelvorgang und nachfolgende Verpackungsvorgang als Leerhub ausgeführt, wobei jedoch die Zufuhr von Packmittel angehalten wird, was vorzugsweise unter Verwendung einer zentralen Steuerung erfolgt, die auch das Aussondern der Güter veranlaßt.

[0016] Alternativ hierzu kann anstelle eines Leerhubes die Anstapelung und nachfolgende Verpackung auch für einen entsprechenden Arbeitstakt ausgesetzt werden, wobei dann eine separate Ansteuerung der Packmittelzufuhr nicht erforderlich ist, vielmehr ein entsprechendes Signal der Steuerung die Aussetzung des Arbeitstaktes veranlaßt.

[0017] Nach einer Weiterbildung der Erfindung kann ein Aussondern der Güter nach einem Anstapelvorgang und vor einem Verpackungsvorgang zum Einhüllen der Güter in gestapelter Anordnung erfolgen. In diesem Fall wird der fehlerhafte bzw. unvollständige Stapel insgesamt entfernt, wobei wiederum, wie oben bereits beschrieben, die nicht defekten Güter einer Wiederverwendung zugeführt werden können.

[0018] Gemäß einer weiteren, bevorzugten Ausbildung der Erfindung werden die Güter in Einzelverpakkungen eingeschlagen, bevor diese gestapelt werden. Vorzugsweise wird dann eine Einzelverpackung der jeweiligen Güter auf ihr Vorhandensein und/oder auf Fehler der Einzelverpackungen, z.B. durch einen Farbsensor, untersucht, und bei Feststellen einer fehlerbehafteten oder vollständig fehlenden Einzelverpackung werden alle einer zugehörigen Stapelverpackung zuge-

ordneten Güter ausgesondert. Es ist prinzipiell möglich, dies gleichzeitig mit einer Überprüfung auf das Vorhandensein eines Gutes an sich zu koppeln, um so mit einer einzigen Vorrichtung alle für das äußere Erscheinungsbild einer Stapelverpackung relevanten Parameter zu erfassen. Vorzugsweise werden jedoch bei Verwendung von Einzelverpackungen die Güter auch in ihrem unverpackten Zustand auf eine mögliche Fehlerhaftigkeit hin überprüft.

[0019] Gemäß einer vorteilhaften Ausgestaltung der erfindungsgemäßen Vorrichtung ist die Gutkontrolleinrichtung mit Bezug auf die Transportplätze der Fördereinrichtungen mindestens n Plätze vor der Aussonderungseinrichtung angeordnet, wobei n die Anzahl von Gütern in einer Stapelverpackung darstellt. Hierdurch wird sichergestellt, daß nach Erfassen eines fehlerhaften Gutes stets all diejenigen Güter zuverlässig aus den Fördervorrichtungen entfernt werden können, die für die gleiche Stapelverpackung bestimmt sind.

[0020] Gemäß einer vorteilhaften Ausgestaltung der Erfindung erfolgt die Entfernung der Güter mit einer Ausblasvorrichtung, die als Düse zur Aussonderung einzelner Güter ausgebildet ist, so daß ein Betrieb der Fördervorrichtung im Takt der einzelnen Güter erfolgen kann. Überdies ist eine solche Anordnung nicht von der Anzahl von Gütern in einer Stapelverpackung abhängig, so daß bei einer Veränderung der Anzahl der Güter einer Stapelverpackung an der Ausblasvorrichtung keine Veränderungen vorgenommen werden müssen. Selbstverständlich ist jedoch die Steuervorrichtung im Hinblick auf die Anzahl der in einer Stapelverpackung enthaltenen Güter entsprechend zu programmieren.

[0021] Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.

[0022] Nachfolgend wird die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispieles und zugehöriger Zeichnungen näher erläutert.

Figur 1 zeigt ein bevorzugtes Ausführungsbeispiel einer Verpackungsvorrichtung zum Verpakken kleinstückiger Güter in gestapelter Anordnung,

Figur 2 zeigt die Struktur der Zustandspeicher eines Bildverarbeitungssystems der Verpackungsvorrichtung.

[0023] Die in Figur 1 dargestellte Verpackungsvorrichtung weist eine Zuführ- und Sortiereinrichtung 1 auf, über die die zu stapelnden und zu verpackenden Güter G Fördervorrichtungen zur vereinzelt aufeinanderfolgenden Förderung der Güter zugeführt werden. Die Fördervorrichtungen umfassen einen rotierenden Vereinzelungsteller 2, an den sich ein umlaufender Kettenbzw. Bandförderer 4 anschließt. Die einzelnen Güter G werden in unmittelbarer Aufeinanderfolge über diese Fördervorrichtungen in Richtung einer Endverpak-

30

35

45

kungsvorrichtung 9 transportiert, in der eine vorgegebene Anzahl von n Gütern in gestapelter Anordnung in ein gemeinsames Packstück eingehüllt werden, um so eine Stangen- bzw. Stapelverpackung zu bilden. Die Endverpackungsvorrichtung 9 kann in herkömmlicher Art und Weise ausgebildet werden, so daß hier auf eine detaillierte Beschreibung derselben verzichtet wird. Neben der Einhüllung in das gemeinsame Packstück kann auch, in Abweichung von der in der Figur dargestellten Ausführungsform, der Stapelvorgang der einzelnen Güter G unmittelbar in der Endverpackungsvorrichtung erfolgen.

[0024] Bei dem in der Figur 1 dargestellten Ausführungsbeispiel ist zur Anstapelung der Endverpackungsvorrichtung 9 als Anstapelvorrichtung ein sogenannter Stapelbandförderer 8 als kontinuierlich arbeitende Gruppiereinrichtung vorgeschaltet, der im Prinzip aus einem umlaufenden Kettenförderer mit einzelnen Fächern besteht und die Aufnahme von einzelnen Gütern in unmittelbarer Anlage gegeneinander ermöglicht, wobei die Aufnahmekapazität der einzelnen Fächer der Anzahl n von Gütern in einer Stapelverpakkung entspricht.

[0025] Anstelle des dargestellten Stapelbandförderers 8 kann auch eine diskontinuierlich taktweise arbeitende Anstapelvorrichtung (Gruppiereinrichtung) mit einem Anstapelrad verwendet werden, wie sie in der deutschen Patentanmeldung P 198 60 863.2 der Anmelderin, angemeldet am 31.12.1998, dargestellt ist. [0026] Auch im vorliegenden Ausführungsbeispiel werden die einzelnen Güter G auch individuell mit einer Einzelverpackung zu versehen, so daß zwischen den Fördereinrichtungen 2, 4 und dem Stapelbandförderer 8 bzw. der Endverpackungsvorrichtung 9 eine Einzelverpackungsvorrichtung 10 angeordnet, die in herkömmlicher Art und Weise, z.B. mit mehreren Falträdern (Packköpfen) und einer Packmittelzuführvor-

[0027] Zur Untersuchung der angeförderten Güter ist im Bereich der Fördervorrichtungen 2, 4, insbesondere im Übergabebereich zwischen dem Vereinzelungsteller 2 und dem Ketten- bzw. Bandförderer 4 als Gutkontrolleinrichtung 3 angeordnet, die der Untersuchung der angeförderten Güter auf Fehler oder auch auf ein vollständiges Fehlen derselben an einem Transportplatz dient. Die Gutkontrollvorrichtung 3 kann zur Untersuchung jeweils eines einzelnen Gutes aber auch zur Untersuchung von mehreren Gütern gemeinsam ausgebildet werden. Hierfür eignen sich insbesondere Bilderfassungs- und -verarbeitungssysteme mit Zeilenkameras.

richtung ausgebildet ist.

[0028] Vorzugsweise wird die Gutkontrolleinrichtung an einer solchen Stelle der Fördervorrichtungen angeordnet, daß diese die bereits an dem Ketten- bzw. Bandförderer 4 abgelegten Güter untersucht, so daß auch Schäden oder Fehler, die aus der Übergabe von dem Vereinzelungsteller 2 an den Ketten- bzw. Bandförderer 4 resultieren, mit berücksichtigt werden.

[0029] Im vorliegenden Ausführungsbeispiel ist die Zeilenkamera 3 als Gutkontrolleinrichtung am Vereinzelungsteller 2 zur Gutabtastung angeordnet.

Bei Auftreten einer Abweichung von einem Sollzustand, beispielsweise Form, Farbe, Reflexionsvermögen etc. erzeugt die Gutkontrollvorrichtung 3 eine entsprechende Fehlerinformation, die von einer in der Figur nicht dargestellten Steuervorrichtung empfangen wird. Die Steuervorrichtung ist derart ausgebildet, daß diese die Fehlerinformation einer bestimmten Stapelverpackung zuordnet, in welche das fehlende oder fehlerhafte Gut bei weiterem Ablauf des Verpackungsverfahrens eingebracht würde. Zudem weist die Steuervorrichtung Mittel zur Feststellung all derjenigen weiteren Güter auf, die in die gleiche Stangenverpackung mit eingepackt würden. Allen solchermaßen identifizierten Gütern wird ein Aussonderungsbefehl zugeordnet, der von der Steuervorrichtung an eine Aussonderungsvorrichtung 5, 6 übergeben wird.

[0031] In dem gezeigten Ausführungsbeispiel sind im Bereich des Ketten- bzw. Bandförderers 4 zwei separate Aussonderungseinrichtungen 5 und 6 dargestellt, die der Einzelverpackungsvorrichtung 10, der Anstapelvorrichtung 8 und der Endverpackungsvorrichtung 9 vorgeschaltet sind. Grundsätzlich ist es auch möglich, weitere Aussonderungsvorrichtungen unmittelbar vor der Endverpackungsvorrichtung 9 anzuordnen, d.h. in dem Ausführungsbeispiel zwischen der Anstapelvorrichtung 8 und der Endverpackungsvorrichtung 9.

[0032] Mit der ersten Aussonderungsvorrichtung 5 können fehlerhafte Güter entfernt werden. Mit der zweiten Aussonderungsvorrichtung 6 werden diejenigen Güter entfernt, die einer unvollständigen Stangen- bzw. Stapelverpackung zugeordnet sind.

[0033] Als Aussondervorrichtungen werden hier Ausblasvorrichtungen verwendet, die als Düsen zur Aussonderung einzelner Güter ausgebildet sind. Für die zweite Aussonderungsvorrichtung 6 kann auch eine Aussonderungsvorrichtung verwendet werden, mit der gleichzeitig mehrere Güter, vorzugsweise entsprechend der Anzahl von Gütern in einer Stapelverpackung, aus der Fördervorrichtung 4 entfernt werden. Hierzu kann gleichfalls eine Ausblasvorrichtung, dann jedoch vorzugsweise mit mehreren Düsen, verwendet werden. Eine unmittelbar vor der Endverpackungsvorrichtung 9 anzuordnende Aussonderungsvorrichtung kann in gleicher Art und Weise wie die zuvor beschriebenen Aussonderungsvorrichtungen 5 und 6 ausgebildet werden. Zur Sicherstellung, daß bei Feststellung eines Fehlers oder eines Fehlens stets sämtliche Güter, die einer gemeinsamen Stapel- bzw. Stangenverpakkung zugeordnet sind, entfernt werden können, ist die Gutkontrolleinrichtung 3 mit Bezug auf die Transportplätze der Fördervorrichtungen 2, 4 mindestens x

kung darstellt.

[0035] Durch die Aussonderungsvorrichtungen wird

Plätze vor der Aussonderungseinrichtung 5, 6 angeord-

net, wobei x die Anzahl der Güter in einer Stapelverpak-

55

überdies gewährleistet, daß sich im Verfahrensablauf hinter der Aussonderungsvorrichtung nur noch als fehlerfrei erkannte Güter auf dem Transportweg befinden. Diese werden in dem gezeigten Ausführungsbeispiel an eine Einzelverpackungsvorrichtung 10 mit mehreren Falträdern übergeben, wobei die Güter individuell jeweils in eine Einzelverpackung eingeschlagen werden.

[0036] Der Einzelverpackungsvorrichtung 10 ist eine Erfassungsvorrichtung 7 zur Überprüfung des Vorhandenseins einer Einzelverpackung und/oder auch von Fehlern der Einzelverpackung zugeordnet. Diese Erfassungsvorrichtung 7 erzeugt in analoger Weise zu der Gutkontrollvorrichtung 3 eine Fehlerinformation, die an die nicht dargestellte Steuervorrichtung übertragen wird. Zur Überprüfung der Einzelverpackungen wird in dem Ausführungsbeispiel ein Farbsensor verwendet. Prinzipiell können jedoch hier genauso wie für die Gutkontrolleinrichtung 3 Bilderfassungssysteme verwendet werden.

[0037] Im Falle einer Überprüfung der Einzelverpackungen ist der Einzelverpackungsvorrichtung 10 wiederum eine Aussonderungsvorrichtung nachgeschaltet, die bei Feststellung einer Fehlerinformation über die Steuervorrichtung betätigt wird. Prinzipiell kann hier die Aussonderung sowohl vor einer nachgeschalteten Anstapelvorrichtung 8 als auch hinter dieser erfolgen, wobei im letzteren Fall die Güter in bereits gestapelter Anordnung ausgesondert werden.

[0038] Die Anstapelvorrichtung 8 sowie die Endverpackungsvorrichtung 9 zum Verpacken von Gütern in gestapelter Anordnung werden schwellend oszillierend angetrieben, beispielsweise über eine Servovorrichtung, da aufgrund der Aussonderung von Gütergruppen eine Kompensation bzw. Anpassung an die Durchsatzgeschwindigkeit der als fehlerfrei erkannten Güter erfolgen soll. Dies kann dadurch erfolgen, daß bei einer Aussonderung einer Gruppe von Gütern, die durch die Steuervorrichtung veranlaßt wird, der Anstapelvorgang und nachfolgende Verpackungsvorgang als Leerhub ausgeführt wird, d.h. unter Fortführung der Arbeitstakte dieser Vorrichtungen, wobei jedoch, durch die Steuervorrichtung veranlaßt, die Zufuhr von Packmittel angehalten wird.

[0039] Alternativ hierzu kann das von der Steuervorrichtung erzeugte Signal auch dazu verwendet werden, bei Aussonderung von Gütern die Anstapelung und nachfolgende Verpackung für einen entsprechenden Arbeitstakt auszusetzen, d.h. diese Vorrichtungen insoweit anzuhalten.

[0040] Eine Schlitzscheibe 13 mit einem Signalgeber detektiert den Stangenanfang und rotiert synchron zur Drehzahl der Gruppiereinrichtung 8, so daß bei jeder Umdrehung ein Signal bereitgestellt wird.

[0041] Im folgenden wird nun kurz der Durchlauf eines Gutes G bis zur Verpackung in einer fertigen Stapel- bzw. Stangenverpackung beschrieben. Ein solches einzelnes Gut gelangt über die Zuführ- und Sortierein-

richtung 1 auf den Vereinzelungsteller 2, wobei eine aufeinanderfolgende Ausrichtung der Güter erfolgt. Von dem Vereinzelungsteller 2 wird das Gut einzeln an den Ketten- bzw. Bandförderer 4 übergeben, der hierfür geeignete Transportplätze aufweist. Während des Transports an diesen Fördervorrichtungen 2, 4 wird das einzelne Gut von einer Gutkontrollvorrichtung 3 erfaßt und auf das Vorhandensein von Fehlern untersucht. Gleichfalls werden mit der Gutkontrollvorrichtung 3 Leerstellen erkannt.

Die Gutkontrollvorrichtung 3 mit Zeilenvor-[0042] richtung arbeitet mit zwei in Fig.2 dargestellten Zustandsspeichern. Die Zeilenkamera erfaßt die projizierte Grundfläche eines jeden Gutes bzw. Artikels. Mittels eines Bildverarbeitungssystems werden die so gewonnenen Informationen ausgewertet. Für jeden Artikel wird ein entsprechendes Signal generiert: OK für qualitätsgerechte Artikel, NG (not good) für schlechte Artikel. Diese Signale werden taktweise in den ersten Zustandsspeicher 11 eingetragen, wobei die dort enthaltenen Informationen um einen Takt weiter geschoben werden. Aus der Speicherzelle n+y des Zustandsspeichers 11 wird das Signal für die Ausblasdüse entnommen. Bei Feststellung des Signals NG wird ein Impuls an die Ausblasdüse gesendet und der Artikel ausgeblasen. Bei OK wird keine Reaktion ausgelöst. Eine Schlitzscheibe 13 in Fig. 1 wird mit der Drehzahl der Anstapelvorrichtung 8 bewegt. Sie sendet pro Umdrehung ein Signal. Dieses Signal wird immer dann gesendet, wenn in den Speicherzellen n bis n+x die Information für einen kompletten Stapel bzw. eine komplette Stange enthalten sind (x sei die Anzahl der Güter bzw. Artikel pro Stange). Dabei werden die Signale n bis n + x in den Zustandsspeicher 12 kopiert, wobei alle x Signale auf NG gesetzt werden, wenn mindestens ein Signal NG in dieser Stange vorhanden ist. Im Zustandsspeicher 12 werden diese Signale dann taktweise weitergeschoben. In der Speicherzelle m wird das Signal für die Blasdüse entnommen. Alle Artikel mit dem Signal NG (OK-Artikel einer unvollständig gefüllten Stange) werden ausgeblasen und dem Verpackungsprozeß erneut zugeführt.

[0043] Bei seinem Weitertransport an dem Kettenbzw. Bandförderer 4 gelangt das Gut an einer ersten Aussonderungseinrichtung 5 für fehlerhafte Produkte vorbei. Wurde das betreffende Gut von der Gutkontrolleinrichtung 3 als fehlerhaft erkannt, wird es an dieser Stelle von der Fördervorrichtung 4 ersatzlos entfernt, beispielsweise, indem dieses durch einen Luftstrom aus einer Ausblasdüse aus der Fördervorrichtung hinausgeblasen wird. Sofern das Gut als fehlerfrei erkannt wurde, erfolgt sein Weitertransport mit dem Kettenbzw. Bandförderer 4 vorbei an einer zweiten Aussonderungsvorrichtung 6, die der Entfernung von solchen Gütern dient, die von der Steuervorrichtung einer unvollständigen Verpackung zugeordnet worden sind. Hierunter fallen alle diejenigen Güter, die bei ungehindertem Weitertransport mit einem fehlerhaften Gut in

15

20

25

30

35

45

50

55

eine gemeinsame Stapel- bzw. Stangenverpackung gelangen würden oder die als "fehlendes" Gut, d.h. als Fehlstelle in der fertigen Stangenverpackung auftreten würden. Diese Güter werden in der Steuervorrichtung festgestellt und bei Vorhandensein einer Fehlerinformation im Hinblick auf die betreffende Stapel- bzw. Stangenverpackung an der zweiten Aussonderungsvorrichtung 6 von der Fördervorrichtung 4 entfernt.

[0044] Ansonsten erfolgt ein Weitertransport zu der Einzelverpackungsvorrichtung 10, bei der die Güter G individuell in Einzelverpackungen eingeschlagen werden. Dabei gelangt das nunmehr verpackte Einzelgut an einer Erfassungsvorrichtung 7 (Farbsensor) vorbei, an der die Einzelverpackung des Gutes überprüft und der Einzelverpackungszustand jedes Gutstückes detektiert wird. Gleichzeitig kann auch hier nochmals eine Überprüfung auf das Vorhandensein eines Gutes an dieser Stelle erfolgen. Bei Auftreten eines Fehlers oder einer Fehlstelle im Gutstrom erfolgt wieder eine Erzeugung einer entsprechenden Fehlerinformation, die an die Steuervorrichtung übertragen wird.

[0045] Von der Einzelverpackungsvorrichtung 10 werden die Güter einzeln an eine Anstapelvorrichtung 8 übergeben und in Fächern derselben zu Gruppen in Größen der Endverpackung zusammengefaßt und in unmittelbarer Aufeinanderfolge gestapelt.

[0046] Von dort erfolgt ein Weitertransport, u.a. mit Hilfe der Anstapelvorrichtung 8 selbst, zu der Endverpackungsvorrichtung 9. Zwischen der Anstapelvorrichtung 8 und der Endverpackungsvorrichtung 9 ist eine weitere Aussonderungsvorrichtung vorgesehen, die in der Figur nicht dargestellt ist. Diese Aussonderungsvorrichtung wird in Abhängigkeit der Fehlerinformation der Erfassungsvorrichtung 7 über die Steuervorrichtung betätigt, um fehlerhafte Güter bzw. Einzelverpackungen enthaltende Stapel an dieser Stelle auszuscheiden. Fehlerfreie Stapel werden an die Endverpackungsvorrichtung 9 übergeben, wo diese dann in ein gemeinsames Packmittelstück zur Fertigstellung der Stapel- bzw. Stangenverpackung eingehüllt werden.

[0047] Durch die Erfindung wird vorzugsweise eine kontinuierlich und nicht in diskreten Einzelschritten zur Vorbereitung einer kompletten Stangenverpackung arbeitende Verpackungseinrichtung nach dem 'failsafe'-Prinzip geschaffen, die höchsten Leistungsansprüchen moderner Verpackungsmaschinen, z.B. im Hochleistungsbereich der Verpackung von bis zu 1600 Einzelstücken/Minute genügt.

Patentansprüche

 Verfahren zum Verpacken kleinstückiger Güter in gestapelter Anordnung, bei dem die Güter (G) einzeln aufeinanderfolgend angefördert werden, dadurch gekennzeichnet, daß

> die angeförderten Güter (G) erfaßt und auf Fehler untersucht und/oder ein vollständiges

Fehlen eines Gutes (G) in einer Abfolge von Gütern als Fehlstelle erfaßt werden,

mehrere erfaßte Güter (G) und/oder Fehlstellen einer bestimmten Stapelverpackung zugeordnet werden, und

bei Feststellung eines fehlerbehafteten Gutes oder einer Fehlstelle alle die der bestimmten Stapelverpackung (G) zugeordneten Güter (G) vor einem Stapelverpackungsvorgang ausgesondert werden, der auch das fehlerbehaftete Gut (G) oder die Fehlstelle zugeordnet ist.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Aussonderung der Güter im unverpackten Zustand derselben erfolgt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Aussonderung der Güter nach dem einzelnen Verpacken derselben mit einer Einzelverpackung erfolgt.
- 4. Verfahren nach zumindest einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Aussondern der Güter während des Einzeltransports derselben erfolgt.
- 5. Verfahren nach zumindest einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die nicht ausgesonderten Güter nach Durchlaufen einer Aussonderungsstation zunächst einzeln verpackt, anschließend gestapelt und in gestapelter Anordnung nochmals verpackt werden.
- 6. Verfahren nach zumindest einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Aussondern der Güter durch ein Ausblasen der auszusondernden Güter aus der Reihe der aufeinanderfolgend geförderten Güter erfolgt.
- 7. Verfahren nach zumindest einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die auszusondernden Güter einzeln entfernt werden.
 - 8. Verfahren nach zumindest einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die auzusondernden Güter als Gruppe en bloque entfernt werden.
 - 9. Verfahren nach zumindest einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß eine Trennung der ausgesonderten Güter in defekte und wiederverwendbare Güter erfolgt, und daß die wiederverwendbaren Güter dem Verpackungsverfahren eingangsseitig wieder zugeführt werden.
 - 10. Verfahren nach zumindest einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Untersuchung der einzeln angeförderten Güter mindestens

6

15

30

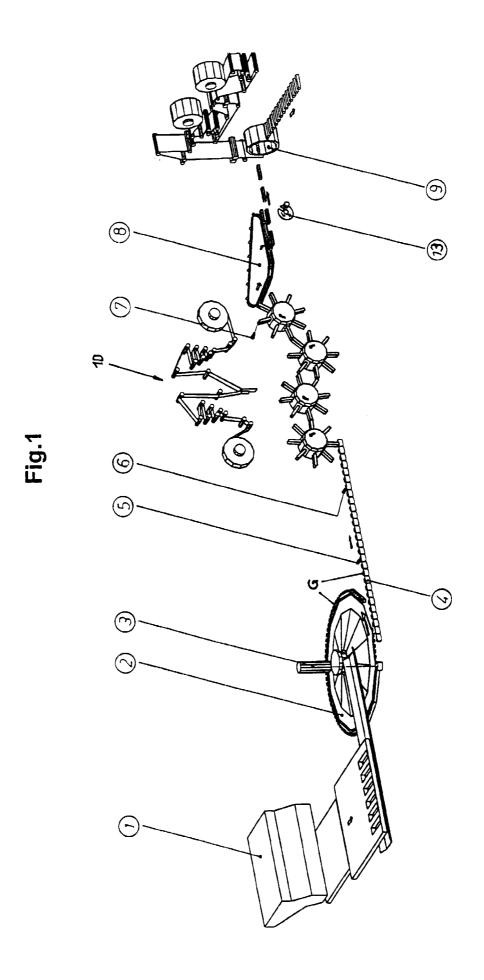
40

45

n Güter vor einer Aussonderungsposition erfolgt, wobei n die Anzahl der Güter in einer Stapelverpakkung ist.

- 11. Verfahren nach zumindest einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß eine Anstapelung und nachfolgende Verpackung von Gütern in gestapelter Anordnung taktweise intermittierend erfolgt.
- 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß bei Aussonderung einer Gruppe von Gütern, die einer bestimmten Stapelverpackung zugeordnet sind, der Anstapelvorgang und nachfolgende Verpackungsvorgang als Leerhub ausgeführt wird, wobei die Zufuhr von Packmittel gestoppt wird
- 13. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß bei Aussonderung von Gütern, die einer bestimmten Stapelverpackung zugeordnet sind, die Anstapelung und nachfolgende Verpakkung für einen entsprechenden Arbeitstakt ausgesetzt wird.
- 14. Verfahren nach zumindest einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß eine Einzelverpackung der jeweiligen Güter auf ihr Vorhandensein und/oder auf Fehler der Einzelverpackung untersucht wird und bei Feststellung einer fehlerbehafteten oder vollständig fehlenden Einzelverpakkung alle der zugehörigen Stapelverpackung zugeordneten Güter ausgesondert werden.
- 15. Verfahren nach zumindest einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß das Aussondern nach einem Anstapelvorgang und vor dem Verpackungsvorgang zum Einhüllen der Güter in gestapelter Anordnung erfolgt.
- 16. Verfahren nach zumindest einem der Ansprüche 14 oder 15, dadurch gekennzeichnet, daß zur Untersuchung der Einzelverpackungen ein Farbsensor verwendet wird.
- 17. Vorrichtung zum Verpacken kleinstückiger Güter in gestapelter Anordnung mit Fördervorrichtungen (2,4) zum aufeinanderfolgenden Transport der einzelnen Güter (G) zu einer Endverpackungsvorrichtung (9) zur Einhüllung von mehreren Gütern in gestapelter Anordnung in einer Stapelverpackung, dadurch gekennzeichnet, daß

den Fördervorrichtungen (2,4) eine Gutkontrollvorrichtung (3) zur Untersuchung der angeförderten Güter auf Fehler und/oder Fehlen zugeordnet ist, die zur Erzeugung einer entsprechenden Fehlerinformation ausgebildet ist,


eine Steuervorrichtung zur Zuordnung einer empfangenen Fehlerinformation zu einer bestimmten Stapelverpackung vorgesehen ist, und

eine Aussonderungsvorrichtung (5,6) der Endverpackungsvorrichtung (9) vorgeschaltet ist, die mit der Steuervorrichtung zusammenwirkt, zur gezielten Aussonderung, bei Vorliegen einer Fehlerinformation, aller derjenigen Güter aus den Fördervorrichtungen (2,4), die derselben bestimmten Stangenverpackung zugeordnet sind.

- 18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß die Aussonderung der Einrichtung (5,6) eine Ausblasvorrichtung zum Entfernen von Einzelgütern aus den Fördervorrichtungen (4) enthält.
- 20 19. Vorrichtung nach Anspruch 17 oder 18, dadurch gekennzeichnet, daß die Gutkontrolleinrichtung (3) mit Bezug auf die Transportplätze der Fördervorrichtungen mindestens n Plätze vor der Aussonderungseinrichtung (5,6) angeordnet ist, wobei n die Anzahl von Gütern in einer Stapelverpackung darstellt.
 - 20. Vorrichtung nach zumindest einem der Ansprüche 18 oder 19, dadurch gekennzeichnet, daß die Ausblasvorrichtung als Düse zur Aussonderung einzelner Güter ausgebildet ist.
 - 21. Vorrichtung nach zumindest einem der Ansprüche 17 oder 20, dadurch gekennzeichnet, daß zwischen den Fördervorrichtungen (2,4) und der Endverpackungsvorrichtung (9) eine Anstapelvorrichtung (8) zum Stapeln mehrerer einzelner Güter angeordnet ist, wobei die Aussonderungsvorrichtung (5,6) vor der Anstapelvorrichtung (8) angeordnet ist.
 - 22. Vorrichtung nach Anspruch 21, dadurch gekennzeichnet, daß zwischen den Fördervorrichtungen (2,4) und der Anstapelvorrichtung (8) eine Einzelverpackungsvorrichtung zur Einhüllung der einzelnen Güter angeordnet ist, wobei die Aussonderungsvorrichtung (5,6) vor der Einzelverpackungsvorrichtung angeordnet ist.
 - 23. Vorrichtung nach zumindest einem der Ansprüche 17 bis 22, dadurch gekennzeichnet, daß eine Aussonderungsvorrichtung nach der Anstapelvorrichtung (8) angeordnet ist, die mit der Steuervorrichtung zusammenwirkt, zur gezielten Aussonderung, bei Vorliegen einer Fehlerinformation, derjenigen Gruppe von Gütern in gestapelter Anordnung, der Stangenverpackung, der diese Fehlerinformation zugeordnet ist.

24. Vorrichtung nach zumindest einem der Ansprüche 17 bis 23, dadurch gekennzeichnet, daß der Einzelverpackungsvorrichtung eine Erfassungsvorrichtung (7) zur Überprüfung des Vorhandenseins einer Einzelverpackung und/oder von Fehlern der Einzelverpackung zugeordnet ist, zur Erzeugung einer entsprechenden Fehlerinformation, die an die Steuervorrichtung übertragen wird, wobei die der Einzelverpackungsvorrichtung nachgeschaltete Aussonderungsvorrichtung bei Feststellung einer Fehlerinformation betätigt wird.

25. Vorrichtung nach zumindest einem der Ansprüche 17 bis 24, gekennzeichnet durch Servoantriebe für eine Gruppiereinrichtung, insbesondere einen Stapelbandförderer (8), zwischen Einzelverpakkungsmaschine (10) und Stangenverpackungsmaschine (9) und/oder für Packköpfe, Übergabe- und Packmittelzuführeinrichtungen.

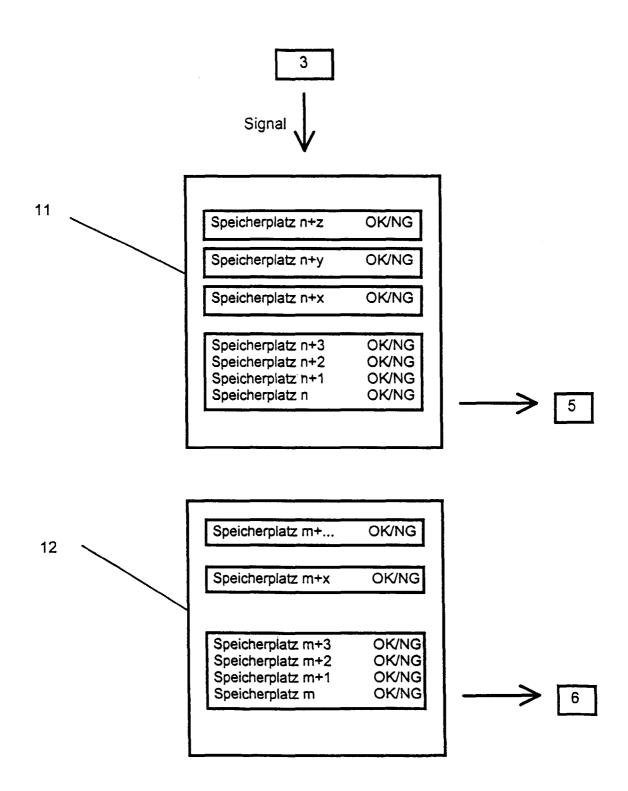


Fig.2