[0001] This invention relates to a method for the production of pulp from raw plant material,
preferably by percolation organic solvent boiling. Most particularly the invention
relates cellulose production from ground hemp stocks from the preliminary hemp processing
at the fibre plants.
[0002] From the point of view of pulp production, bast-fibre plants consist of two different
raw materials, the bast which comprises 20-25% of the plant, and the woody fibres
that comprise the remainder of the plant. It was found initially when using these
plants as raw materials that typical pulping conditions may be optimum for the bast
portion but may not be optimum for the fibrous portion. A more progressive, modem
pulping technology of bast fibre plants such as hemp, flax, and kenaf is based on
the separation of stalks into its two parts: bast (fibre) and woody (shive). The mechanical
separation of stalks by this conventional technology, typically involving stock preparation
and its processing on breaking, scutching and hackling machines, is not only expensive,
but also generates large quantities of waste, including both dust and chemical waste.
A significant proportion of the waste is irretrievably lost, leading to pollution
of the environment. Further, shive formed during the mechanical separation and cleaning
of bast fibres is not very suitable for pulping by modem methods. In the pulp and
paper industry only the bast portion of hemp is used.
[0003] At present only one technology is known that is capable of eliminating such wastefulness
and converting 60 - 65% of stalks into high quality bleachable pulp. This technology
is based on pulping using aqueous organic (aqueous alcohol) solutions of ammonia and
sulphur dioxide as pulping liquors. This is known as alcohol-based ammonia-sulphite
(AAS) pulping. AAS pulping is unrivalled in both the selectivity and the extent of
delignification of the raw plant materials.
[0004] In the International Review for the Pulp and Paper Industry, Sterling Publishing
Plc, 1994, pp. 67 - 70, V. Krotov discusses a method of using AAS technology involving
drip percolation. The principle involves the trickling and drip percolation of pulping
liquor (consisting of alcohol based ammonia-sulphite) through the layer of lignocellulosic
material (chopped hemp, straw, shive, etc) in vapour / gas medium. The pulping was
carried out at low liquor ratio close to that of vapour phase digestion. The liquor
is continuously recovered by condensation before trickling.
[0005] A unit incorporating this technology was reported by Krotov V. S. and Lavrinenko
T. F. in the 4th International Symposium of Scientists from Comecon Countries, Theses,
Zinatne, Riga, 1982. This was a closed cycle system unit which contained the following
components sequentially: a tank for chemical mixing, a first scrubber to which an
exhauster is connected, a second mixing tank for ammonia water, a condenser, a second
scrubber, third and fourth tanks, a hopper, a feeder, a spiral conveyor, a digester,
a discharge unit, a fluffer, a discharge tank, an evaporator, a flasher, a moisture
trap and a cyclone.
[0006] The most immediate advantage of this single unit plant was that it could integrate
all major processes of pulp production including raw material impregnation and cooking,
stock washing and dewatering, recovery of the liquid fraction of a spent solution,
collection and utilisation of dirty condensates, utilisation of secondary steam and
condensate heat, and collection and removal of non-condensable gases without air entrapment.
[0007] One factor that contributes to the efficiency of this pulping method within this
unit is the retention of initial shape of the raw material particles during the whole
process of AAS delignification. The delignified stock is turned into pulp under very
limited mechanical action.
[0008] A significant advantage of this drip percolation and the unit disclosed by Krotov
et al. was the effective reduction in environmental pollution. It is ensured by the
closed-cycle production which is carried out in a space entirely isolated from the
environment, with complete absence of effluents, including dirty condensates. Non-condensable
gases are collected without entrained air and can be taken for neutralisation. This
differs from multi-unit plants with a great number of unpressurized vessels where
gas emissions are distributed along the production line, entrain air and are inevitably
released into the atmosphere.
[0009] Before the raw material enters the digester, it undergoes a process known as Prex
impregnation. A small portion of the raw material within the feeder apparatus (for
a digester) is compressed and then expanded. At the point of expansion, the pulping
liquor is injected into the feeder apparatus, whereby the raw material acts as a sponge
and absorbs the liquid. This technique allows a significant proportion of the raw
material to come into contact with the pulping liquor. However, it is unlikely that
using the disclosed apparatus results in all the material being saturated. There thus
exists the possibility of improving the technique by developing an improved feeder
apparatus. Further, the prior art document does not discuss variations in condition,
such as temperature for example that might improve this method of impregnation.
[0010] In this prior art unit the only cooking of the raw material occurs within the digester.
It is possible that the efficiency of delignification could be improved by allowing
some preliminary cooking prior to the material entering a digester or equivalent apparatus.
There is also the problem with the design of the digester disclosed that the means
by which the cooked and washed pulp is removed from the digester into the discharge
unit is inefficient and this can lead to a congestion of material. There is scope
for improvement of the means by which the material is removed from within any cooking
device used.
[0011] Within this unit there is significant recovery of the components of the spent pulping
solution / liquor. For example, up to 60-70% ammonia and up to 50% sulphur dioxide
can be recovered quantitatively. Organic solvent can also be recovered quantitatively.
However, there still exists the possibility of improving the recovery of the liquid
fraction of the spent solution.
[0012] The document GB-A-753,377 discloses a method as defined in the pre-characterizing
portion of claim 1. The document US-A-3,096,234 discloses a continuous digester system
with a pressure differential between a digester and a dilution tank.
[0013] The present invention seeks to create an improved method by which a single, closed
unit can be operated continuously for cellulose production from fibrous raw plant
material. The unit in an embodiment must use AAS pulping technology and drip percolation
and thus retains the advantages of these methods of delignification. As with the previously
disclosed pulping unit using this technology, the unit must simultaneously perform
the operations of saturation of the raw plant material by boiler solution, boiling
(delignification) of the raw plant material, washing of the fibrous product, regeneration
of the organic solvent, residue water and chemicals from the used boiler - washing
solution, dehumidification of the washed fibrous product, collection and absorption
of the steam and gases and preparation of the boiler solution from the recovered and
fresh chemicals. However, most importantly, the unit seeks to provide the improved
Prex impregnation of the raw material.
[0014] A further object of the invention is to improve the processing of the washed and
cooked plant material and in particular to improve the efficiency of the collection
- particularly from the cooking apparatus - dewatering and predrying of the fibrous
product (pulp). Also the invention seeks to improve the collection, condensation and
absorption of vapours released in the delignification, the collection, cleaning and
centralised discharge for neutralisation and utilisation of non-condensable gases
and also the preparation of pulping liquor from the recovered chemicals.
[0015] Another object of the invention is to produce a method which realises few waste products,
and does not need fresh water technology or gas treatment facilities for processing
the raw plant material into high quality cellulose. The method should be raw material,
cost and energy efficient.
[0016] According to the present invention there is provided a method for the production
of pulp from raw plant material comprising in sequence: regulating the input of raw
material into a boiler by means of a first feeder containing a screw having a prolonged
stem which extends beyond the screw thread; cooking the raw material in said boiler
to generate pulp; receiving cooked material from the boiler in a second feeder extracting
liquid from the cooked material in a liquid extraction apparatus; treating the material
received from the liquid extraction apparatus with steam in an unloader maintained
at a lower pressure than the liquid extraction apparatus; receiving pulp from the
unloader in an accumulation reservoir; and removing pulp from the accumulation reservoir;
characterised in that the regulating step includes injecting boiler solution into
the raw material through a passage in the prolonged stem and that said second feeder
is maintained at a lower pressure than the boiler.
[0017] Preferably the unit used to carry out the method is composed of two sections whereby
the first section for the preparation of the boiler solution comprises: a first mixing
device into which water is fed, a plunger pump with adjustable inputs, a first scrubber
into which ammonia is fed by a first output tank, a first "tube in tube" heat exchanger,
a second scrubber the contents of which are fed into a second tank; and the section
for the boiling of raw material comprises; an input bunker, a spiral feeder, an inclined
spiral conveyor, a boiler, a second mixing device, a second "tube in tube" heat exchanger,
a rotor feeder, a dividing bunker, a screw apparatus, a screw unloader, a fluffer,
an accumulation reservoir, a screw conveyor, a first casing tube heat exchanger, a
fourth output tank, a first vaporising apparatus, a steamer, a second casing tube
heat exchanger, a fifth output tank, a second vaporiser apparatus, a third vaporiser
apparatus, a first cyclone, a third casing tube heat exchanger, a second cyclone,
an emergency tank, a helper bunker, a fourth casing tube heat exchanger, and a system
of pumps and interconnecting tubes.
[0018] The construction of the unit is described by reference to the appended drawings in
which:
Figure 1 is a schematic of the boiler solution preparation section of the unit;
Figure 2 is a schematic of the section of the unit for boiling the raw plant material;
Figure 3 is a cross-section along the line A - A' through the input bunker for the
raw material;
Figure 4 is a cross section taken along the line B - B' through the spiral feeder
of the unit;
Figure 5 is a cross-section taken along line C - C' through the boiler of Figure 2;
Figure 6 is a cross-section taken along the line D - D' of the screw apparatus;
Figure 7 is a section taken along line E - E' of the accumulation reservoir of Figure
2; and
Figure 8 is a section taken along the line F - F' of Figure 7.
[0019] The two sections that together comprise the unit are respectively shown in Figures
1 and 2. The two sections are not separate entities but are constructed to interlink
through specific pieces of apparatus; the two sections together form the closed cycle
of the unit.
[0020] Figure 1 relates to the section for the preparation of the boiler solution. For this,
ammonia water with an ammonia concentration between 25 and 27% is used, as well as
sulphur dioxide, technical (95%) ethanol and water. Water for the preparation of the
boiler solution is supplied into the mixing device 2, which can also serve as a pot
for the preparation of hard or liquid chemicals. The water is sent via the means of
the plunger pump with adjustable input 7, 7a (working and spare respectively) from
the mixing device 2 to the first scrubber 3 which is in the tail. Condenser 28 supplies
non-condensable gases in to the first scrubber 3 where they are absorbed by the water
which thus removes impurities. Non-purified gases also enter the first scrubber from
the second scrubber 4.
[0021] The section for the preparation of the boiler solution is hermetic and works under
raised pressure. The first scrubber 3 works under atmospheric pressure, and in the
all the following apparatuses the pressure is slowly raised depending on the aerohydrodynamic
resistance.
[0022] The weak solution from the first scrubber 3 goes via the pump 7b through the first
'tube in tube' heat exchanger 5 to the second scrubber 4. The 'tube in tube' heat
exchanger has a different temperature within the tubes than between the tubes. The
temperature within the tubes is considerably lower than that between them, typically
the inside of the tubes being between 25 and 75 degrees celsius and that between the
tubes being about 100 degrees.
[0023] When gases are absorbed in the scrubbers, heat may be emitted and the solution is
warmed up to 45 - 50°C. The heat exchanger 5 ensures that the temperature of the solution
is no more than 20°.
[0024] Sulphur dioxide is fed into the second scrubber 4 from the tank system. Sulphur dioxide
feeding is also provided for the scrubber 3 as well. The scrubber 4 is also supplied
with ammonia water for irrigation from the output tank 6 by the pump 7c. The output
tank 6 is equipped with injectors, from which water is supplied to ensure safety of
the servicing.
[0025] The solution from the second scrubber 4 is fed by the pump 7d to the tank with ready
boiler solution, the mixing device 2a.
[0026] Plunger pumps with regulated flow 7a, 7b, 7c and 7d work without reserve but the
scheme allows for these pumps to be interchanged.
[0027] Figure 2 shows the section of the unit for the boiling down of the raw plant material,
typically composed of ground down hemp stock from the fibre plants. The raw material
comes from storage into the input bunker 8. Unlike the hopper used in the prior art
units, the input bunker 8 is situated immediately above the loading carbine of the
spiral feeder 9 as illustrated in Figure 2.
[0028] The input bunker 8 itself is illustrated in Figure 3. It is equipped with a stirring
device 80 which prevents raw material from getting stuck, as well as with a screw
81 for pressing the raw material. The stirring device 80 is typically rotated at between
0.25 and 0.52Hz (15 and 31 rotations per minute). The number of arms of the stirring
device 81 is not limited to the two illustrated in the figure, but can be varied according
to the required input rate of the raw material. The amount of raw material passing
through the input bunker 8, and also the extent to which the raw material is pressed
are controlled by changing the spinning speed of the screw 81, the speed being controlled
by a thyristor converter. Such a converter serves as a control over the engines driving
the equipment.
[0029] Preferably, the input bunker 8 will have a working volume of not more than 1.8 cubic
metre. This volume ensures that the raw material is efficiently pressed before passing
out of the bunker 8. Input and output from the bunker 8 are closely controlled such
that the productivity of bunker 8 is within the range of 3.7 to 10.0 cubic metres
/ hour.
[0030] The pressed raw plant material is loaded from the input bunker 8 directly into the
spiral feeder 9 situated immediately beneath it. A cross-section through the feeder
9 (along the line illustrated in Figure 2) is illustrated in Figure 4. The purpose
of the feeder 9 is to further regulate the movement of the raw material to ensure
a continuous flow of raw material into the boiler 11. The feeder 9 consists of cylindrical
and conical parts, as well as a screw 90 which extends the entire length of the feeder
9. The shape of the screw by analogy to the shape of the feeder itself, has both cylindrical
90a and conical 90b parts. The diameter of the screw decreases as it passes from the
cylindrical to the conical part of the feeder 9, as illustrated in figure 2. Unlike
prior art feeders 9, the screw of this feeder has a prolonged stem 91 which extends
beyond the screw thread in the conical region 90b of the screw 90.
[0031] In the conical part of the feeder 9 the raw material is compressed, and because of
the slow decrease in the diameter of the screw, a plug is formed which resists the
pressure of the boiler 11 - the relative positions of the boiler 11 and the spiral
feeder 9 being illustrated in Figure 2 - and ensures the boiler 11 is airtight. The
purpose of the prolonged stem 91 of the screw is to create a hole in the centre of
the compressed plug. When the plug comes off the end part of the screw 90, the raw
material is depressurised. In the zone where this depressurization occurs there is
a hollow shaft 92 through which boiler solution is injected. With the help of needle
valves situated around the perimeter of the output opening of the spiral feeder 9,
the boiler solution irrigates the outside surface of the raw material plug. Also as
the raw material is depressurized it, similarly to a sponge, absorbs the injected
boiler solution such that a fast saturation of the raw material occurs. When the load
drops to 70% the feeder engine is shut off and the output opening of the feeder is
closed off by closing the disc of a hydrocylinder.
[0032] The boiler solution is fed through the hollow shaft 92 in the spiral feeder 9 by
the pump 7f, 7g (working and spare respectively) from the apparatus 2a. The solution
from 2a passes through the heat exchanger 5a, where it is heated to temperature of
75°C.
[0033] As with the input bunker 8, the spinning speed of the spiral feeder's screw 90 determines
the efficiency of compression of the raw material. The speed of rotation also determines
the time for which the raw material remains in the feeder 9; typically the throughput
of the feeder 9 is maintained at a similar level to that of the input bunker 8. However,
unlike the input bunker 8 which is at room temperature, the spiral feeder 9 is maintained
at a temperature of approximately 100°C. This preliminary temperature increase of
the raw material enables some preliminary cooking of the material when it is first
impregnated with boiler solution in the depressurization zone of the feeder 9. Obviously
most cooking occurs in the boiler 11 later in the unit, but the temperature increase
in combination with this initial impregnation ensures increased cooking efficiency
within the unit as a whole. The impregnation of the material is further improved by
the hole in the centre of the plug generated by the prolonged stem of the screw 91.
[0034] The feeder contains attachments such that different screws 90 can be mounted within
it. Obviously these screws will have both cylindrical 90a and conical 90b parts in
correspondence to the shape of the feeder 9 but can differ in the length and diameter
of the prolonged stem 91. This allows for the possibility of varying the size of the
hole formed in the plug as it is extruded from the conical end 90b of the screw. As
discussed, the hole is important for the impregnation of the central part of the raw
material plug. However, no batch of raw material will be identical and changing the
prolonged stem will allow for more efficient impregnation of material that may vary
in fibrous or bast composition. It is also useful where the unit is adapted for use
in processing different types of bast-fibred plants.
[0035] With the help of the inclined spiral conveyor 10, the raw material is sent to the
lower part of the boiler 11, which is equipped with a vertical screw 111 that moves
the raw material up and down and rods that both loosen the pulp and preclude the appearance
of dense and stagnant zones in the boiler 11.
[0036] In the lower part of the boiler 11 the raw material is submerged in boiler solution.
This is pumped from the second mixing device 2a by pump 7f into the boiler through
the vertical screw 111 which has a perforated shaft. The level of the liquid is regulated
by controlling the flow of the solution entering the boiler 11 and also by pumping
away the used solution, through two circular pockets (not shown), protected by two
to three rows of circular sieves (not shown), using the pumps 7h and 7i. The pockets
together with the sieves are vital for changing the liquid level; this control is
essential as it allows for the efficiency of the delignification process to be maintained
even if slight fluctuations in raw material volume entering the boiler 11 occur. Any
solution pumped out through the pockets in this way is heated in the casing tube heat
exchanger 19 and returned to the boiler 11 through the perforated shaft of the vertical
screw 111.
[0037] Importantly, the temperature and pressure conditions of the boiler 11 are strictly
controlled The temperature is maintained at 170±10°C throughout the circulation of
the boiler solution. The working pressure of the boiler is held at not more than 1.3MPa.
The boiler 11 is equipped with a preventive valve, which will open at the pressure
of 1.5MPa and also with features which allow for unloading of the boiler 11 when the
pressure is raised. Unloading the material from the preventive valve is done into
the tank 6b with the casing tube heat exchanger 22a. Those gases that do not condense
in heat exchanger 22a, pass through cyclone 32 into the heat exchanger 28.
[0038] Raw material in the boiler 11 is raised from the liquid and enters into a steam and
gas zone, where it is subjected to boiling and irrigation with drops of liquid condensed
from the steam of the used solution on the surface of heat exchanger-condenser 25.
Consequently, there is simultaneous washing and boiling of the fibrous product. The
boiler-washing liquid used for irrigation becomes saturated with the reaction products.
As the raw material rises further from the level of liquid it can be additionally
heated by steam, supplied through a carbine in the middle part of the boiler 11.
[0039] In the upper part of the boiler 11 a coil of the reverse screw 116 with spirally
welded ribs 117 is provided. The reverse screw 116, besides preventing the pulp from
entering the steam portion of the boiler 11, also serves to distribute the irrigation
liquid. As boiling liquid enters the boiler 11 it strikes the reverse screw 116 and
the ribs serve to break up the stream and thus disperse the liquid over a larger area.
This ensures that as large a portion of the raw material as possible comes into contact
with the irrigation liquid and improves the effectiveness of the drip percolation.
[0040] It is also possible to change the spinning speed of the boiler shaft 112 using a
thyistor converter. Typically, the shaft is rotated at about 0.53 Hz (32 rotations/min.).
[0041] The rate at which the pulp is raised through the boiler 11 is controlled such that
it spends between 1 and 4 hours within the boiler 11. This ensures sufficient boiling
and washing of the raw material. Additionally any gases released from the upper part
of the boiler are blown away through tank 6b.
[0042] In the prior art unit shown in the 4th International Symposium of Scientists from
Comecon Countries, Theses, Zinatne, Riga, 1982, the pulp passes from the boiler into
a stepped series of screw feeders referred to as the discharge unit. The pulp is subjected
to limited compression within this apparatus, which serves to press out some of the
pulping liquor remaining in the material. In the present invention the raw material
passes through a sequence of apparatus components which greatly improves the ease
of removal of the material from the boiler 11 and which result in far more effective
removal of liquid from the washed and boiled pulp.
[0043] Firstly, the resultant boiled and washed pulp is unloaded from the upper part of
the boiler by the spiral conveyor 12. The pulp is supplied to the conveyor 12 by means
of paddles 118 which are illustrated in Figure 5. The paddles are mounted on the rotating
boiler shaft and thus the unloading process is regulated by varying the speed of rotation.
[0044] One important feature of the spiral conveyor is its high speed of rotation. The screw
within it is rotated at approximately 16.7 Hz (1000 rot /min). This ensures a very
high rate of throughput and helps to prevent congestion of the pulp at the top of
the boiler.
[0045] Pulp unloaded in this way passes from the spiral conveyor 12 into a rotor feeder
13. The pressure in the rotor feeder 13 is lower than that of the boiler (1.3MPa),
and is typically maintained at c. 0.7MPa to ensure an approximate pressure difference
of 0.6MPa. Secondary boiling gases from the boiler 11 expand on entering the rotor
feeder 13 allowing for their separation and removal.
[0046] The rotor feeder 13 supplies the pulp into a dividing bunker 14. This is constructed
in the same way as the input bunker 8 and thus consists of both conical and cylindrical
parts, and also comprises a corresponding stirrer 14a (within the conical part) and
a pressing screw 14b (within the cylindrical region). The action of the stirrer 14b
prevents the raw material getting stuck as in the input bunker 8. Again the screw
14b serves to compress the pulp and consequently squeeze liquid from the material.
[0047] The use of a dividing bunker 14 gives far more efficient pulp compression. The spinning
speed of the pressing screw 14b can be varied which allows for greater control of
both the throughput of pulp and the extent to which the pulp is actually compressed.
[0048] From the dividing bunker the cellulose pulp is loaded into the screw apparatus 15,
where extra liquid is pressed out. This apparatus is illustrated in Figure 6. The
loading sequence is maintained airtight by fitting the screw apparatus 15 with a closing
device. In emergency situations the rotors of the closing device are set to a closed
position, by which a steep decline of pressure of the system is prevented.
[0049] After closing the device the cellulose pulp is ground in the block of cams. These
blocks are shown in detail in Figure 6. Along the length of the screw apparatus 15
the cams is varied; in Figure 6 there are three identified types of cam (150, 151,
152) which are interchanged as illustrated. This arrangement of cams is in no way
limiting. Other cams can be used, or the order of the cams changed. The variation
of cams within the screw apparatus 15 means that the pulp is ground with variable
intensity along its length, which improves the efficiency with which extra liquid
within the pulp is squeezed out. The rotation of the screw is typically maintained
between 1.6 and 3Hz (100 to 180 rotations / min). It is also possible for each different
type of cam to be rotated at a different frequency by connection of each part to a
different driving engine.
[0050] Having passed through the screw apparatus 15 the pressed pulp is unloaded into the
screw unloader 16 which serves to both unload and steam the cellulose pulp. Typically
the screw unloader 16 is maintained at a pressure between 0.1 and 0.2 MPa such that
gases are removed by the lowering of pressure. Additionally the screw unloader 16
is supplied with steam to take away the remnants of alcohol. The temperature of the
pulp entering the screw unloader 16 is approximately 150°C but within this apparatus
the temperature is set at 100°C.
[0051] From the screw unloader, the pulp is transported to the fluffer 17, which is designed
to divide larger pieces of the pulp into separate packs of fibre so as to facilitate
the process of blowing away and removal of the highly volatile fraction of any liquid
still contained in the pulp. The fluffed up pulp then is sent to the conical accumulation
reservoir 18 shown in Figure 7. In the upper part of this reservoir 18 there is an
aperture through which steam is blown for the purpose of removing alcohol and other
volatile species from the pulp. To prevent significant condensation of this steam,
the reservoir 18 is maintained at a temperature of approximately 100°C.
[0052] Unlike the discharge tank shown in the unit in the 4th International Symposium of
Scientists from Comecon Countries, Theses, Zinatne, Riga, 1982, this accumulation
reservoir 18 has a 'live bottom' formed by four screws, as illustrated in the cross-section
of Figure 8. Preferably the four screws have identical diameters and are divided into
two sets 181, 182 each set rotating out of step with the other. The screws are driven
by a motor such that they rotate at a speed of between 15 and 30 rotations per minute.
This serves to keep the pulp in constant motion.
[0053] The choice of identical screws is only one possibility. Conceivably, the diameter
of each screw or set of two screws could be different, or each screw could be attached
to a different motor such that they rotate at different speeds if this improves the
efficiency with which the steam blown into the apparatus removes alcohol or other
remaining volatile liquids still remaining in the pulp after fluffing.
[0054] The cellulose pulp passes out of the accumulation reservoir on to a screw conveyor
18a for packing. The screw acts upon the pulp to press out any further liquid (filtrate)
from it; liquid collected in this way is gathered in the apparatus 6c, which also
receives the condensate from the heat exchanger (condenser) 22. The apparatus 6c is
maintained at the same pressure as the screw apparatus 15, c. 0.7MPa. From apparatus
6c the boiler solution is recycled by pump 7j to the boiler 11 for use in irrigation
of the raw material. The extra solution flows from the apparatus 6c to vaporising
apparatus 20, where the pressure is lowered. When necessary the extra solution is
sent by the pump 7k out of the system.
[0055] Used boiler solution is concentrated in a steamer apparatus 24 equipped with a flowing
down pellicle consisting of a series of parallel tubes 25 as illustrated in Figure
2. This steamer apparatus 24 is made with a separate heating tank and a separator
26. The temperature within the tubes is maintained about 15°C lower than the temperature
in between the tubes. Preferably, the temperature in the tubes is set at 175±5°C whilst
that in between the tubes is set at 190±5°C. In line with the main theme of the unit
the pressure inside the steamer apparatus is also closely controlled. Preferably the
working pressure inside the tubes is set at 1.25±0.05MPa and that between the tubes
is also set at 1.25±0.05MPa. For effective boiling down of the used boiler solution
the steamer must have a large surface area; the working surface area of a typical
steamer used in the method according to this invention is about 25m
2.
[0056] From the boiler the solution enters the separator 26 from where it is pumped by pumps
7n and 7o (working and spare respectively) into the upper part of the steamer apparatus
24; the solution comes through a distribution device in the steamer apparatus 24 and
flows down evenly on the inner surface of the tubes 25 in the form of a thin layer.
Simultaneously the solution is being boiled down to the required concentration. The
gases released in the steamer pass into the heat exchanger 27 (condenser). The condensed
boiler solution is collected is gathered in tank 6d and later sent by pump 7m to the
boiler 11 for irrigation. The extra solution from the tank 6d flows into the vaporiser
apparatus 20a - which is maintained at a lower pressure - and if necessary is pumped
away to be used in preparation of the boiler solution.
[0057] The concentrated boiler solution from the steamer apparatus is sent away to the vaporiser
apparatus 20b, where it is further boiled down and collected in the an output tank.
[0058] The gases separated in the vaporiser 20b are sent through a first cyclone 31 to the
'casing-tube' heat exchanger 28. Secondary gases from the screw unloader 16, from
the vaporisers 20 and 20a are also sent to this heat exchanger 28 through the second
cyclone 32. The purpose of both cyclones 31, 32 is to catch fibres supported within
the gases of the boiler solution. Both cyclones are held at a temperature of 100°C
and work at atmospheric pressure. The first cyclone 31 has however a smaller working
volume than the second cyclone 32 which directly relates to the relative volumes of
gas circulated to each of them.
[0059] The condensed liquid is sent to the tank 2a and non-condensable gases go to scrubber
3 for the absorption and cleaning process. The pulp caught in the second cyclone 32-is
periodically unloaded from it into a helper tank.
[0060] In the unit a means of emptying the contents of the boiler 11 in emergency is provided.
There is an emergency tank 30, equipped with a stirrer and a net for removing drops
of liquid. The lower part of the boiler 11 is connected through a blower tube 34 to
the middle part of the emergency tank 30. When the pressure is lowered - the tank's
working pressure is typically atmospheric pressure - secondary boiling gases form
in the emergency tank 30, which pass through the second cyclone 32 into the condenser
28 and later into the first scrubber 3. The incoming solution from the boiler has
a temperature of approximately 170°C but this is lowered to 100°C within the tank
30. At this point it is needed to maximise the usage of cooling water for the condenser
28 and the irrigation liquid Cl. The emergency tank 30 is unloaded periodically into
the movable helper bunker 35.
[0061] Compared to the prior art unit of Krotov the unit used in the method of the present
invention comprises two more vaporisers throughout (described as flashers in the prior
art document). The function of each vaporiser apparatus is to lower the pressure and
temperature of the boiler solution passing through it. The three vaporisers are of
identical volume and all work at atmospheric pressure. Their increased number and
their respective positions within the unit serve to improve the temperature efficiency
of the apparatus. This contributes to an improvement in the preparation of the pulping
liquor from recovered chemicals in this embodiment compared to the prior art unit.
[0062] Before a planned stop of the unit, the boiler solution must be taken away from the
boiler. For this purpose, pump H7 directs the boiler solution into a diversionary
path not encountering the heat exchanger T.
[0063] A number of the apparatus components are of standard construction within the field
of pulping. The standard equipment include the mixing devices 2, 2a which are fixed
with turbine mixers, the tanks (6 to 6e) and all pumps. With respect to the standard
pumps used, these have a maximum working pressure flow of 16 kg/cm
2. The automation scheme of the unit provides for blocking of the pumps when the pressure
inside exceeds this value.
[0064] The basic construction material for the unit is steel and more particularly most
component apparatus are constructed from carbon steel. However, it is possible that
the unit could be constructed from other materials with similar mechanical and chemical
properties as steel, for example the resistance to the pH conditions within the boiler.
The carbon steel may also be treated to enhance its resistance to corrosion or subjecting
it to other preservation processes.
[0065] The unit of the embodiment does contain more component parts than the aforementioned
prior art pulper. The importance of the increased number of vaporisers has already
been discussed. Despite this increase the unit can be constructed in compact form
such that it requires little more floor space than the known unit. The embodiment
can be constructed as a highly-profitable low-capacity plant which even offers scope
for the development of mobile units that can be used in the growing regions for the
raw materials. The integration of the individual parts and assembly units used in
the method of the invention is indicated by its high level of unification. The invention
has a typical coefficient of unification of 52%.
[0066] The unit, although particularly suitable for ground hemp stocks, is not restricted
to this type of raw material. Other bast-fibred plants such as flax or kenaf are obvious
alternatives. These would require a different composition of pulping liquor i.e. a
different relative proportion of components and also a different cooking and treatment
time. The throughput of material through the unit can readily be varied to allow for
this.
Example:
[0067] The following example illustrates the typical construction and operation details
for a unit used in the method according to this invention. The unit described hereafter
may be used for the production of cellulose at a rate of no more than 300 kg/hr. The
conditions listed are the optimum for this total productivity limit.

[0068] Other technical characteristics are:
Maximum working pressure of the steam supplied for heating, Mpa;
- to the boiler (11) 1.6
- to the steamer (24) and the heat exchanger (19) 1.3
- to the screw unloading device (12) 0.05
- to the second 'tube in tube' heat exchanger (5a) 0.05
Working temperature
- of the cooling water 25°C
- of the cooled water 7 - 18°C
Time pulp spends in the boiler 1 - 4 hrs
pH of the environment 4.5 to 13
Density of raw material in the input bunker 80 - 125 kg/m3
Specific energy consumption,
kWt/ton, kg/hr, not more than 676
Maximum steam usage, kg/hr
- with pressure of 1.6 MPa 40
- with pressure of 1.3 MPa 481
- with pressure of 0.05 MPa 84
[0069] The volumes and operating temperatures and pressures represent the preferred values
but are not limiting. The size of each component of the unit can be varied according
to its location. For example, if a mobile unit is required, the dimensions of each
piece of apparatus comprising the unit will be reduced correspondingly in scale. The
unit is of direct importance to countries where wood supplies are limited and the
unit must be sized according to the regional growth of bast-fibred plants and the
associated demand of paper.
[0070] The amount of ethanol used is not given. This raw material is only supplied for the
start-up of the unit since during pulping methanol, ethanol and acetone as formed
from the components of the fibrous raw material, this being a well-known effect of
the AAS delignification method. Subsequently, as organic components are accumulated
in the pulping liquor, ethanol can be recycled. Excess organic solvent can be drawn
and processed as a market chemical. Hence in a continuously operating unit there is
no need to supply ethanol.
1. A method for the production of pulp from raw plant material comprising in sequence:
regulating the input of raw material into a boiler (11) by means of a first feeder
(9) containing a screw (90) having a prolonged stem (91) which extends beyond the
screw thread;
cooking the raw material in said boiler (11) to generate pulp;
receiving cooked material from the boiler (11) in a second feeder (13);
extracting liquid from the cooked material in a liquid extraction apparatus (15);
treating the material received from the liquid extraction apparatus with steam in
an unloader (16) maintained at a lower pressure than the liquid extraction apparatus;
receiving pulp from the unloader (16) in an accumulation reservoir (18); and removing
pulp from the accumulation reservoir; characterised in that the regulating step includes injecting boiler solution into the raw material through
a passage (92) in the prolonged stem (91) and that said second feeder (13) is maintained
at a lower pressure than the boiler.
2. A method according to claim 1, wherein the first feeder (9) consists of both cylindrical
(90a) and conical (90b) parts, the prolonged stem (91) of the screw extending beyond
the conical part of the screw thread.
3. A method according to claim 1 or claim 2, wherein the prolonged stem (91) is of variable
length and diameter.
4. A method according to claim 1, wherein the boiler (11) for cooking the raw material
to generate pulp contains a substantially vertical screw (111) having a rotatable,
perforated shaft.
5. A method according to claim 4, wherein the boiler (11) further comprises a reverse
screw (116) of opposite sense to the substantially vertical screw.
6. A method according to claim 5, wherein the reverse screw (116) has at least one spirally
extending rib (117).
7. A method according to any of claims 4 to 6, wherein the cooked material is removed
from the boiler (11) by means of paddles (118) mounted on the shaft of the substantially
vertical screw (111).
8. A method according to any preceding claim, wherein the liquid extraction apparatus
for extracting liquid from the cooked material comprises a screw apparatus (15) containing
at least two different rotatable cams.
9. A method according to claim 8, including rotating each cam within the screw apparatus
(15) at a different frequency.
10. A method according to any of claims 1 to 9, including keeping the pulp in constant
motion in the accumulation reservoir (18).
11. A method according to claim 10, wherein the bottom of the accumulation reservoir (18)
is formed by rotatable screws.
12. A method according to claim 11, wherein at least one of the screws in the accumulation
reservoir (18) rotates out of step with the other screws.
13. A method according to claim 12, wherein two of the screws in the accumulation reservoir
(18) rotate at the same frequency.
14. A method according to any of claims 11 to 13, wherein each of the screws in the accumulation
reservoir (18) is of different diameter.
15. A method according to any of claims 1 to 4, further comprising supplying raw material
into the first feeder by means of a first bunker (8) positioned on top of the first
feeder (9), the first bunker (8) including a stirring device (80) and rotatable screw
(81).
16. A method according to any of claims 1 to 15, further comprising receiving cooked material
removed from the boiler with a conveyor (12), positioned between the boiler (11) and
the second feeder (13).
17. A method according to any of claims 1 to 16, further comprising compressing the cooked
material in a second bunker (14) positioned between the second feeder (13) and the
liquid extraction apparatus, the second bunker comprising a stirrer (14a) and a pressing
screw (14b).
18. A method according to any claims 1 to 17, further comprising dividing the cooked material
into separate packs of fibre to facilitate liquid removal from the material by means
of a flutter (17), positioned between the unloader (16) and the accumulation reservoir
(18).
19. A method according to any of claims 1 to 18, wherein pulp is removed from the accumulation
reservoir (18) by means of a screw conveyor (18a).
20. A method according to any of claims 1 to 19, wherein the boiler solution is produced
and supplied to the boiler and/or first feeder by the steps of:
supplying water to a mixing device (2);
receiving water from the mixing device in a first scrubber (3) and supplying sulphur
gas to generate a weak solution;
passing the weak solution from the first scrubber through a heat-exchanger (5);
receiving the weak solution from the heat exchanger in a second scrubber (4) and supplying
ammonia water and sulphur dioxide gas to the second scrubber (4);
passing the solution from the second scrubber (4) to an output tank (6) in which the
boiler solution is generated;
transferring the boiler solution from the output tank (6) to the boiler and/or first
feeder; and
regulating gas and/or liquid flow with one or more pumps (7a-d).
21. A method according to claim 20, wherein the heat-exchanger (5) comprises a 'tube-in-tube'
heat exchanger.
22. A method according to any of claims 1 to 21, further comprising regenerating boiler
solution from the used solution formed within the boiler, by the following steps in
sequence:
receiving used solution from the boiler (11) in a separator (26);
boiling down used solution to a required concentration in a steamer apparatus (24),
the steamer apparatus including a heater and receiving steam and removing gases released
from the boiling down of the used solution; and
returning the regenerated solution from the steamer apparatus to the boiler.
23. A method according to claim 22, wherein the steamer apparatus (24) further includes
a distribution device for distributing used solution received from the separator,
and a series of parallel tubes (25).
24. A method according to claim 23, in which the temperature inside the parallel tubes
(25) is different to that outside the parallel tubes.
25. A method according to claims 22 to 24, wherein the regenerated boiler solution is
temporarily stored in a tank (6d) before return to the boiler.
26. A method according to any of claims 22 to 25, wherein the used solution is further
boiled down in a vaporiser apparatus (20b) before return to the boiler.
27. A method according to claim 26, wherein a cyclone receives gases generated in the
vaporiser and removes fibres of material supported within the gases.
28. A method according to any of claims 1 to 27 further including treating fluids generated
in the boiler by means of two vaporisers, a cyclone for removing fibres supported
in the gases entering the cyclone from the vaporisers, and a heat-exchanger to condense
the gases received from the cyclone.
29. A method according to claim 28, whereby the step of treating fluids also includes
receiving gases generated in the unloader (16).
30. A method according to claim 28 or 29, whereby the step of treating fluids also includes
receiving gases generated in the fluffer (17).
31. A method according to any of claims 28 to 30, whereby the step of treating fluids
also includes receiving gases generated in the accumulation reservoir (18).
32. A method according to any of claims 28 to 31 further including receiving condensed
liquid from the heat-exchanger in a tank.
33. A method according to any of claims 28 to 32, further including supplying gases not
condensed in the heat-exchanger to the first scrubber (3) for use in the preparation
of the boiler solution.
34. A method according to any of claims 1 to 33, wherein an emergency tank (30) is connected
to the boiler through a blower tube (34).
35. A method according to any of claims 1 to 34, further including unloading pulp caught
in the emergency tank or cyclones into a helper bunker (35).
1. Verfahren zum Herstellen einer Pulpe aus einem Rohpflanzenmaterial in folgender Schrittabfolge:
Regulieren der Eingabe von Rohmaterial in einen Kessel (11) durch eine erste Zugabevorrichtung
(9), die eine Schraube (90) mit einem verlängerten Schaft (91) aufweist, der sich
über das Schraubengewinde hinaus erstreckt;
Kochen des Rohmaterials in dem Kessel (11), um die Pulpe zu erzeugen;
Empfangen des gekochten Materials aus dem Kessel (11) in einer zweiten Zugabevorrichtung
(13);
Entziehen von Flüssigkeit aus dem gekochten Material in einem Flüssigkeitsentziehungsgerät
(15);
Behandeln des aus dem Flüssigkeitsentziehungsgerät empfangenen Materials mit Dampf
in einem Entlader (16), der auf einem geringeren Druck als das Flüssigkeitsentziehungsgerät
gehalten wird;
Empfangen der Pulpe aus dem Entlader (16) in einem Sammelreservoir (18); und
Entfernen der Pulpe aus dem Sammelreservoir;
dadurch gekennzeichnet, dass
der Regulierschritt das Einspritzen einer Kessellösung in das Rohmaterial durch
einen Durchgang (92) in dem verlängerten Schaft (91) beinhaltet, und dass die zweite
Zugabevorrichtung (13) auf einem geringeren Druck als der Kessel gehalten wird.
2. Verfahren nach Anspruch 1, wobei die erste Zugabevorrichtung (9) aus einem zylindrischen
(90a) und einem konischen (90b) Teil besteht, und sich der verlängerte Schaft (91)
der Schraube sich über den konischen Teil des Schraubengewindes hinaus erstreckt.
3. Verfahren nach Anspruch 1 oder 2, wobei der verlängerte Schaft (91) eine variable
Länge und einen variablen Durchmesser aufweist.
4. Verfahren nach Anspruch 1, wobei der Kessel (11) zum Kochen des Rohmaterials eine
im wesentlichen vertikale Schraube (111) mit einem drehbaren perforierten Schaft umfasst.
5. Verfahren nach Anspruch 4, wobei der Kessel (11) weiterhin eine der im wesentlichen
vertikalen Schraube gegenläufige Schraube (116) aufweist.
6. Verfahren nach Anspruch 5, wobei die gegenläufige Schraube (116) zumindest eine spiralförmig
verlaufende Rippe (117) aufweist.
7. Verfahren nach einem der Ansprüche 4 bis 6, wobei das gekochte Material aus dem Kessel
(11) mittels Schaufeln (118) entfernt wird, die an dem Schaft der im wesentlichen
vertikalen Schraube (111) angebracht sind.
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Flüssigkeitsentziehungsgerät
zum Entziehen der Flüssigkeit aus dem gekochten Material ein Schraubengerät (15) mit
mindestens zwei unterschiedlichen rotierenden Nocken aufweist.
9. Verfahren nach Anspruch 8, wobei sich jede Nocke innerhalb des Schraubengeräts (15)
mit einer unterschiedlichen Frequenz dreht.
10. Verfahren nach einem der Ansprüche 1 bis 9, wobei die Pulpe in dem Sammelreservoir
(18) in konstanter Bewegung gehalten ist.
11. Verfahren nach Anspruch 10, wobei der Boden des Sammelreservoirs (18) aus drehbaren
Schrauben gebildet ist.
12. Verfahren nach Anspruch 11, wobei sich zumindest eine der Schrauben in dem Sammelreservoir
(18) nicht synchron mit den anderen Schrauben dreht.
13. Verfahren nach Anspruch 12, wobei sich zwei der Schrauben in dem Sammelreservoir (18)
mit der gleichen Frequenz drehen.
14. Verfahren nach einem der Ansprüche 11 bis 13, wobei jede der Schrauben in dem Sammelreservoir
(18) einen unterschiedlichen Durchmesser aufweist.
15. Verfahren nach einem der Ansprüche 1 bis 4, wobei weiterhin der ersten Zugabevorrichtung
Rohmaterial mittels eines ersten Bunkers (8) zugeführt wird, der oberhalb der ersten
Zugabevorrichtung (9) angeordnet ist und eine Rührvorrichtung (80) und eine drehbare
Schraube (81) aufweist.
16. Verfahren nach einem der Ansprüche 1 bis 15, wobei weiterhin gekochtes Material, das
aus dem Kessel mit einer zwischen dem Kessel (11) und der zweiten Zugabevorrichtung
(13) angeordneten Fördervorrichtung (12) entfernt wird, empfangen wird.
17. Verfahren nach einem der Ansprüche 1 bis 16, wobei weiterhin das gekochte Material
in einem zwischen der zweiten Zugabevorrichtung (13) und dem Flüssigkeitsentziehungsgerät
angeordneten zweiten Bunker (13) zusammengepresst wird, der einen Rührer (14a) und
eine Pressschraube (14b) aufweist.
18. Verfahren nach einem der Ansprüche 1 bis 17, wobei weiterhin das gekochte Material
zur Erleichterung der Flüssigkeitsentfernung aus dem Material mittels einer Auflockervorrichtung
(17), die zwischen dem Entlader (16) und dem Sammelreservoir (18) angeordnet ist,
in unterschiedliche Faserpacks geteilt wird.
19. Verfahren nach einem der Ansprüche 1 bis 18, wobei die Pulpe aus dem Sammelreservoir
(18) mittels eines Schraubenförderers (18a) entfernt wird.
20. Verfahren nach einem der Ansprüche 1 bis 19, wobei die Kesselflüssigkeit gemäß folgender
Schritte hergestellt und an dem Kessel und/oder der ersten Zugabevorrichtung bereitgestellt
wird:
Zuführen vom Wasser zu einer Mischvorrichtung (2);
Empfangen des Wassers aus der Mischvorrichtung in einem ersten Wascher (3) und Zugeben
von Schwefelgas, um eine schwache Lösung zu erzeugen;
Weiterführen der schwachen Lösung aus dem ersten Wascher durch einen Wärmetauscher
(5);
Empfangen der schwachen Lösung aus dem Wärmetauscher in einem zweiten Wascher (4)
und Zuführen von Ammoniakwasser und Schwefeldioxidgas zu dem zweiten Wascher (4);
Weiterführen der Lösung aus dem zweiten Wascher (4) zu einem Ausgabetank (6) in welchem
die Kessellösung erzeugt wird;
Transferieren der Kessellösung aus dem Ausgabetank (6) zu dem Kessel und/oder der
ersten Zugabevorrichtung; und
Regulieren des Gas- und/oder Flüssigkeitsstroms mit einer oder mehreren Pumpen (7a-d).
21. Verfahren nach Anspruch 20, wobei der Wärmetauscher (5) einen Rohr-in-Rohr-Wärmetauscher
umfasst.
22. Verfahren nach einem der Ansprüche 1 bis 21, wobei weiterhin die Kessellösung aus
der benutzten Lösung, die sich innerhalb des Kessels gebildet hat, mittels folgender
Schritte zurückgewonnen wird:
Empfangen der benutzten Lösung aus dem Kessel (11) in einer Trennvorrichtung (26);
Einkochen der benutzten Lösung auf die erforderliche Konzentration in einem Dampfgerät
(24), wobei das Dampfgerät eine Heizvorrichtung aufweist, Dampf empfängt und Gase,
die aus dem Einkochen der benutzten Lösung stammen, entfernt; und
Zurückgeben der wiedergewonnenen Lösung aus dem Dampfgerät zu dem Kessel.
23. Verfahren nach Anspruch 22, wobei das Dampfgerät (24) weiterhin eine Verteilvorrichtung
zum Verteilen der benutzten von der Trennvorrichtung empfangenen Lösung und eine Reihe
von parallelen Röhren (25) aufweist.
24. Verfahren nach Anspruch 23, bei welchem die Innentemperatur der parallelen Röhren
(25) von der Außentemperatur der parallelen Röhren verschieden ist.
25. Verfahren nach Anspruch 22 bis 24, wobei die wiedergewonnene Kessellösung zeitweise
in einem Tank (6d) aufbewahrt wird, bevor sie an den Kessel zurückgegeben wird.
26. Verfahren nach einem der Ansprüche 22 bis 25, wobei die benutzte Lösung weiterhin
in einem Verdampfgerät (20b) eingekocht wird, bevor sie an den Kessel zurückgegeben
wird.
27. Verfahren nach Anspruch 26, wobei ein Zyklonabscheider die in dem Verdampfgerät erzeugten
Gase empfängt und Materialfasern, die von den Gasen getragen werden, entfernt.
28. Verfahren nach einem der Ansprüche 1 bis 27, wobei weiterhin Fluide, die in dem Kessel
erzeugt werden, mit zwei Verdampfgeräten, einem Zyklonabscheider zum Entfernen der
in den Gasen, die von den Verdampfgeräten in den Zyklonabscheider eintreten, getragenen
Fasern und einem Wärmetauscher, um die von dem Zyklonabscheider empfangenen Gase zu
kondensieren, behandelt werden.
29. Verfahren nach Anspruch 28, wobei der Schritt der Fluidbehandlung ebenfalls umfasst,
dass Gase, die in dem Entlader (16) erzeugt werden, empfangen werden.
30. Verfahren nach Anspruch 28 oder 29, wobei der Schritt der Fluidbehandlung ebenfalls
umfasst, dass Gase, die in der Auflockervorrichtung (17) erzeugt werden, empfangen
werden.
31. Verfahren nach einem der Ansprüche 28 bis 30, wobei der Schritt der Fluidbehandlung
umfasst, dass Gase, die in dem Sammelreservoir (18) erzeugt werden, empfangen werden.
32. Verfahren nach einem der Ansprüche 28 bis 31, wobei weiterhin eine kondensierte Flüssigkeit
aus dem Wärmetauscher in einem Tank aufgefangen wird.
33. Verfahren nach einem der Ansprüche 28 bis 32, wobei weiterhin Gase, die nicht in dem
Wärmetauscher kondensiert sind an dem ersten Wascher (3) für die Benutzung zur Vorbereitung
der Kessellösung bereitgestellt werden.
34. Verfahren nach einem der Ansprüche 1 bis 33, wobei ein Nottank (30) mit dem Kessel
über eine Druckröhre (34) verbunden ist.
35. Verfahren nach einem der Ansprüche 1 bis 34, wobei weiterhin die in dem Nottank oder
den Zyklonabscheidern aufgefangene Pulpe in einen Hilfsbunker (35) entladen wird.
1. Un procédé de production de pâte à papier à partir de matières premières végétales,
comprenant successivement :
la régulation de l'admission des matières végétales dans une chaudière (11) au moyen
d'un premier chargeur (9) comprenant une vis (90) laquelle est prolongée par une tige
(91) qui s'étend au delà du filetage de la vis ;
la cuisson des matières végétales dans la dite chaudière (11) afin de produire de
la pâte à papier ;
la réception des matières cuites provenant de la chaudière (11) dans un second chargeur
(13) ;
l'extraction du liquide provenant des matières cuites dans un extracteur de liquide
(15) ;
le traitement des matières provenant de l'extracteur de liquide avec de la vapeur
dans un déchargeur (16) maintenu à une pression inférieure à celle de l'extracteur
de liquide ;
la réception dans un réservoir de stockage (18) de la pâte à papier provenant du déchargeur
(16) ; puis transfert de la dite pâte depuis le réservoir de stockage ; caractérisé par le fait que l'étape de réglage inclut l'injection de la solution du réservoir dans les matières
végétales en empruntant un passage (92) situé dans la tige prolongée (91) et que le
dit second chargeur (13) est maintenu à une pression inférieure à celle du réservoir.
2. Un procédé selon la revendication 1, où le premier chargeur (9) est formé de deux
parties, cylindrique (90a) et conique (90b), la tige prolongée (90) de la vis s'étendant
au delà de la partie conique du filetage de la vis.
3. Un procédé selon la revendication 1 ou la revendication 2, où la tige prolongée (91)
est de diamètre et de longueur variables.
4. Un procédé selon la revendication 1, où la chaudière (11) pour la cuisson des matières
végétales afin de produire de la pâte à papier contient une vis principalement verticale
(111) disposant d'un arbre perforé, mobile autour d'un axe.
5. Un procédé selon la revendication 4, où la chaudière (11) comprend en outre une vis
inversée (116) de sens opposé à la vis principalement verticale.
6. Un procédé selon la revendication 5, où la vis inversée (116) est munie d'au moins
une nervure d'extension spiralée (117).
7. Un procédé selon une des quelconques revendications 4 à 6, où les matières cuites
sont extraites de la chaudière (11) au moyen de spatules montées sur l'axe de la vis
principalement verticale (111)
8. Un procédé selon une des quelconques précédentes revendications, où l'extracteur de
liquide destiné à extraire le liquide à partir des matières cuites comprend un mécanisme
à vis (15) comprenant au moins deux différentes cames rotatives.
9. Un procédé selon la revendication 8, caractérisée par le fait que chacune des cames rotatives à l'intérieur du mécanisme à vis est d'une fréquence
différente.
10. Un procédé selon une des quelconques revendications 1 à 9, comprenant le stockage
de la pâte à papier dans le réservoir de stockage (18).
11. Un procédé selon la revendication 10, où le fond du réservoir de stockage (18) est
formé de vis rotatives.
12. Un procédé selon la revendication 11, où au moins une des vis situées dans le réservoir
de stockage (18) tourne autour du pas avec les autres vis.
13. Un procédé selon la revendication 12, où deux des vis dans le réservoir de stockage
(18) tournent autour de leur axe à la même fréquence.
14. Un procédé selon une des quelconques revendications 11 à 13, où chacune des vis dans
le réservoir de stockage (18) est d'un diamètre différent.
15. Un procédé selon une des quelconques revendications 1 à 4, comprenant en outre l'approvisionnement
des matières végétales dans le premier chargeur au moyen d'un premier réservoir (8)
positionné au dessus du premier chargeur (9), le dit premier réservoir (8) comprenant
un mécanisme de brassage (80) et une vis rotative (81).
16. Un procédé selon une des quelconques revendications 1 à 15, comprenant en outre une
réception des matières cuites provenant de la chaudière avec un transporteur (12),
dans un second réservoir (14) positionné entre la chaudière (11) et le second chargeur
(13).
17. Un procédé selon une des quelconques revendications 1 à 16, comprenant en outre une
compression des matières cuites dans un second réservoir (14) positionné entre le
second chargeur (13) et l'extracteur de liquide (15), le second réservoir comprenant
un agitateur (14a) et une vis de serrage (14b).
18. Un procédé selon une des quelconques revendications 1 à 17, comprenant en outre un
système de séparation des matières cuites en différents paquets de fibres afin de
faciliter le mouvement du liquide obtenu à partir des matières, au moyen d'un malaxeur
pelucheur (17) positionné entre le déchargeur (16) et le réservoir de stockage (18).
19. Un procédé selon une des quelconques revendications 1 à 18, où la pâte à papier est
extraite du réservoir de stockage (18) au moyen d'un transporteur à vis (18a).
20. Un procédé selon une des quelconques revendications 1 à 19, où la solution d de la
chaudière est produite et alimente la chaudière et / ou le premier chargeur, selon
les étapes suivantes :
alimentation en eau vers un mélangeur (2) ;
réception de l'eau, provenant du mélangeur, dans un premier purificateur (3) et approvisionnement
de gaz sulfureux afin de générer une solution étendue ;
passage au travers d'un échangeur de chaleur (5) de la solution étendue provenant
du premier purificateur ;
réception dans un deuxième purificateur (4) de la solution étendue provenant de l'échangeur
de chaleur et approvisionnement en eau ammoniacale et en anhydride sulfureux dans
le second purificateur (4) ;
transport de la solution provenant du second purificateur (4) dans un réservoir de
sortie (6) dans lequel la solution de la chaudière est générée ;
transfert de la solution de la chaudière provenant du réservoir de sortie (6) vers
la chaudière et / ou un premier chargeur ; et
régulation du débit de gaz et / ou du débit du liquide à l'aide d'une ou de plusieurs
pompes (7a-d).
21. Un procédé selon la revendication 20, où l'échangeur de chaleur (5) comprend un échangeur
de chaleur de type « tube dans le tube », .
22. Un procédé selon une des quelconques revendications 1 à 21, comprenant en outre une
régénération de la solution de la chaudière, la dite solution provenant de la solution
usagée générée à l'intérieur de la chaudière, selon les étapes successives dont l'ordre
est le suivant :
réception, dans un séparateur (26), de la solution usée provenant de la chaudière
(11);
concentration, par cuisson dans une chaudière à vapeur (24) , de la solution usagée
jusqu'à obtention de la concentration requise, la dite chaudière à vapeur comprenant
un réchauffeur ainsi qu'un dispositif de réception de la vapeur et d'évacuation des
gaz provenant de la concentration par cuisson de la solution usagée ; et
renvoi, depuis la chaudière à vapeur, de la solution régénérée dans la chaudière.
23. Un procédé selon la revendication 22, où chaudière à vapeur (24) comprend en outre,
d'une part un dispositif pour la distribution de la solution usagée reçue depuis le
séparateur et d'autre part une série de tubes parallèles (25).
24. Un procédé selon la revendication 23, où la température à l'intérieur des tubes parallèles
(25) est différente de celle régnant à l'extérieur des tubes parallèles.
25. Un procédé selon les revendications 22 à 24, où la solution régénérée de la chaudière
est temporairement stockée dans un réservoir (6d) avant d'être renvoyée dans la chaudière.
26. Un procédé selon une des quelconques revendications 22 à 25, où la solution usagée
est en outre concentrée par cuisson dans un dispositif de vaporisation (20b) avant
d'être renvoyée dans la chaudière.
27. Un procédé selon la revendication 26, où un clarificateur reçoit les gaz générés dans
le vaporisateur et extrait les fibres des matières contenues dans les gaz.
28. Un procédé selon une des quelconques revendications 1 à 27, comprenant en outre un
traitement des fluides générés dans la chaudière au moyen de deux vaporisateurs, un
clarificateur pour extraire les fibres contenues dans les gaz provenant des vaporisateurs
et pénétrant dans le clarificateur ainsi qu'un, échangeur de chaleur pour condenser
les gaz provenant du clarificateur.
29. Un procédé selon la revendication 22, caractérisée par le fait que l'étape du traitement des liquides inclut également une réception des gaz générés
dans le déchargeur (16).
30. Un procédé selon la revendication 28 ou 29, caractérisée par le fait que l'étape du traitement des liquides inclut également la réception des gaz générés
dans le malaxeur pelucheur (17).
31. Un procédé selon une des quelconques revendications 28 à 30, caractérisée par le fait que l'étape du traitement des liquides inclut également la réception des gaz générés
dans le réservoir de stockage (18).
32. Un procédé selon une des quelconques revendications 28 à 31, comprenant en outre une
réception, dans un réservoir, du liquide condensé provenant de l'échangeur de chaleur.
33. Un procédé selon une des quelconques revendications 28 à 32, comprenant en outre l'approvisionnement
des gaz non condensés dans l'échangeur de chaleur pour le premier purificateur (3)
à fin d'utilisation dans la préparation de solution de la chaudière.
34. Un procédé selon une des quelconques revendications 1 à 33, où un réservoir de secours
(30) est connecté à la chaudière au moyen d'un tube de soufflante (34).
35. Un procédé selon une des quelconques revendications 1 à 34, comprenant en outre un
déchargement, dans un réservoir auxiliaire (35), de la pâte à papier se trouvant dans
le réservoir de secours ou les clarificateurs.