

Europäisches Patentamt European Patent Office

Office européen des brevets

(11) **EP 1 035 289 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

13.09.2000 Patentblatt 2000/37

(21) Anmeldenummer: 00101378.8

(22) Anmeldetag: 24.01.2000

(51) Int. Cl.⁷: **E06B 3/48**

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

(30) Priorität: 09.03.1999 DE 29904321 U

(71) Anmelder:

Marantec Antriebs- und Steuerungstechnik GmbH & Co. KG. 33428 Marienfeld (DE) (72) Erfinder: Hörmann, Michael 33790 Halle/Westfalen (DE)

(74) Vertreter:

Laufhütte, Dieter, Dr.-Ing. et al Lorenz-Seidler-Gossel Widenmayerstrasse 23 80538 München (DE)

(54) Gelenk, insbesondere zur Verbindung von Torblattlamellen

(57)Die Erfindung betrifft ein Gelenk, insbesondere zur Verbindung von Torlamellen, mit einem ersten und einem mit diesem verbindbaren zweiten Gelenkteil. Das erste Gelenkteil weist ein hakenförmiges Eingriffselement auf, während das zweite Gelenkteil einen Grundkörper und einen sich daran erstreckenden Ansatz umfaßt, dessen Außendurchmesser gleich oder kleiner als der Innendurchmesser des Eingriffselementes des ersten Gelenkteiles ist, wobei im Bereich zwischen Grundkörper und Ansatz ein sich in Längsrichtung des Ansatzes erstreckender Durchbruch vorgesehen ist, dessen Länge über der Länge des Eingriffselementes des ersten Gelenkteils liegt. Erfindungsgemäß sind im montierten Zustand der Gelenkteile die Berührungsflächen mit dem das Eingriffselement bildenden Bereich des Ansatzes des zweiten Gelenkteils wenigstens teilweise aus Kunststoff ausgeführt.

EP 1 035 289 A2

15

25

Beschreibung

[0001] Die vorliegende Erfindung betrifft ein Gelenk, insbesondere zur Verbindung von Torblattlamellen, mit einem ersten und einem mit diesem verbindbaren zweiten Gelenkteil. Das erste Gelenkteil weist ein hakenförmiges Eingriffselement auf und das zweite Gelenkteil umfaßt einen Grundkörper und einen sich daran erstreckenden Ansatz, dessen Außendurchmesser gleich oder kleiner als der Innendurchmesser des Eingriffselementes des ersten Gelenkteils ist, wobei im Bereich zwischen Grundkörper und Ansatz ein sich in Längsrichtung des Ansatzes erstreckender Durchbruch vorgesehen ist, dessen Länge über der Länge des Eingriffselementes des ersten Gelenkteils liegt.

[0002] Derartige Gelenke sind verhältnismäßig einfach aufgebaut und ermöglichen eine zuverlässige und sichere Verbindung, beispielsweise von Torblattlamellen von Sektionaltoren. Zur Montage der Gelenkteile wird das hakenförmige Eingriffselement des ersten Gelenkteils über den Ansatz des zweiten Gelenkteils geschoben, bis dieses mit dem sich in Längsrichtung des Ansatzes des zweiten Gelenkteils erstreckenden Durchbruch fluchtet. In dieser Position wird durch eine Drehbewegung des ersten bzw. zweiten Gelenkteils der Eingriff des Eingriffselementes in den Durchbruch bewirkt, wodurch eine einfache und zuverlässige Verbindung beider Gelenkteile realisiert wird.

[0003] Beide Gelenkteile können jeweils einen Grundkörper aufweisen, der mit dem hakenförmigen Eingriffselement bzw. mit dem Ansatz in Verbindung steht. Die Grundkörper der Gelenkteile sind üblicherweise mit Befestigungsbohrungen versehen, die zur Aufnahme von Befestigungsmitteln zur Befestigung der Gelenkteile beispielsweise an zu verbindenden Lamellen eines Sektionaltors dienen.

[0004] Bei vorbekannten Gelenken bestehen sowohl das Eingriffselement als auch der sich vom Grundkörper des zweiten Gelenkteils erstreckende Ansatz aus Metall, vorzugsweise aus Stahl. Das Eingriffselement sowie der Ansatz werden durch Biegen entsprechender Stahllaschen hergestellt. Durch die Verwendung von Stahl ergibt sich der Nachteil, daß die Gleitwirkung zwischen den sich berührenden Flächen von Eingriffselement und Ansatz der Gelenkteile verhältnismäßig gering ist. Dies gilt sowohl für die bei der Montage des Gelenkes erforderliche Gleitbewegung beim Aufschieben des Eingriffselementes auf den Ansatz, als auch insbesondere für das Aufeinandergleiten der sich berührenden Flächen von Eingriffselement und Ansatz beim Verschwenken des montierten Gelenkes.

[0005] Es ist daher die Aufgabe der vorliegenden Erfindung, ein gattungsgemäßes Gelenk dahingehend weiterzubilden, daß die Reibungsverluste zwischen Eingriffselement und Ansatz beim Verschwenken des Gelenkes verringert werden.

[0006] Diese Aufgabe wird ausgehend von einem

gattungsgemäßen Gelenk dadurch gelöst, daß die im montierten Zustand der Gelenkteile die Berührungsfläche mit dem Eingriffselement bildenden Bereiche des Ansatzes des zweiten Gelenkteils wenigstens teilweise aus Kunststoff ausgeführt sind. Dadurch ergibt sich der Vorteil, daß das Eingriffselement aufgrund der günstigen Gleiteigenschaften von Kunststoff reibungsarm gegenüber dem entsprechenden Bereich des Ansatzes des Grundkörpers des zweiten Gelenkteils verschwenkbar ist.

[0007] In weiterer Ausgestaltung der vorliegenden Erfindung ist vorgesehen, daß der Ansatz des zweiten Gelenkteils eine zylindrische Gestalt aufweist. Erfindungsgemäß liegt der Außendurchmesser des zylindrischen Ansatzes unter dem Innendurchmesser des hakenförmigen Eingriffselementes oder entspricht dessen Innendurchmesser, um ein Aufschieben des Eingriffselementes auf den Ansatz und somit ein Verbinden beider Gelenkteile zu ermöglichen.

[0008] In weiterer Ausgestaltung der vorliegenden Erfindung ist vorgesehen, daß der Ansatz des zweiten Gelenkteils durch Kunststoffumspritzen des Grundkörpers herstellbar ist. Bei einer derartigen Ausführungsform besteht der Grundkörper des zweiten Gelenkteils vorzugsweise aus Stahl. Der Randbereich des Grundkörpers ist kunststoffumspritzt ausgeführt. Erfindungsgemäß erstreckt sich zwischen dem aus Kunststoff ausgeführten Ansatz und dem Grundkörper der Durchbruch zur Aufnahme des hakenförmigen Eingriffselementes des ersten Gelenkteils.

[0009] Gemäß einer bevorzugten Ausgestaltung der vorliegenden Erfindung ist vorgesehen, daß der Ansatz von dem Grundkörper des zweiten Gelenkteils lösbar ausgeführt ist. Dadurch ergibt sich der Vorteil, daß der Ansatz beispielsweise bei Beschädigung ohne weiteres ausgewechselt werden kann, ohne daß dazu die Demontage des Grundkörpers erforderlich ist. Auch ist hierdurch eine geeignete Wahl des Kunststoffmaterials problemlos realisierbar.

[0010] Der Grundkörper des zweiten Gelenkteils kann eine Aufnahme aufweisen, auf die der Ansatz aufschiebbar ist. Erfindungsgemäß besteht der Ansatz in dem die Berührungsfläche mit dem Eingriffselement bildenden Bereich wenigstens teilweise aus Kunststoff. Der lösbar ausgeführte Ansatz wird vor der Montage auf die Aufnahme des zweiten Gelenkteils aufgeschoben und hier in geeigneter Weise arretiert. Ein Kunststoffumspritzen des Grundkörpers des zweiten Gelenkteils ist bei einer derartigen Ausführungsform nicht erforderlich. Vielmehr können der Ansatz und der Grundkörper des zweiten Gelenkteils völlig getrennt voneinander hergestellt werden und nach der Herstellung zusammengefügt werden.

[0011] Gemäß einer bevorzugten Ausgestaltung der vorliegenden Erfindung weist der Ansatz einen verschwenkbaren Haken auf, der im Randbereich einer Ausnehmung des zweiten Gelenkteils arretierbar ist. Es kann sich dabei um einen Schnapphaken handeln, der

20

40

geringfügig aufgeklappt werden kann, um die Montage des Ansatzes auf der Aufnahme des Grundkörpers des zweiten Gelenkteils zu gewährleisten. Nach dem Aufschieben wird der Haken zurückverschwenkt und auf diese Weise der Ansatz mit dem Grundkörper des zweiten Gelenkteils sicher verbunden.

[0012] Die Aufnahme des Grundkörpers des zweiten Gelenkteils kann gekrümmt ausgeführt sein und in einer entsprechend gekrümmten Nut des Ansatzes aufnehmbar sein.

[0013] Gemäß einer bevorzugten Ausgestaltung der vorliegenden Erfindung umfassen beide Gelenkteile jeweils einen Grundkörper, wobei die Grundkörper Befestigungsplatten aufweisen, die mit Bohrungen zur Aufnahme von Befestigungselementen versehen sind. Die Befestigungsplatten werden durch geeignete Befestigungsmittel, beispielsweise Schrauben oder Nieten, mit den zu verbindenden Elementen, insbesondere mit Lamellen von Sektionaltoren verbunden.

[0014] In weiterer Ausgestaltung der vorliegenden Erfindung ist vorgesehen, daß der Ansatz des zweiten Gelenkteils vollständig aus Kunststoff besteht. Die Wahl des einzusetzenden Kunststoffes richtet sich nach den jeweils vorliegenden Erfordernissen, beispielsweise nach der gewünschten Festigkeit und Abriebsbeständigkeit.

[0015] Besonders vorteilhaft ist es, wenn der Kunststoff des zweiten Gelenkteils Polyamid ist.

[0016] Weitere Einzelheiten und Vorteile der vorliegenden Erfindung werden anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:

- Fig. 1: Eine perspektivische Darstellung des ersten Gelenkteils mit hakenförmigem Eingriffselement.
- Fig. 2: eine perspektivische Darstellung des zweiten Gelenkteils mit umspritztem Kunststoffansatz,
- Fig. 3: eine Montagedarstellung der Gelenkteile gemäß Fig. 1 und Fig. 2,
- Fig. 4: eine Querschnittsdarstellung der montierten Gelenkteile gemäß Fig. 3,
- Fig. 5: eine perspektivische Darstellung des zweiten Gelenkteils mit Aufnahme,
- Fig. 6: eine Montagedarstellung des zweiten Gelenkteils gemäß Fig. 5 und des aufschiebbaren Ansatzes und
- Fig. 7: eine vergrößerte Darstellung des verschwenkbaren Hakens des aufschiebbaren Kunststoffansatzes.

[0017] Fig. 1 zeigt in perspektivischer Ansicht das erste Gelenkteil 10, dessen Grundkörper 14 die Befestigungsplatte 16 umfaßt. Im Randbereich der Befestigungsplatte 16 erstreckt sich das hakenförmige Eingriffselement 12. Das erste Gelenkteil 10 besteht vorzugsweise aus Stahl, jedoch sind selbstverständlich auch andere Materialien einsetzbar.

[0018] In der Befestigungsplatte 16 können (nicht dargestellte) Befestigungsbohrungen vorgesehen sein, mittels derer das erste Gelenkteil 10 beispielsweise an einer Lamelle eines Sektionaltorblattes befestigt werden kann.

Fig. 2 zeigt ebenfalls in perspektivischer [0019] Darstellung das zweite Gelenkteil 20 mit Grundkörper 24, der die Befestigungsplatte 29 umfaßt. Von dem Grundkörper 24 bzw. vom Randbereich der Befestigungsplatte 29 erstreckt sich der Ansatz 22. Der Ansatz 22 ist zylindrisch ausgeführt und weist einen Außendurchmesser auf, der unter dem Innendurchmesser des Eingriffselementes 12 des ersten Gelenkteils 10 liegt. Im Bereich zwischen Ansatz 22 und Grundkörper 24 erstreckt sich in Längsrichtung des Ansatzes 22 der Durchbruch 26, dessen Länge erfindungsgemäß über der Länge des Eingriffselementes 12 des ersten Gelenkteils liegt und der zur Aufnahme des Eingriffselementes 12 im montierten Zustand der Gelenkteile 10, 20 dient.

[0020] Der Ansatz 22 des zweiten Gelenkteils 20 ist kunststoffumspritzt, wobei als Kunststoff Polyamid verwendet wird. Jedoch sind anstelle oder in Kombination mit Polyamid auch andere Kunststoffarten bzw. Kunststoffmischungen einsetzbar.

Fig. 3 zeigt eine Montagedarstellung der [0021] Gelenkteile 10, 20 gemäß Fig. 1 und Fig. 2. Das Gelenkteil 10 wurde ausgehend von der Position gemäß Fig. 1 gestürzt, so daß das hakenförmige Eingriffselement nunmehr auf der Unterseite der Befestigungsplatte 16 des ersten Gelenkteils 10 angeordnet ist. Das erste Gelenkteil 10 wird in dieser Position dadurch mit dem zweiten Gelenkteil 20 verbunden, daß das hakenförmige Eingriffselement 12 auf den Ansatz 22 aufgeschoben wird, bis dieses mit dem Durchbruch 26 fluchtet. In dieser Position wird das erste bzw. das zweite Gelenkteil verschwenkt, wodurch das Eingriffselement 12 in den Durchbruch 26 eingeführt wird und somit eine zuverlässige Verbindung beider Gelenkteile 10, 20 hergestellt wird.

[0022] Fig. 4 zeigt in einer Querschnittsansicht die Gelenkteile 10, 20 nach dem Aufschieben des Eingriffselementes gemäß Fig. 3. Hier ist erkennbar, daß das Eingriffselement 12 den Ansatz 22 weitgehend umschließt, so daß ein Lösen beider Gelenkteile 10, 20 nur in Längsrichtung des Ansatzes 22 möglich ist. Durch das Verschwenken des ersten 10 oder zweiten Gelenkteils 20 wird ein Lösen beider Gelenkteile 10, 20 verhindert, da das Eingriffselement 12 dann in den Durchbruch 26 des zweiten Gelenkteils 20 eingeführt ist

30

35

40

45

50

[0023] Fig. 5 zeigt in einer perspektivischen Darstellung das zweite Gelenkteil 20 in einer weiteren Ausführungsform. Die Befestigungsplatte 29 des Grundkörpers 24 des zweiten Gelenkteils 20 weist im Randbereich eine Aufnahme 28 auf, die mit dem Ansatz 22 lösbar verbindbar ist.

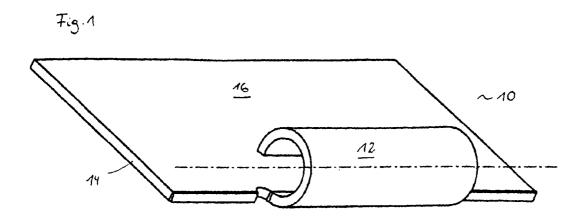
[0024] Wie aus Fig. 6 ersichtlich, wird der lösbare Ansatz 22 auf die Aufnahme 28 aufgeschoben und anschließend auf dieser arretiert. Der Ansatz 22 weist eine gekrümmte Nut 222 auf, in die die gekrümmte Aufnahme 28 des Grundkörpers 24 des zweiten Gelenkteils 20 eingeschoben wird.

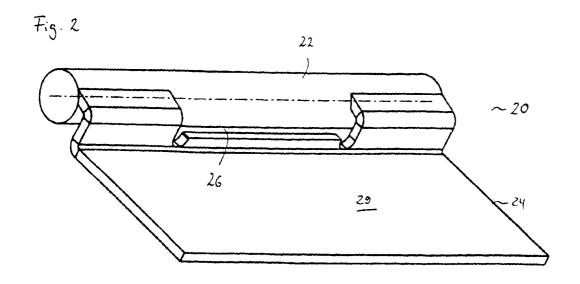
[0025] In einem mittleren Bereich des Ansatzes 22 befindet sich der verschwenkbare Haken 220, der in Fig. 7 vergrößert dargestellt ist. Der Haken 220 ist in der in Fig. 6 und Fig. 7 durch einen Pfeil gekennzeichneten Richtung verschwenkbar. Der Haken 220 wird während des Aufschiebens auf die Aufnahme 28 geringfügig in Pfeilrichtung verschwenkt und nach dem Aufschiebevorgang im Randbereich der Ausnehmung des zweiten Gelenkteils 20 arretiert. Hierdurch wird der Ansatz 22 zuverlässig und sicher mit dem Grundkörper 24 des zweiten Gelenkteils 20 verbunden.

[0026] Die lösbare Ausführung des Ansatzes 22 gewährt den Vorteil, daß der Ansatz 22 beliebig austauschbar und bei Beschädigung problemlos auswechselbar ist.

[0027] Gemäß dem vorliegenden Ausführungsbeispiel besteht der lösbar ausgeführte Ansatz 22 aus Polvamid.

Patentansprüche


1. Gelenk, insbesondere zur Verbindung von Torblatt-lamellen, mit einem ersten (10) und einem mit diesem verbindbaren zweiten Gelenkteil (20), wobei das erste Gelenkteil (10) ein hakenförmiges Eingriffselement (12) aufweist und wobei das zweite Gelenkteil (20) einen Grundkörper (24) und einen sich daran erstreckenden Ansatz (22) umfaßt, dessen Außendurchmesser gleich oder kleiner als der Innendurchmesser des Eingriffselementes (12) des ersten Gelenkteils (10) ist, wobei im Bereich zwischen Grundkörper (24) und Ansatz (22) ein sich in Längsrichtung des Ansatzes (22) erstreckender Durchbruch (26) vorgesehen ist, dessen Länge über der Länge des Eingriffselementes (12) des ersten Gelenkteils (10) lingt.


dadurch gekennzeichnet,

daß die im montierten Zustand der Gelenkteile (10, 20) die Berührungsfläche mit dem Eingriffselement (12) bildenden Bereiche des Ansatzes (22) des zweiten Gelenkteils (20) wenigstens teilweise aus Kunststoff ausgeführt sind.

- 2. Gelenk nach Anspruch 1, dadurch gekennzeichnet, daß der Ansatz (22) des zweiten Gelenkteils (20) eine zylindrische Gestalt aufweist.
- Gelenk nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Ansatz (22) des zweiten Gelenkteils (20) durch Kunststoffumspritzen des Grundkörpers (24) herstellbar ist.
- 4. Gelenk nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Ansatz (22) von dem Grundkörper (24) des zweiten Gelenkteils (20) lösbar ausgeführt ist.
 - Gelenk nach Anspruch 4, dadurch gekennzeichnet, daß der Grundkörper (24) des zweiten Gelenkteils (20) eine Aufnahme (28) aufweist, auf die der Ansatz (22) aufschiebbar ist.
- 20 6. Gelenk nach Anspruch 5, dadurch gekennzeichnet, daß der Ansatz (22) einen verschwenkbaren Haken (220) aufweist, der im Randbereich einer Ausnehmung des zweiten Gelenkteils (20) arretierbar ist.
- Gelenk nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Aufnahme (28) des Grundkörpers (24) des zweiten Gelenkteils (20) gekrümmt ausgeführt ist und in einer entsprechend gekrümmten Nut (222) des Ansatzes (22) aufnehmbar ist.
 - 8. Gelenk nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß beide Gelenkteile (10, 20) jeweils einen Grundkörper (14, 24) umfassen, wobei die Grundkörper (14, 24) Befestigungsplatten (16,29) aufweisen, die mit Bohrungen zur Aufnahme von Befestigungselementen versehen sind.
 - Gelenk nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Ansatz (22) des zweiten Gelenkteils (20) vollständig aus Kunststoff besteht.
 - Gelenk nach einem oder mehreren der Ansprüche
 bis 9, dadurch gekennzeichnet, daß der Kunststoff des zweiten Gelenkteils (20) Polyamid ist.

4

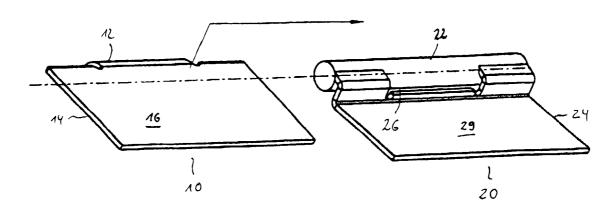


Fig. 4

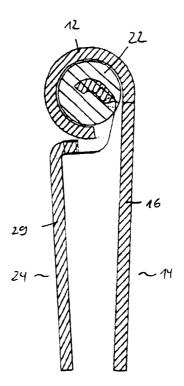


Fig. S

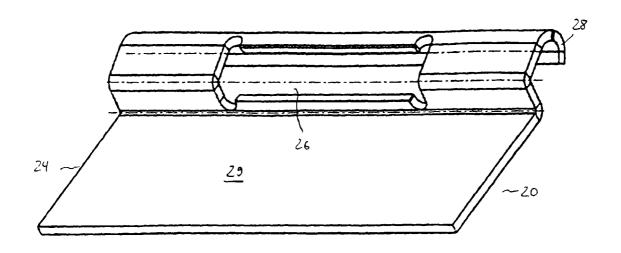
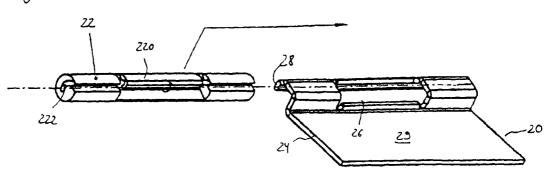
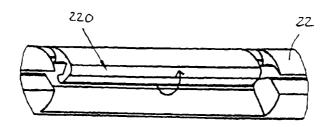




Fig. 6

Fis.7

