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Description

BACKGROUND OF THE INVENTION

[0001] The present invention relates generally to interface devices for allowing humans to interface with computer
systems, and more particularly to computer interface devices that allow the user to provide input to computer systems
and provide force feedback to the user.
[0002] Computer systems are used extensively to implement many applications, such as word processing, data
management, simulations, games, and other tasks. A computer system typically displays a visual environment to a
user on a display screen or other visual output device. Users can interact with the displayed environment to perform
functions on the computer, play a game, experience a simulated environment, use a computer aided design (CAD)
system, etc. One visual environment that is particularly common is a graphical user interface (GUI). GUI's present
visual images which describe various graphical metaphors of a program or operating system implemented on the
computer. Common operating systems using GUI's include the Windows® operating system from Microsoft Corporation
and the MacOS operating system from Apple Computer, Inc. The user typically moves a displayed, user-controlled
graphical object, such as a cursor or pointer, across a computer screen and onto other displayed graphical objects or
predefined screen regions, and then inputs a command to execute a given selection or operation. The objects or regions
("targets") can include, for example, icons, windows, pull-down menus, buttons, and scroll bars. Most GUIís are cur-
rently 2-dimensional as displayed on a computer screen; however, three-dimensional (3-D) GUI's that present simulated
3-D environments on a 2-D screen can also be provided. Other programs or environments that may provide user-
controlled graphical objects such as a cursor or a "view" controlled by the user include graphical "web pages" or other
environments offered on the World Wide Web of the Internet, CAD programs, video games, virtual reality simulations,
etc.
[0003] The user interaction with and manipulation of the computer environment is achieved using any of a variety of
types of human-computer interface devices that are connected to the computer system controlling the displayed en-
vironment. Such a method is disclosed in WO 97/21160. In most systems, the computer updates the environment in
response to the user's manipulation of a user-manipulatable physical object ("user object") that is included in the in-
terface device, such as a mouse, joystick, etc. The computer provides feedback to the user utilizing the display screen.
A computer mouse is a common user object used to interact with a GUI or other graphical environment. A mouse (and
other mouse-type devices such as a track ball) is typically used as a position control device in which displacement of
the mouse in a planar workspace (e.g. on a mouse pad) is directly correlated to displacement of the user-controlled
graphical object, such as a cursor, displayed on the screen.
[0004] Force feedback interface devices allow a user to experience forces on the manipulated user object based on
interactions and events within the displayed graphical environment. Typically, computer-controlled actuators are used
to output forces on the user object in provided degrees of freedom to simulate various sensations, such as an obstruction
force when moving the cursor into a wall, a damping force to resist motion of the cursor, and a spring force to bias the
cursor to move back toward a starting position of the spring. Force feedback devices can be implemented in many
forms, such as a joystick, mouse, steering wheel, etc.
[0005] When implementing force feedback sensations in a GUI of an operating system, several problems can arise.
One problem is the use of force feedback when multiple application programs are simultaneously running in a multi-
tasking environment on the host computer. Most operating systems allow such multi-tasking, for example, to allow a
user to interact with one application while one or more applications are also running, receiving data, outputting data,
or performing other tasks. For example, in the Windows™ operating system, one application is the "active" application
that typically displays an active window in the GUI. The user can manipulate the functions of the active application
using the cursor. Other inactive applications are also running and may have inactive windows displayed in the GUI.
The user can switch to a different application by clicking the cursor in an inactive window, for example, which causes
the new application to be the active application and the formerly active application to become inactive.
[0006] Each application run by an operating system may have its own set of force sensations that it needs to command
to the force feedback device. Thus, one application may need to command spring, force, vibration, and texture force
sensations, while a different application may need to command spring, damper, and jolt force sensations. The force
feedback device typically cannot store all possible force sensations for each application running in the operating system,
so there is a problem of which force sensations the force feedback device should store and implement at any one time.
In addition, if two of the multi-tasking applications command conflicting force sensations, the force feedback device
needs to choose one of the force sensations to output, and there currently is no system or method of doing so.
[0007] A different problem occurs when using a force feedback device with a GUI. Traditional mouse controllers used
with GUI's are relative position reporting devices, i.e., they report only changes in position of the mouse to the host
computer, which the host computer uses to calculate a new position for the cursor on the screen. Many force feedback
devices, in contrast, are typically absolute position reporting devices which report an absolute position of the cursor,
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such as screen coordinates, to the host computer. This is because the force feedback device needs to know the cursor
position to accurately determine when forces are to be applied and to accurately calculate the forces. However, it would
be desirable in some instances to have a relative position reporting force feedback device, since the host computer is
standardized to receive and interpret relative positions at the most basic level. Furthermore, such a relative device
would permit the host computer to perform needed adjustments to cursor position, such as ballistics calculations which
modify cursor position based on mouse velocity to provide enhanced control. If the host computer performs such
adjustments, the force feedback device processors are relieved of computational burden. In addition, some types of
interface devices such as trackballs are better suited to relative position reporting since an absolute, limited workspace
is not easily defined for these devices.
[0008] Another problem occurs when force feedback is implemented with a GUI or other graphical environment and
the graphical environment changes resolution or aspect ratio. For example, if a resolution of 640 x 480 is being displayed
by the host computer on a screen, the force feedback device assumes that graphical objects in the GUI have a size
proportional to screen dimensions and outputs forces accordingly. However, when the resolution is changed, the objects
displayed on the screen change size in proportion to the screen dimensions. The force feedback device continues to
check for conditions and generate forces as if the old resolution were active, resulting in forces that do not correlate
with displayed interactions on the screen. The aspect ratio of a display screen can also change, e.g., when two screens
are used to provide double the amount of displayed area in the GUI, the aspect ratio doubles in one dimension. Using
prior art force feedback devices, forces can become distorted from such an aspect ratio change. For example, a circle
object displayed on the screen may have forces at its borders that feel like an ellipse to the user of the interface device,
since the aspect ratios of the screen and the mouse workspace are different.

SUMMARY OF THE INVENTION

[0009] The present invention is directed to a method which allows control of a force feedback device in a multi-tasking
graphical host environment.
[0010] This object is achieved by a method according to claim 1.
[0011] More specifically, a method of the present invention interfaces a multi-tasking graphical environment imple-
mented on a host computer with a force feedback interface device coupled to the host computer, where multiple ap-
plication programs may run in the multi-tasking environment. A context is created for association with each application
program running in the multi-tasking graphical environment. Force effect commands are received from the application
programs, where the force effect commands command the force feedback interface device to output a force effect
specified by the command. The force effect commands are stored into the contexts. Each context is associated with
one of the application programs running on the host computer, and each force effect command is stored in a context
associated with the application program that sent the force effect command. The force effect commands in the context
of a particular application program are sent to the force feedback device when that particular application program is
active in the multi-tasking environment. Preferably, the force effect commands in contexts of inactive application pro-
grams are not sent to the force feedback device. Thus, only the active application program may command forces on
the force feedback device.
[0012] When the application program becomes inactive and a new application program becomes active, new force
effect commands are sent to the force feedback device to replace the force effect commands of the formerly active
application. Preferably, a background application is provided which also provides force effects to the force feedback
device and may output forces on the device even when not active. Events are also provided which allow a graphical
action such as an interaction of the cursor in the graphical environment with another object to cause an event notification
to be sent to the application program. Preferably, only the active and background application programs may receive
events.
[0013] Also described herein are several force feedback sensations and structures, including enclosures, textures,
and grids. For example, an enclosure is a rectangular or elliptical shape having walls that provide forces to an associated
graphical object such as an icon or window. The enclosure includes walls, where each wall may be associated with a
force. In one embodiment, a particular type of enclosure is provided to modify the forces of a different enclosure to
prevent conflicts between the forces of overlapping or closely-positioned enclosures.
[0014] The present invention provides several embodiments. The architecture on the host computer allows multi-
tasking application programs to interface with the force feedback device without conflicts. The force feedback device
provides both relative position reporting and absolute position reporting to allow great flexibility. A relative position
reporting device allows maximum compatibility with existing software. Information such as ballistic parameters and
screen size sent from the host to the force feedback device allow accurate mouse positions and cursor positions to be
determined in the force feedback environment.
[0015] These and other advantages of the present invention will become apparent to those skilled in the art upon a
reading of the following specification of the invention and a study of the several figures of the drawing.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0016]

Figure 1 is a perspective view of one embodiment of a mouse interface system suitable for use with the present
invention;

Figure 2 is a perspective view of an embodiment of a mechanism suitable for the interface system of Figure 1;

Figure 3 is a block diagram of the system of Figure 1 for controlling a force feedback interface device;

Figure 4 is a block diagram of an architecture for a host computer providing multiple application programs com-
municating with the force feedback device;

Figure 5 is a diagrammatic illustration of a background application program control panel allowing a user to char-
acterize background forces;

Figures 6a, 6b and 6c are diagrammatic illustrations of embodiments of an enclosure force effect;

Figure 7 is a diagrammatic illustration of a texture force effect;

Figure 8 is a diagrammatic illustration of a grid force effect;

Figure 9 is a block diagram illustrating a preferred embodiment of implementing a force feedback device and
system;

Figure 10 is a flow diagram illustrating a method of implementing position reporting for the embodiment of Figure 9;

Figure 11 is a flow diagram illustrating a method of determining cursor position and indexing in the embodiment
of Figures 9 and 10;

Figure 12 is a block diagram illustrating a second embodiment of implementing a force feedback device and system;

Figure 13 is a flow diagram illustrating a method of implementing position reporting for the embodiment of Figure
12; and

Figures 14 and 15 are diagrammatic illustrations showing the error correction between cursor positions from host
computer and force feedback device in the embodiment of Figure 13.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0017] FIGURE 1 is a perspective view of a force feedback mouse interface system 10 of the present invention,
capable of providing input from the user to a host computer based on the useris manipulation of the mouse and capable
of providing force feedback to the user of the mouse system based on events occurring in an environment implemented
by the host computer. Mouse system 10 includes an interface device 11 that includes a user manipulatable object or
manipulandum 12 and an interface 14, and a host computer 18.
[0018] User object (or "manipulandum") 12 is an physical object that is preferably grasped or gripped and manipulated
by a user. By ìgrasp,î it is meant that users may releasably engage a portion of the object in some fashion, such as by
hand, with their fingertips, etc. For example, images are displayed and/or modified on a display screen 20 of the com-
puter system 18 in response to such manipulations. In the described embodiment, user object 12 is a mouse 12 that
is shaped so that a userís fingers or hand may comfortably grasp the object and move it in the provided degrees of
freedom in physical space. For example, a user can move mouse 12 to correspondingly move a computer generated
graphical object, such as a cursor or other image, in a graphical environment provided by computer 18. The available
degrees of freedom in which mouse 12 can be moved are determined from the interface 14, described below. In addition,
mouse 12 preferably includes one or more buttons 15 to allow the user to provide additional commands to the computer
system.
[0019] It will be appreciated that a great number of other types of user manipulable objects can be used with the
method and apparatus of the present invention in place of or in addition to mouse 12. For example, such objects may
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include a sphere, a puck, a joystick, cubical- or other-shaped hand grips, a fingertip receptacle for receiving a finger
or a stylus, a flat planar surface like a plastic card having a rubberized, contoured, and/or bumpy surface, a handheld
remote control used for controlling web pages or other devices, or other objects. In one embodiment, a small fingertip
joystick can be provided, where a small stick is moved in a small planar region with a userís fingertips. Spring forces
can be provided by the actuators of the device 11 to bias the stick (or any type of joystick) toward the center of the
planar region to simulate a spring return on the joystick. Since fingertips are used, output forces need not be as high
a magnitude as in other embodiments. Also, mouse 12 can be provided with such a centering spring bias, e.g. when
used like a joystick in gaming applications.
[0020] Interface 14 interfaces mechanical and electrical input and output between the mouse 12 and host computer
18 implementing the application program, such as a GUI, simulation or game environment. Interface 14 provides mul-
tiple degrees of freedom to mouse 12; in the preferred embodiment, two linear, planar degrees of freedom are provided
to the mouse, as shown by arrows 22. In other embodiments, greater or fewer degrees of freedom can be provided,
as well as rotary degrees of freedom. For many applications, mouse 12 need only be moved in a very small workspace
area.
[0021] In a preferred embodiment, the user manipulates mouse 12 in a planar workspace, much like a traditional
mouse, and the position of mouse 12 is translated into a form suitable for interpretation by position sensors of the
interface 14. The sensors track the movement of the mouse 12 in planar space and provide suitable electronic signals
to an electronic portion of interface 14. The interface 14 provides position information to host computer 18. In addition,
host computer 18 and/or interface 14 provide force feedback signals to actuators coupled to interface 14, and the
actuators generate forces on members of the mechanical portion of the interface 14 to provide forces on mouse 12 in
provided or desired degrees of freedom. The user experiences the forces generated on the mouse 12 as realistic
simulations of force sensations such as jolts, springs, textures, enclosures, circles, ellipses, grids, vibrations, ìbarrierî
forces, and the like.
[0022] The electronic portion 26 of interface 14 may couple the mechanical portion 24 of the interface to the host
computer 18. The electronic portion 26 is preferably included within the housing 21 of the interface 14 or, alternatively,
the electronic portion may be included in host computer 18 or as a separate unit with its own housing. More particularly,
interface 14 includes a local microprocessor distinct and separate from any microprocessors in the host computer 18
to control force feedback on mouse 12 independently of the host computer, as well as sensor and actuator interfaces
that convert electrical signals to appropriate forms usable by the mechanical portion of interface 14 and host computer
18.
[0023] For example, a rigid surface is generated on computer screen 20 and a computer object (e.g., cursor) con-
trolled by the user collides with the surface. In a preferred embodiment, high-level host commands can be used to
provide the various forces associated with the rigid surface. The local control mode using a local microprocessor in
interface 14 can be helpful in increasing the response time for forces applied to the user object, which is essential in
creating realistic and accurate force feedback. For example, it is preferable that host computer 18 send a ispatial
representationî to the local microprocessor, which is data describing the locations of some or all the graphical objects
displayed in a GUI or other graphical environment which are associated with forces and the types/characteristics of
these graphical objects. The microprocessor can store such a spatial representation in local memory, and thus will be
able to determine interactions between the user object and graphical objects (such as the rigid surface) independently
of the host computer. In addition, the microprocessor can be provided with the necessary instructions or data to check
sensor readings, determine cursor and target positions, and determine output forces independently of host computer
18. The host could implement program functions (such as displaying images) when appropriate, and synchronization
commands can be communicated between the microprocessor and host 18 to correlate the microprocessor and host
processes. Such commands and related functionality is discussed in greater detail below. Alternatively, the computer
18 can directly send force feedback signals to the interface 14 to generate forces on mouse 12. A suitable embodiment
of the electrical portion of interface 14 is described in detail with reference to Figure 3.
[0024] The interface 14 can be coupled to the computer 18 by a bus 17, which communicates signals between
interface 14 and computer 18 and also, in the preferred embodiment, provides power to the interface 14 (e.g. when
bus 17 includes a USB interface). In other embodiments, signals can be sent between interface 14 and computer 18
by wireless transmission/reception. In preferred embodiments of the present invention, the interface 14 serves as an
input/output (I/O) device for the computer 18. The interface 14 can also receive inputs from other input devices or
controls that are associated with mouse system 10 and can relay those inputs to computer 18. For example, commands
sent by the user activating a button on mouse 12 can be relayed to computer 18 by interface 14 to implement a command
or cause the computer 18 to output a command to the interface 14.
[0025] Host computer 18 is preferably a personal computer or workstation, such as an IBM-PC compatible computer
or Macintosh personal computer, or a SUN or Silicon Graphics workstation. For example, the computer 18 can operate
under the Windowsô or MS-DOS operating system in conformance with an IBM PC AT standard. Alternatively, host
computer system 18 can be one of a variety of home video game systems commonly connected to a television set,
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such as systems available from Nintendo, Sega, or Sony. In other embodiments, host computer system 18 can be a
ìset top boxi which can be used, for example, to provide interactive television functions to users, or a ìnetwork-î or
ìinternet-computerî which allows users to interact with a local or global network using standard connections and pro-
tocols such as used for the Internet and World Wide Web. Host computer preferably includes a host microprocessor,
random access memory (RAM), read only memory (ROM), input/output (I/O) circuitry, and other components of com-
puters well-known to those skilled in the art.
[0026] Host computer 18 preferably implements one or more application programs ("applications") with which a user
is interacting via mouse 12 and other peripherals, if appropriate, and which can include force feedback functionality.
For example, the host application programs can include a simulation, video game, Web page or browser that imple-
ments HTML or VRML instructions, word processor, drawing program, spreadsheet, scientific analysis program, or
other application program that utilizes input of mouse 12 and outputs force feedback commands to the mouse 12.
Typically, an operating systems such as Windowsô, MS-DOS, MacOS, Unix, is also running on the host computer and
preferably includes its own force feedback functionality. In one preferred embodiment, the operating system and ap-
plication programs utilize a graphical user interface (GUI) to present options to a user, display data and images, and
receive input from the user. In the preferred embodiment, multiple applications can run simultaneously in a multitasking
environment of the host computer, as is detailed below. Herein, computer 18 may be referred as displaying igraphical
objectsi or ìcomputer objects.î These objects are not physical objects, but are logical software unit collections of data
and/or procedures that may be displayed as images by computer 18 on display screen 20, as is well known to those
skilled in the art. A displayed cursor or a simulated cockpit of an aircraft might be considered a graphical object. The
host application program checks for input signals received from the electronics and sensors of interface 14, and outputs
force values and/or commands to be converted into forces on mouse 12. Suitable software drivers which interface
such simulation software with computer input/output (I/O) devices are available from Immersion Human Interface Cor-
poration of San Jose, California.
[0027] Display device 20 can be included in host computer 18 and can be a standard display screen (LCD, CRT,
etc.), 3-D goggles, or any other visual output device. Typically, the host application provides images to be displayed
on display device 20 and/or other feedback, such as auditory signals. For example, display screen 20 can display
images from a GUI. Images describing a moving, first person point of view can be displayed, as in a virtual reality
game. Or, images describing a third-person perspective of objects, backgrounds, etc. can be displayed. Alternatively,
images from a simulation, such as a medical simulation, can be displayed, e.g., images of tissue and a representation
of a manipulated user object 12 moving through the tissue, etc.
[0028] There are two primary icontrol paradigmsî of operation for mouse system 10: position control and rate control.
Position control is the more typical control paradigm for mouse and similar controllers, and refers to a mapping of
mouse 12 in which displacement of the mouse in physical space directly dictates displacement of a graphical object.
Under a position control mapping, the computer object does not move unless the user object is in motion. Also, ibal-
listicsî or other non-linear adjustments to cursor position can be used in which, for example, slow motions of the mouse
have a different scaling factor for cursor movement than fast motions of the mouse, to allow more control of short cursor
movements.
[0029] As shown in Figure 1, the host computer may have its own iscreen frameî 28 (or host frame) which is displayed
on the display screen 20. In contrast, the mouse 12 has its own ìdevice frameî (or local frame) 30 in which the mouse
12 is moved. In a position control paradigm, the position (or change in position) of a user-controlled graphical object,
such as a cursor, in host frame 30 corresponds to a position (or change in position) of the mouse 12 in the local frame 28.
[0030] Rate control is also used as a control paradigm. This refers to a mapping in which the displacement of the
mouse 12 is abstractly mapped to motion of a computer object under control. There is not a direct physical mapping
between physical object (mouse) motion and computer object motion. Thus, most rate control paradigms are funda-
mentally different from position control in that the user object can be held steady at a given position but the controlled
computer object is in motion at a commanded or given velocity, while the position control paradigm only allows the
controlled computer object to be in motion if the user object is in motion.
[0031] The mouse interface system 10 is useful for both position control (ìisotonicî) tasks and rate control (ìisometricî)
tasks. For example, as a traditional mouse, the position of mouse 12 in its local frame 30 workspace can be directly
mapped to a position of a cursor in host frame 28 on display screen 20 in a position control paradigm. Alternatively,
the displacement of mouse 12 in a particular direction against an opposing output force can command rate control
tasks in an isometric mode.
[0032] Mouse 12 is preferably supported and suspended above a grounded pad 32 by the mechanical portion of
interface 14, described below. Pad 32 or similar surface is supported by grounded surface 34. Pad 32 (or alternatively
grounded surface 34) provides additional support for the mouse and relieve stress on the mechanical portion of interface
14. In addition, a wheel, roller, Teflon pad or other device can be used to support the mouse.
[0033] Mouse 12 can be used, for example, to control a computer-generated graphical object such as a cursor dis-
played in a graphical computer environment, such as a GUI. The user can move the mouse in 2D planar workspace
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to move the cursor to graphical objects in the GUI or perform other tasks. In other graphical environments, such as a
virtual reality video game, a user can be controlling a computer player or vehicle in the virtual environment by manip-
ulating the mouse 12. The computer system tracks the position of the mouse with sensors as the user moves it. The
computer system may also provide force feedback commands to the mouse, for example, when the user moves the
graphical object against a generated surface such as an edge of a window, a virtual wall, etc. It thus appears and feels
to the user that the mouse and the graphical object are contacting real surfaces.
[0034] The mouse system 10 may also include an indexing function or iindexing modeî which allows the user to
redefine the offset between the positions of the mouse 12 in the local frame and a user-controlled graphical object,
such as a cursor, in the host frame displayed by host computer 18. In one implementation, the user may reposition the
mouse 12 without providing any input to the host computer, thus allowing the user to redefine the offset between the
objectís position and the cursorís position. Such indexing is achieved through an input device such as a button, switch-
es, sensors, or other input devices. As long as the indexing device is activated, the mouse 12 is in indexing mode;
when the button is released (or indexing mode otherwise exited), the position of the cursor is again controlled by the
mouse 12. A hand weight switch can also be provided which inherently causes indexing when the user removes hand
or finger weight from mouse 12.
[0035] A different way to allow indexing is to provide a combined position control and rate control device which allows
different forms of control of the cursor depending on the position of the mouse in its workspace.
[0036] FIGURE 2 is a perspective view of a preferred embodiment of the mouse device 11 with the cover portion of
housing 21 and the grounded pad 32 removed. Mechanical linkage 40 provides support for mouse 12 and couples the
mouse to a grounded surface 34, such as a tabletop or other support. Linkage 40 is, in the described embodiment, a
5-member (or ì5-barî) linkage. Fewer or greater numbers of members in the linkage can be provided in alternate em-
bodiments.
[0037] Ground member 42 of the linkage 40 is a base for the support of the linkage and is coupled to or resting on
a ground surface 34. The ground member 42 in Figure 2 is shown as a plate or base that extends under mouse 12.
The members of linkage 40 are rotatably coupled to one another through the use of rotatable pivots or bearing assem-
blies, all referred to as ìbearingsî herein. Base member 44 is rotatably coupled to ground member 42 by a grounded
bearing 52 and can rotate about an axis A. Link member 46 is rotatably coupled to base member 44 by bearing 54 and
can rotate about a floating axis B, and base member 48 is rotatably coupled to ground member 42 by bearing 52 and
can rotate about axis A. Link member 50 is rotatably coupled to base member 48 by bearing 56 and can rotate about
floating axis C, and link member 50 is also rotatably coupled to link member 46 by bearing 58 such that link member
50 and link member 46 may rotate relative to each other about floating axis D.
[0038] Linkage 40 is formed as a five-member closed-loop chain. Each member in the chain is rotatably coupled to
two other members of the chain to provide mouse 12 with two degrees of freedom, i.e., mouse 12 can be moved within
a planar x-y workspace. Mouse 12 is coupled to link members 46 and 50 by rotary bearing 58. and may rotate at least
partially about axis D. A pad or other support can be provided under mouse 12 to help support the mouse.
[0039] Transducer system 41 is used to sense the position of mouse 12 in its workspace and to generate forces on
the mouse 12. Transducer system 41 preferably includes sensors 62 and actuators 64. The sensors 62 collectively
sense the movement of the mouse 12 in the provided degrees of freedom and send appropriate signals to the electronic
portion of interface 14. Sensor 62a senses movement of link member 48 about axis A, and sensor 62b senses move-
ment of base member 44 about axis A. These sensed positions about axis A allow the determination of the position of
mouse 12 using known constants such as the lengths of the members of linkage 40 and using well-known coordinate
transformations.
[0040] Sensors 62 are, in the described embodiment, grounded optical encoders that sense the intermittent blockage
of an emitted beam. A grounded emitter/detector portion 71 includes an emitter that emits a beam which is detected
by a grounded detector. A moving encoder disk portion or ìarcî 74 is provided at the end of members 44 and 48 which
each block the beam for the respective sensor in predetermined spatial increments and allows a processor to determine
the position of the arc 74 and thus the members 44 and 48 by counting the spatial increments. Also, a velocity of
members 44 and 48 based on the speed of passing encoder marks can also be determined.
[0041] Transducer system 41 also preferably includes actuators 64 to transmit forces to mouse 12 in space, i.e., in
two (or more) degrees of freedom of the user object. The bottom housing plate 65 of actuator 64a is rigidly coupled to
ground member 42 (or grounded surface 34) and a moving portion of actuator 64a (preferably a coil) is integrated into
the base member 44. The actuator 64a transmits rotational forces to base member 44 about axis A. The housing 65
of the grounded portion of actuator 64b is rigidly coupled to ground member 42 or ground surface 34 through the
grounded housing of actuator 64b, and a moving portion (preferably a coil) of actuator 64b is integrated into base
member 48. Actuator 64b transmits rotational forces to link member 48 about axis A. The combination of these rotational
forces about axis A allows forces to be transmitted to mouse 12 in all directions in the planar workspace provided by
linkage 40 through the rotational interaction of the members of linkage 40. The integration of the coils into the base
members 44 and 48 is advantageous to the present invention and is discussed below.
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[0042] FIGURE 3 is a block diagram illustrating the electronic portion of interface 14 and host computer 18 suitable
for use with the present invention. Mouse interface system 10 includes a host computer 18, electronic interface 26,
mechanical portion 24, and mouse or other user object 12. Electronic interface 26, mechanical portion 24, and mouse
12 can also collectively be considered the " force feedback interface device" 11 that is coupled to the host computer.
[0043] As explained with reference to Figure 1, computer 18 is preferably a personal computer, workstation, video
game console, or other computing or display device. Host computer system 18 commonly includes a host microproc-
essor 108, random access memory (RAM) 110, read-only memory (ROM) 112, input/output (I/O) electronics 114, a
clock 116, a display device 20, and an audio output device 118. Host microprocessor 108 can include a variety of
available microprocessors from Intel, AMD, Motorola, or other manufacturers. Microprocessor 108 can be single mi-
croprocessor chip, or can include multiple primary and/or co-processors. Microprocessor 108 preferably retrieves and
stores instructions and other necessary data from RAM 110 and ROM 112 as is well known to those skilled in the art.
In the described embodiment, host computer system 18 can receive sensor data or a sensor signal via a bus 120 from
sensors of system 10 and other information. Microprocessor 108 can receive data from bus 120 using I/O electronics
114, and can use I/O electronics to control other peripheral devices. Host computer system 18 can also output com-
mands to interface device 104 via bus 120 to cause force feedback for the interface system 10.
[0044] Clock 116 is a standard clock crystal or equivalent component used by host computer 18 to provide timing to
electrical signals used by host microprocessor 108 and other components of the computer system 18. Display device
20 is described with reference to Figure 1. Audio output device 118, such as speakers, can be coupled to host micro-
processor 108 via amplifiers, filters, and other circuitry well known to those skilled in the art. Host processor 108 outputs
signals to speakers 118 to provide sound output to the user when an "audio event" occurs during the implementation
of the host application program. Other types of peripherals can also be coupled to host processor 108, such as storage
devices (hard disk drive, CD ROM drive, floppy disk drive, etc.), printers, and other input and output devices.
[0045] Electronic interface 26 is coupled to host computer system 18 by a bi-directional bus 120. The bi-directional
bus sends signals in either direction between host computer system 18 and the interface device 104. Bus 120 can be
a serial interface bus providing data according to a serial communication protocol, a parallel bus using a parallel pro-
tocol, or other types of buses. An interface port of host computer system 18, such as an RS232 serial interface port,
connects bus 120 to host computer system 18. In another embodiment, an additional bus can be included to commu-
nicate between host computer system 18 and interface device 11. One preferred serial interface bus used in the present
invention is the Universal Serial Bus (USB). The USB standard provides a relatively high speed serial interface that
can provide force feedback signals in the present invention with a high degree of realism. USB can also source power
to drive actuators 64 and other devices of the present invention. In addition, the USB standard includes timing data
that is encoded along with differential data. Alternatively, Firewire (also called 1392) can be used as bus 120; or, the
bus can be between an interface card in the host computer 18, where the interface card holds components of device
11 such as microprocessor 130.
[0046] Electronic interface 26 includes a local microprocessor 130, local clock 132, local memory 134, sensor inter-
face 136, and actuator interface 138. Interface 26 may also include additional electronic components for communicating
via standard protocols on bus 120. In various embodiments, electronic interface 26 can be included in mechanical
portion 24, in host computer 18, or in its own separate housing. Different components of interface 26 can be included
in portion 24 or host computer 18 if desired.
[0047] Local microprocessor 130 preferably coupled to bus 120 and may be closely linked to mechanical portion 24
to allow quick communication with other components of the interface device. Processor 130 is considered "local" to
interface device 11, where "local" herein refers to processor 130 being a separate microprocessor from any processors
108 in host computer 18. "Local" also preferably refers to processor 130 being dedicated to force feedback and sensor
I/O of the interface system 10, and being closely coupled to sensors and actuators of the mechanical portion 24, such
as within the housing of or in a housing coupled closely to portion 24. Microprocessor 130 can be provided with software
instructions to wait for commands or requests from computer host 18, parse/decode the command or request, and
handle/control input and output signals according to the command or request. In addition, processor 130 preferably
operates independently of host computer 18 by reading sensor signals and calculating appropriate forces from those
sensor signals, time signals, and force processes selected in accordance with a host command, and output appropriate
control signals to the actuators. A suitable microprocessor for use as local microprocessor 130 includes the 8X930AX
by Intel; or alternatively the MC68HC711E9 by Motorola or the PIC16C74 by Microchip, for example. Microprocessor
130 can include one microprocessor chip, or multiple processors and/or coprocessor chips. In other embodiments,
microprocessor 130 can include digital signal processor (DSP) functionality.
[0048] For example, in one host-controlled embodiment that utilizes microprocessor 130, host computer 18 can
provide low-level force commands over bus 120, which microprocessor 130 directly transmits to the actuators. In a
different local control embodiment, host computer system 18 provides high level supervisory commands to microproc-
essor 130 over bus 120, and microprocessor 130 manages low level force control loops to sensors and actuators in
accordance with the high level commands and independently of the host computer 18. In the local control embodiment,
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the microprocessor 130 can process inputted sensor signals to determine appropriate output actuator signals by fol-
lowing the instructions of a "force process" that may be stored in local memory and includes calculation instructions,
formulas, force magnitudes, or other data. The force process can command distinct force sensations, such as vibra-
tions, textures, jolts, or even simulated interactions between displayed objects. An "enclosure" host command can also
be provided, which causes the microprocessor to define a box-like enclosure in a graphical environment, where the
enclosure has sides characterized by wall and texture forces. The host can send the local processor a spatial layout
of objects in the graphical environment so that the microprocessor has a mapping of locations of graphical objects like
enclosures and can determine interactions with the cursor locally.
[0049] Sensor signals used by microprocessor 130 are also reported to host computer system 18, which updates a
host application program and outputs force control signals as appropriate. For example, if the user moves mouse 12,
the computer system 18 receives position and/or other signals indicating this movement and can move a displayed
cursor in response. In an alternate embodiment, no local microprocessor 130 is included in interface system 10, and
host computer 18 directly controls and processes all signals to and from the interface 26 and mechanical portion 24.
[0050] A local clock 132 can be coupled to the microprocessor 130 to provide timing data, similar to system clock
116 of host computer 18; the timing data might be required, for example, to compute forces output by actuators 64 (e.
g., forces dependent on calculated velocities or other time dependent factors). In alternate embodiments using the
USB communication interface, timing data for microprocessor 130 can be retrieved from the USB interface. Local
memory 134, such as RAM and/or ROM, is preferably coupled to microprocessor 130 in interface 26 to store instructions
for microprocessor 130 and store temporary and other data. Microprocessor 130 may also store calibration parameters
in a local memory 134 such as an EEPROM. As described above, link or member lengths or manufacturing variations
and/or variations in coil winding or magnet strength can be stored. Memory 134 may be used to store the state of the
force feedback device, including a reference position, current control mode or configuration, etc.
[0051] Sensor interface 136 may optionally be included in electronic interface 26 to convert sensor signals to signals
that can be interpreted by the microprocessor 130 and/or host computer system 18. For example, sensor interface 136
can receive signals from a digital sensor such as an encoder and convert the signals into a digital binary number
representing the position of a member of mechanical apparatus 14. An analog to digital converter (ADC) in sensor
interface 136 can convert a received analog signal to a digital signal for microprocessor 130 and/or host computer 18.
Such circuits, or equivalent circuits, are well known to those skilled in the art. Alternately, microprocessor 130 or host
18 can perform these interface functions.
[0052] Actuator interface 138 can be optionally connected between the actuators 64 and microprocessor 130. Inter-
face 138 converts signals from microprocessor 130 into signals appropriate to drive the actuators. Interface 138 can
include power amplifiers, switches, digital to analog controllers (DACs), and other components. Such interfaces are
well known to those skilled in the art. In alternate embodiments, interface 138 circuitry can be provided within micro-
processor 130 or in the actuators.
[0053] In the described embodiment, power is supplied to the actuators 64 and any other components (as required)
by the USB. Since the electromagnetic actuators of the described embodiment have a limited physical range and need
only output, for example, about 3 ounces of force to create realistic force sensations on the user, very little power is
needed. For example, one way to draw additional power from the USB is to configure device 11 to appear as more
than one peripheral to host computer 18; for example, each provided degree of freedom of mouse 12 can be configured
as a different peripheral and receive its own allocation of power. Alternatively, power from the USB can be stored and
regulated by device 11 and thus used when needed to drive actuators 64. For example, power can be stored over time
and then immediately dissipated to provide a jolt force to the user object 12. A battery or a capacitor circuit, for example,
can store energy and discharge or dissipate the energy when power is required by the system and/or when enough
power has been stored. Alternatively, a power supply 140 can optionally be coupled to actuator interface 138 and/or
actuators 64 to provide electrical power. The power storage embodiment described above, using a battery or capacitor
circuit, can also be used in non-USB embodiments to allow a smaller power supply 140 to be used.
[0054] Mechanical portion 24 is coupled to electronic portion 26 and preferably includes sensors 62, actuators 64,
and linkage 40. These components are described in detail above. Sensors 62 sense the position, motion, and/or other
characteristics of mouse 12 along one or more degrees of freedom and provide signals to microprocessor 130 including
information representative of those characteristics. Typically, a sensor 62 is provided for each degree of freedom along
which mouse 12 can be moved, or, a single compound sensor can be used for multiple degrees of freedom. Example
of sensors suitable for embodiments described herein are rotary optical encoders, as described above, linear optical
encoders, analog sensors such as potentiometers, or non-contact sensors, such as Hall effect magnetic sensors or
an optical sensor such as a lateral effect photo diode having an emitter/detector pair. In addition, velocity sensors (e.
g., tachometers) and/or acceleration sensors (e.g., accelerometers) for measuring acceleration can be used. Further-
more, either relative or absolute sensors can be employed.
[0055] Actuators 64 transmit forces to mouse 12 in one or more directions along one or more degrees of freedom in
response to signals output by microprocessor 130 and/or host computer 18, i.e., they are " computer controlled." Typ-
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ically, an actuator 64 is provided for each degree of freedom along which forces are desired to be transmitted. Actuators
64 can be the electromagnetic actuators described above, or can be other active actuators, such as linear current
control motors, stepper motors, pneumatic/hydraulic active actuators, a torquer (motor with limited angular range); or
passive actuators such as magnetic particle brakes, friction brakes, or pneumatic/hydraulic passive actuators, passive
damper elements, an electrorheological fluid actuator, a magnetorheological fluid actuator. In addition, in voice coil
embodiments, multiple wire coils can be provided, where some of the coils can be used to provide back EMF and
damping forces. In some embodiments, all or some of sensors 62 and actuators 64 can be included together as a
sensor/actuator pair transducer.
[0056] Mechanism 40 is preferably the five-member linkage 40 described above, but can also be one of several
types of mechanisms. Mouse 12 can alternatively be a puck, joystick, or other device or article coupled to linkage 40,
as described above.
[0057] Other input devices 141 can optionally be included in system 10 and send input signals to microprocessor
130 and/or host computer 18. Such input devices can include buttons, such as buttons 15 on mouse 12, used to
supplement the input from the user to a GUI, game, simulation, etc. Also, dials, switches, voice recognition hardware
(with software implemented by host 18), or other input mechanisms can be used.
[0058] Safety or "deadman" switch 150 is preferably included in interface device to provide a mechanism to allow a
user to deactivate actuators 64 for safety reasons. In the preferred embodiment, the user must continually close safety
switch 150 during manipulation of mouse 12 to activate the actuators 64. If, at any time, the safety switch is deactivated
(opened) the actuators are deactivated while the safety switch is open. For example, one embodiment of safety switch
is a capacitive contact sensor that detects when the user is contacting mouse 12. Alternatively, a mechanical switch,
electrostatic contact switch, or optical switch located on mouse 12 or on a convenient surface of a housing 21 can be
used. A z-axis force sensor, piezo electric sensors, force sensitive resistors, or strain gauges can also be used. The
state of the safety switch can be sent to the microprocessor 130 or host 18. In one embodiment, mouse 12 includes a
hand weight safety switch. The safety switch preferably deactivates any generated forces on the mouse when the
mouse is not in use and/or when the user desires to deactivate output forces.
[0059] In some embodiments of interface system 10, multiple mechanical apparatuses 102 and/or electronic inter-
faces 100 can be coupled to a single host computer system 18 through bus 120 (or multiple buses 120) so that multiple
users can simultaneously interface with the host application program (in a multi-player game or simulation, for example).
In addition, multiple players can interact in the host application program with multiple interface systems 10 using net-
worked host computers 18, as is well known to those skilled in the art. Also, the interface device 104 can be coupled
to multiple host computers; for example, a local host computer can display images based on data received from a
remote host computer coupled to the local host through a network.

Architecture of Host Computer

[0060] The host computer 18 interacts with interface device 11, in the present invention, using a number of different
levels of controllers. These controllers are preferably implemented in software, e.g. program instructions or code, and
such is the embodiment described herein; however, all or part of the controllers may also be implemented in hardware,
where the conversion of functionality of the software to hardware is well known to those skilled in the art.
[0061] The architecture described herein is oriented towards providing force feedback functionality to a host computer
connected to a force feedback interface device, where multiple applications may be running simultaneously on the
host computer. Each application program may have its own set of force sensations to output to the device; since the
device cannot implement all force sensations at any one time due to cost and hardware constraints, the forces com-
manded by each application must be organized by the architecture to take these limitations into account.
[0062] FIGURE 4 is a block diagram of a preferred architecture for the host computer to communicate with and
control a force feedback interface device 11 with multiple application programs running on the host computer. Appli-
cation programs 202 and 204 are concurrently running on the host computer 18. In the most typical implementation,
one of the application programs is actively running in an operating system as the "active" application program that
displays one or more active windows in the GUI (also known as the application program that is "in focus" or which has
"keyboard focus"). The active window is typically the topmost displayed window in which input is provided by the user
using the mouse-controlled cursor, a keyboard, or other peripheral. The other applications are "inactive" in that they
are not receiving input from the user (although they may have a window displayed in the GUI which can be updated
on the screen). The inactive applications may also receive input or send output. For example, the Windows™ operating
system from Microsoft Corp. provides a multitasking or pseudo-multitasking environment in which programs run simul-
taneously; other operating systems such as Unix also offer multitasking. For example, a word processor may be the
active application to receive input from the keyboard and display input characters in a displayed active window on
display screen 20, while a inactive communication program may be receiving data over a network and saving the data
on a storage device, or sending data out to be printed. Or, a inactive drawing program may be displaying a graphical
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image in a window that is not currently active, while the user inputs text into the active word processor window. When
the user moves the cursor over an inactive window and provides a command gesture such as clicking a button on a
mouse, the inactive window becomes the active window and the former active window becomes inactive. The active
application is also known as the "foreground" application, in the sense that its force sensations are being implemented
by the force feedback device, as described below.
[0063] A master application 206 also is running on host computer 18 and is also known as the "background" force
feedback application. This application is preferably a general purpose program that always runs inactively in the op-
erating system and whose set of commanded forces are always available to be output and controlled on the interface
device 11 and/or other devices. For example, a preferred embodiment of the master application is a "desktop" control
panel for force feedback. An example of such a program is illustrated in FIGURE 5. A "mouse properties" dialog box
240 can be displayed which allows the user to specify force sensations 244 that are assigned to specified object types
242 in the displayed graphical environment, e.g. a graphical user interface (GUI). For example, the assigned force
sensation 244 can be a vibration force having a specified frequency, magnitude, duration, etc.; a single "pop" or jolt at
a specified time and duration; a "tick" that is a small jolt that is output based on movement of the user object/cursor or
at regular intervals during an activity such as scrolling; a damping force condition that causes a resistance to mouse
motion depending on the velocity of the user object 12 in its degrees of freedom or the cursor in the host frame on
screen 20; or a spring that resists motion of the user object based on distance to an origin of the spring.
[0064] The force sensations specified by the user for a user interface object type in dialog box 240 will be output by
the force feedback device by default, unless a different foreground application program deactivates the force sensations
or replaces a force sensation with its own. For example, the user can specify that menu objects 242a in a GUI have a
snap force 244a associated with them by moving the slider 246 to the right, where the slider scale specifies the mag-
nitude of the snap force. Thus, when the user moves the cursor in the GUI over a menu item in a menu during normal
operation, the user will feel a snap force, i.e., a force that draws the cursor/user object toward the center of the menu
item to allow easier menu selection. This snap force is preferably applied to all menus of all running application programs
in the GUI, since it is a background force effect. If the foreground application program has its own force sensations
which define that application's menus to have a jolt instead of a snap, then the jolt will be superimposed on the snap
unless the active application program deactivates the background force(s). In general, a particular active application
program can only command forces to objects in its own windows, e.g., that application's own menus, scrollbars, icons,
window borders, etc.
[0065] A user can specify multiple background force sensations 244 for each user interface object 242. This allows
the multiple force sensations to be superimposed on each other, unless the application program overrides one or more
of the superimposed forces. Thus, a user can assign a damper force sensation and a "ticks" force sensation to scrollbars
in box 240, and all scrollbars will have these forces associated with them unless overriden by the foreground application
program.
[0066] Other controls in box 240 include a device gain 248 to set the percentage of maximum magnitude for all the
forces for items 242; and selections 249 to allow force feedback functionality on the host computer. Advanced button
250, when selected, preferably displays an additional window of options with which the user can customize the force
sensations 244. For example, a user can specify positive or negative damping (where negative damping feels like
moving on ice) or unidirectional or bidirectional dampers. The user can specify the spacing or orientation of snap points
on a grid, the envelope parameters for a vibration, or the parameters for a snap force, e.g. the snap force is defined
as an enclosure and the user can customize the enclosure to turn off forces on one wall, turn on inner walls, etc. Other
application programs can also be used as the background or master application program 206.
[0067] Referring back to Figure 4, application programs 202, 204, and 206 communicate with an force feedback
Application Programming Interface ("API") 208 which is resident in the host computer's memory and which allows a
given application program to communicate with lower level drivers and other force feedback functions. For example,
in the Windows operating system, API's are commonly used to allow a developer of an application program to call
functions at a high level for use with the application program, and not worry about the low level details of actually
implementing the function.
[0068] The API of the present invention includes a set of software "objects" that can be called to command a force
feedback interface device 11. Objects are a set of instructions and/or data which can be called by a pointer and/or an
identifier and parameters to implement a specified function. For example, three types of objects are provided in one
preferred API implementation: interface objects, device objects, and effect objects. Each of these objects makes use
of one or more force feedback device drivers which are implemented as objects in the API 208.
[0069] Interface objects represent the API at the highest level. An application program (which is referred to as a
"client" of the API) can create an interface object to access lower level objects and code that implement force feedback
device functionality. For example, the interface object allows an application program to enumerate and receive infor-
mation about individual devices and create lower level objects for each device used by the application program.
[0070] Device objects each represent a physical force feedback device (or other compatible device or peripheral) in
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communication with the host computer 18. For example, the force feedback mouse device 11 would be represented
as a single device object. The device objects access the set of force feedback routines to receive information about
an associated physical device, set the properties of the physical device, register event handlers (if events are imple-
mented on the host), and to create effect objects.
[0071] Effect objects each represent a force feedback effect defined by the application program to be output one or
more times on a force feedback device. The effect objects access the set of force feedback routines to download force
effects to the force feedback device, start and stop the output of effects by the force feedback device, and modify the
parameters of the effects. Event objects can also be created to define events, as described in greater detail below.
[0072] A force " effect," as referred to herein, is a single defined force or series of forces that may be commanded
within the API. The effect typically has a name to identify it and one or more parameters to modify or customize the
force as necessary. For example, several types of force effects have been defined, including vibrations, enclosures,
grids, textures, walls, dampers, snap sensations, vibrations, circles, ellipses, etc. For example, a vibration force effect
may have parameters of duration, frequency, magnitude, and direction. The force sensations 244 defined in dialog box
244 can be force effects; however, more generally, force sensations can be made up of one or more force effects.
Force effects, in turn, are made up of one or more basic force prototypes, such as springs, dampers, and vector forces.
[0073] In the preferred embodiment, an application program client interacts with the API 206 by first receiving a
pointer to a resident force feedback interface; for example, a preferred interface includes procedures provided in the
Component Object Model (COM) interface of Microsoft Windows, an object oriented interface. Using the force feedback
interface, the application program enumerates the force feedback devices on the computer system 18. The application
program selects a desired one of the force feedback devices and creates a device object associated with that device.
Using the force feedback interface, the application then acquires the device, sets the device up with setup and default
parameters, and creates effect objects and event objects at times designated by the developer of the application. At
appropriate times, the application program will command the start, stop, or pause of the playback of force effects by
accessing the appropriate interface instructions associated with the desired effect. The API indicates to the context
driver 210 to create a "context" (i.e. "effect set") for an application program, and sends effects and events to be asso-
ciated with that context. A "context" is a group or set of effects and events that are associated with a particular application
program.
[0074] Context driver 210 receives contexts 222 and device manipulation data 223 from the API 208. The context
driver is provided at a level below the API to organize contexts for applications 202 and 204 running on the host
computer. In the preferred embodiment, the effects and events in a context are not known to the application program
itself; rather, the context driver 210 creates a context internally for an application. Thus, an application commands that
a particular force sensation be output in response to different interactions or occurrences, e.g., an interaction of a
cursor with an object or region, or the output of a force based on other criteria (time, received data, random event,
etc.). The API sends the commanded effect(s) to the context driver 210, and the context driver stores the effects in the
created context for that application program.
[0075] Since each application may have a completely different set of force effects to output, each context each must
be associated with its particular application program. In the preferred embodiment, there are two types of contexts:
foreground contexts and background or primary contexts. A foreground context is associated with the application pro-
gram 202 or 204 that is active in the operating system. A background context includes the effects and events for the
master application program 206, e.g., the effects and events necessary to implement those force sensations selected
by the user in the dialog box 240 of Figure 5 to be associated with particular GUI objects. In addition, a "global context"
can be provided, which includes common effects almost always used by application programs (e.g. a pop force) and
which can automatically be downloaded to the force feedback device. Effects in the global context need not be stored
in individual contexts for particular application programs and need not be sent to the force feedback device, thus saving
memory on the device.
[0076] When an application program is first executed by the host computer and loaded into memory, if the application
is able to command a force feedback device, the application will query for the API 208. Once communication is estab-
lished, the API will contact the context driver 210 to create an entry location for a context set for the initiated application
program.
[0077] The context driver 210 receives individual effects and events as they are created by the application program
using API 208 and stores the effects and events in a context list 212, storing each context in a different storage location
in the host's memory or on some other type of storage device. An active or inactive application program can create a
context and have it stored, but only the active application's context will be sent to the force feedback device. The context
driver 210 can examine an identifier in a created effect or event to determine which application program is associated
with it and thus store the effect or event in the proper memory location. The context driver sets pointers to the contexts
and to the effects and events in the contexts to access them. An effect can be created initially, before any forces or
commanded, or the effect can be created and then immediately commanded to be output to the force feedback device.
Each context also preferably includes an entry into a device state structure. This entry governs the "gain" or force level
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for all effects in the context. For example, all the forces in the context can be cut to 50% of full magnitude by storing
a value of 50 in the device state structure. One of the contexts stored in list 214 is a primary context 216, which is the
list of effects and events used by the master application 206 or "background" application.
[0078] At a later time, after the context driver has stored the contexts in list 212, an application program may send
a command to the API to output or " start" a particular force sensation. The API checks whether the application program
is active or in the background (primary); if not, the API ignores the command. Alternatively, the commands from an
inactive foreground application can be stored and then sent to the device when the application becomes active. If the
application is active or background, the API sends the start information to the context driver 210 indicating the appli-
cation program that commanded the force and the particular force effects to be commanded. The context driver 210
then associates the commanding application program with a context 214 in list 212 and sends the effects from the
context to the force feedback device (if not previously sent). For example, if a context for a particular application program
includes a spring effect, a damper effect, and a vibration effect, and the application program commands the vibration
to be output, then the context driver selects the vibration effects to be output to the device. The data describing this
effect is then output by the context driver 210. Similarly, the application program can sent a command to stop particular
force effects, to pause the effects, to get the status information of an effect, or to destroy an effect.
[0079] A context is therefore only allowed to exert forces with the force feedback device when that context is active,
i.e., is associated with an active application program or the background application. In the described embodiment, only
one foreground context can be active at any given time. Any number of background contexts may be simultaneously
active; however, there may be a device limit on the number of background contexts that may be created. For example,
the mouse device 11 may only allow one background context to be created at any one time, which is the preferred
embodiment. Thus, if an inactive (not in focus) foreground application program commands a force to be output, the
API will ignore the command after determining that the commanding application is not active (or, the command will
only be sent to the device when the application becomes active).
[0080] If the active application program becomes inactive (i.e. loses foreground or is removed from the host's mem-
ory) and a different application becomes active, then the API indicates this to the context driver 210, which then deac-
tivates the context associated with that application program and loads the effects from the new active context to the
force feedback device 11. Likewise, when the original application program again becomes active, the API tells the
context driver to activate the associated context and load the appropriate effects to the force feedback device.
[0081] Device manipulation data 223 is also received by context driver 210. Data 223 is used to set a global device
state on the force feedback device, as described below, and this information is passed unmodified to the translation
layer.
[0082] Translation layer 218 manages the sending of effects to the device 11, receives information from the device
to the host, and maintains a representation of the memory of device 11. Layer 218 receives an individual effect 219
for the active (or background) application program and device manipulation data 223 sent by the context driver 210.
The translation layer receives the effect from an context list 220 of individual effects 222 (list 220 represents a context
214). A different context list 220 is provided in each context 214 of list 212. Each effect 222 in list 220 is a force that
is to be output on the mouse 12 by the force feedback device 11. Then the effects are to be sent to the device 11 when
commanded by the application, they are selected and copies are output to the device. Preferably, each effect is output
by the translation layer as soon as possible, in the order of receiving the effects. Each effect stored in list 220 as
examined by the translation layer is available on force feedback device 11, i.e., the local microprocessor should rec-
ognize the effect and be able to output the effect either immediately or when conditions dictate. The size of the list 220
should be the same or smaller than the available memory for such a list in the force feedback device so that the
translation layer knows when the memory of the force feedback device is full. If full, the translation layer can delay the
output of additional effects until enough memory space is available.
[0083] When an active application becomes inactive, the translation layer is instructed by the context driver 210 to
"unload" the effects of the context of the previous active application from the force feedback device, receives the effects
from the now active application and loads those effects to the force feedback device 11 (the effects for the background
(primary) application are preferably never unloaded).
[0084] The translation layer also preferably handles events. For example, when a screen position is received from
the device 11, the translation layer can check whether any of the conditions/triggers of the active events are met. If so,
a message is sent which eventually reaches the associated active or background application program, as described
in greater detail below. In alternate embodiments, the microprocessor 130 on device 11 can check for events and send
event notifications through translation layer 218 up to the application program. However, this can be undesirable in
some embodiments since the event notification is provided at a much slower rate than the force control loop of the
microprocessor 130.
[0085] The translation layer also can store a device state 224 in memory. Device manipulation data 223 from the
active application determines the device state. This is the state that the active application program wishes to impose
on the device, if any. For example, an overall condition can be stored, such as an enable or disable for all forces, so
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that if all forces are disabled, no forces will be output by the device. An overall gain can also be set to limit all output
force magnitudes to a desired level or percentage of maximum output.
[0086] The translation layer outputs device messages 225 to the device 11 by way of the next layer. Messages may
include force effects to be output and/or any other information such as device identification numbers or instructions
from the context driver for an effect (start, stop, pause, reset, etc.) The translation layer outputs messages 225 in a
form the device 11 can understand.
[0087] Device communication driver 226 communicates directly with the force feedback device. Driver 226 receives
the device messages 225 from translation layer 218 and directly transmits the messages to the force feedback device
over bus 120, e.g. a USB. The driver is implemented, in the preferred embodiment, as a standard driver to communicate
over such a serial port of host computer 18. Other types of drivers and communication interfaces can be used in other
embodiments.

Host Command Structures

[0088] The host computer 18 and API 208 handle a variety of processes controlling force feedback device 11. Different
effects and events of the present invention used in force feedback systems are described below.

Effects

[0089] Effects are standardized forces that are determined according to a predefined characterization, which may
include force algorithms, stored force magnitudes, functions of space and/or time, a history of stored motion values of
the mouse, or other steps or parameters. An effect may be based on time and be independent of the position of the
mouse 12, or may be spatially determined based on mouse position, velocity, acceleration, or any combination of these.
Preferably, the device 11 includes a number of effects standardized in its memory which it can implement if the effects
are within the active or background context. When the device 11 is determining output forces based on effects, the
microprocessor 130 checks if the effect is active, calculates the raw contribution to the output force from the effect,
applies an envelope scaling, and sums the scaled contribution to the total sum of forces contributed to by all effects
currently being output. In determining the total sum, the device preferably combines all constant forces (e.g., conditions
and time-based forces) and limits the constant force sum to a predetermined magnitude, then combines all dynamic
forces and limits the dynamic force sum to a predetermined magnitude. The two sums are then added together and
the total force sum is output by the actuators of the device 11. Alternatively, all forces can be treated the same and
summed together.
[0090] FIGURES 6a and 6b illustrate one type of force effect provided by the host in a graphical environment such
as a GUI and known as an "enclosure." An enclosure is at its most basic level a rectangular object provided in a GUI
which may be assigned with different forces for each of its sides. The enclosure is a generic type of force feedback
object that can be used for a variety of different graphical objects, including buttons, windows, sliders, scrollbars,
menus, links on a web page, or grid points in a drawing program.
[0091] Figure 6a illustrates the use of an enclosure for a window in a GUI. The window 260 is displayed on the display
device of the host computer. The enclosure has eight walls 262 associated with it invisible to the visual perception of
the user, where four walls are provided as an inner rectangle 264 and four walls are provided as an outer rectangle
266. Each wall 262 can be separately defined as either providing a force pulling the user object toward the border of
window 260 (attractive force), or pushing the user object away from the border of window 260 (resistive force). The
outer rectangle 266 walls affect the user object when the user object is outside the window 260 between the rectangle
266 and the window 260 border, and the inner rectangle 264 walls affect the user object when it is inside the window
260 between the rectangle 264 and the window border. In the preferred embodiment, a window 260 is associated with
a force enclosure by defining both outer rectangle 266 and inner rectangle 264 to have an attractive force, so that the
user object and cursor tend to be attracted to the window border when within the appropriate range of the window.
This, for example, allows the user to acquire the border and adjust the size of the window easily. Alternatively, the outer
rectangle 266 can be defined as a resistive force (such as a spring) that requires the user to overcome the resistance
to allow the user object entry into the window (and the rectangle 266 can also be defined as a click surface to cause
a function to be applied when gaining entry). When the cursor/user object gains entry to an enclosure, an " event" is
preferably indicated to the application program, as explained above. In an alternative embodiment, enclosures can
similarly defined for circles, ellipses, or other shapes, both regular and irregular.
[0092] The enclosure object also preferably has a number of other parameters that further define the enclosure. For
example, parameters may be specified separately for each wall to define such characteristics as the magnitude of the
resistive or attractive forces, which of the eight walls are assigned forces, which walls provide clipping, the saturation
level of the force applied in association with a wall, and the interior force, which can be specified as any force effect
such as a damping, texture, or vibration force, that is applied while the cursor is inside the enclosure.
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[0093] Figure 6b illustrates another embodiment of an enclosure. A button 270 can be a graphical button, a menu
item, or an icon in a GUI. The outer rectangle 266 in this embodiment has been " turned off" so that no forces are
associated with it. The inner rectangle 264 has been defined as a very small rectangle at the center of the button 270.
Resistive forces are associated with the inner rectangular walls such that, once the user object has entered the enclo-
sure, a force biases the user object toward the center of the button 270. This allows the user to target or "acquire" the
button more easily with the cursor and reduces overshooting the button by accident by moving the cursor too far past
the button.
[0094] Enclosures are quite useful for adding forces to web links on a web page viewed in a web browser, such as
Netscape Communicator by Netscape Communications or Internet Explorer by Microsoft. The inner wall forces of
Figure 6b can be used on a web link displayed on a web page to draw the cursor/user object onto the link, thus allowing
a user to more easily determine which images are links on the page. Other types of forces can also serve this function.
Also, an " inside condition" such as a texture can be provided for the web link to cause some links to feel rough, some
smooth, some bumpy, etc.
[0095] An example of an enclosure effect structure is provided below:

dwSize: Size of the structure in bytes.
rectOutside: Outside borders of the enclosure, in screen coordinates. When the mouse position is outside of rectangle
defined by rectOutside, there are no forces exerted on the device from this enclosure.
dwXWidth, dwYWidth: Width W of the region between a wall and the object border. In one implementation, the width
of the inner wall and the outer wall regions is the same.
Alternatively, they can be defined separately. This parameter can alternatively be specified as a deadband.
dwXStiffness: Stiffness of the left and right walls. Defines the amount of horizontal resistance (force) felt by the user
when attempting to break through a vertical wall. This value amounts to the negative and positive coefficient of horizontal
spring conditions that are applied when the mouse is in the left and right walls, respectively.
dwYStiffness: Stiffness of the top and bottom walls. Defines the amount of vertical resistance (force) felt by the user
when attempting to break through a horizontal wall.
dwStiffnessMask: Mask specifying when resistance should be applied. Can be one or more of the following values:
NONE: No resistance is felt on any wall.
INBOUNDTOPWALL, INBOUNDLEFTWALL, etc.: Resistance is felt when entering the enclosure through the top, bot-
tom, left, or right wall, as specified.
OUTBOUNDTOPWALL, OUTBOUNDLEFTWALL, etc.: Resistance is felt when exiting the enclosure through the top,
bottom, left, or right wall, as specified.
INBOUNDANYWALL, OUTBOUNDANYWALL: Resistance is felt when entering or exiting, respectively, the enclosure
through any wall.
ANYWALL: Resistance is felt when entering or exiting the enclosure through any wall.
dwClippingMask: Mask specifying when mouse cursor clipping should be applied. Can be one or more of the following
values:
NONE: Clipping is not applied to any wall
INBOUNDTOPWALL, INBOUNDLEFTWALL, etc.: Clipping is applied when entering the enclosure through the top,
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bottom, left, or right wall, respectively.
OUTBOUNDTOPWALL, OUTBOUNDLEFTWALL, etc.: Clipping is applied when exiting the enclosure through the top,
bottom, left, or right wall, respectively.
INBOUNDANYWALL, OUTBOUNDANYWALL: Clipping is applied when entering or exiting, respectively, the enclosure
through any wall
ANYWALL: Clipping is applied when entering or exiting the enclosure through any wall.
dwXSaturation, dwYSaturation: Saturation level of spring effect felt by the user when attempting to break through a
vertical or horizontal wall, respectively.
pInsideCondition: Points to a condition that is to be in effect when the user mouse is in the deadband area. For
example, can specify a spring condition, damper condition, and/or texture condition inside the enclosure. This is useful
in graphical environments such as GUI's and web pages/ web browsers.
[0096] In another example of an enclosure, a circular or elliptical shape is defined. For example, an elliptical enclosure
can include only one wall that is curved all the way around the ellipse. The inner and outer walls can still be provided,
as well as the rest of the other parameters. The dimensions of the ellipse/circle can be provided as X and Y widths.
Alternatively, an eccentricity parameter can define the eccentricity of the ellipse.
[0097] One problem with enclosures is that often the forces of the enclosure are desirable at one point in time but
not at a different point in time. For example, a button having an enclosure has a attractive force associated with the
enclosure to assist the user in acquiring the button with the cursor. However, once the cursor is positioned inside the
enclosure, the user may want to be able to freely move the cursor again without enclosure wall forces, since the target
button has already been acquired. Thus, in one embodiment, the forces associated with the enclosure are turned off
once the cursor is moved inside the enclosure. Alternatively, the force magnitudes can be weakened or adjusted to a
lower level, e.g. 1/3 the normal magnitude, to allow the cursor to easily exit the enclosure. Once the cursor has exited,
the forces can be turned back on. In an alternate embodiment, the forces associated with the enclosure can be turned
off or weakened for a predetermined period of time to allow the user to move the cursor out of the enclosure without
hindrance, and then the forces can be automatically turned back on once the time has expired. I yet a different em-
bodiment, the forces are turned off only when the cursor has not moved for a predetermined period of time; this indicates
that the user has acquired the desired target. In still a further embodiment, the forces can be turned off when a command
gesture, such as a button 15 activation, is detected by the host or microprocessor 130. These various embodiments
can also be combined in other embodiments as desired. The host or microprocessor can determine when the enclosure
has been entered and exited by the cursor through the use of events, explained below.
[0098] Enclosures can also be defined to compensate for user controlling peculiarities. For example, it has been
found that up-down movement of the mouse 12 for most users is much easier that left-to-right movement. An enclosure
having equal strength forces on all walls will feel as if the left and right walls have stronger forces. Thus, the upper and
lower walls can be defined with stronger forces, e.g., two times the magnitude of the left and right wall forces, to
compensate for this effect. Such an enclosure typically feels as if forces of all the walls are of equal strength.
[0099] FIGURE 6c illustrates another use of enclosures in the present invention. Enclosures can be used with events
to provide some enclosures with priority over other enclosures. The enclosure with priority can change the character-
istics of another enclosure, such as the strength of forces of the walls of the other enclosure. For example, window
272 is associated with a force enclosure 274. The walls of enclosure 274 surround the borders 275 of the window and
have an associated force to attract the cursor/user object to the border. Buttons 277 are also included in window 272
which are near the border 275 and which may be selected by the user. Buttons 277 have their own enclosures defined
in the interior of the buttons. The problem is that the forces from the enclosure 274 and the forces from the button
enclosures conflict. A user may not be able to select the button easily due to the cursor being stuck between competing
enclosure forces.
[0100] Preferably, an enclosure 276 can be defined to control the effects of other enclosures. For example, the
enclosure 276 occupies a region around buttons 277 and is preferably not visible to the user. Enclosure 276 turns off
the forces of enclosure 274 inside its borders and leaves the snap forces of the buttons 277 on. This allows the user
to feel the snap forces of the buttons without conflict from the forces of the window enclosure 274. Alternatively, the
forces of enclosure 274 can be reduced inside enclosure 276 to an extent so that the user is not encumbered by
competing forces. A similar type of enclosure can be user on sliders, where the moveable "thumb" of the slider can be
provided with an enclosure similar to enclosure 276 surrounding it. The enclosure surrounding the slider turns off or
reduces forces from other enclosures and allows the snap attractive force of the thumb to attract the user object/cursor
to the thumb. Events can be used to determine when the cursor enters enclosure 276.
[0101] FIGURE 7 illustrates a different effect useful in force feedback applications known as a texture. A texture is
a condition, similar to friction, which causes the mouse to feel as if it were traveling over a series of bumps. Figure 7
illustrates a distance vs. force graph in which a number of bumps are defined with a coefficient C, a period T, and a
deadband DB. Bumps in the positive distance region are felt when the mouse 12 is moved in a positive direction, and
bumps in the negative distance region are felt when the mouse 12 is moved in the negative direction. There is a separate
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height (coefficient) and period of the bumps for the positive and negative directions along a particular axis of the mouse
12 so that different textures can be felt depending on the direction of the mouse. Directional textures can be used, for
example, to achieve a velvet-like effect. The deadband value can apply for both directions. Textures are defined as a
condition and can include parameters such as:

Positive Coefficient, Negative Coefficient: Height (magnitude) of bumps when travelling along the axis in the pos-
itive or negative direction, respectively.
Positive Saturation, Negative Saturation: Period, in pixels, of bumps (bump width plus deadband width) when
travelling along the axis in the positive or negative direction, respectively.
DeadBand: Percentage of period which is not occupied by a bump.

[0102] FIGURE 8 illustrates a different force feedback effect useful in force feedback applications known as a grid.
A grid is a condition that creates a 2-dimensional array of snap points 280, which are forces attracting the user object
to the point when the user object moves over the point. Grids can be stand-alone conditions, but they can also be
useful when associated with enclosures. The geometrical attributes of a grid inside of an enclosure 282 are depicted
in Figure 8. Grids are defined as a condition and can include parameters such as those below, also illustrated in Figure 8.
Offset (O): If the grid is inside of an enclosure, defines the horizontal and vertical distance, in pixels, from the upper
left comer of the enclosure's deadband to the first snap point. If the grid is stand-alone, defines the horizontal and
vertical distance, in pixels, from the upper left comer of screen to the first snap point.
Positive Coefficient (C) : Strength of snap points (jolts).
PositiveSaturation (S): Saturation of snap points.
DeadBand (DB): Vertical and horizontal spacing, in pixels, between snap points.
[0103] Grids can also be implemented as one-dimensional forces, e.g., as tick marks on a slider or any other graphical
object when moved. The tick marks would only be felt when the mouse was moving in the defined dimension. For
example, a slider can be defined with a one-dimensional grid so that, as the knob of the slider is moved, a snap point
is applied as the knob moves over each tick of the grid. The ticks thus have a spatial correlation with the distance that
the knob has moved and inform the user of such.

Events

[0104] One structure used by the host in force feedback implementation is called an "event." Events are notifications
from the force feedback device to application programs 202, 204, and 206 of one or more actions or interactions that
have occurred in the graphical environment which has been sensed by the force feedback device 11. For example, an
event can be any interaction of the cursor in the graphical environment with another object. Thus, an event can be
defined when the cursor enters into an enclosure object (described below) through a particular border. Alternatively,
an event can be triggered when the cursor moves over a close box of a window, or the cursor moves over a file icon
and a button is pressed. An event can also be defined when the cursor moves within a specified range of a particular
graphical object or region. Also, an event may be defined with a temporal component, e.g. an event is triggered when
the cursor remains in a particular region for a specified period of time. Events are similar to button press triggers in
that a condition is detected on the force feedback device, independently of the host; however, the trigger for an event
is a graphical interaction rather than a physical button press.
[0105] An application program initially defines what the event is by creating an event definition with the API 208. The
event definition preferably includes an event identifier, an application program (or window) identifier, information spec-
ifying actions that trigger an event notification, and force effects, if any, that the event is associated with. The application
program assigns a separate identification value to each event at the time of creating the event, and keeps track of the
created identification values in its own list. The API can enable, disable, or delete an event at the request of an appli-
cation program.
[0106] The translation layer receives and stores events when the application that created the event is the active or
background application program. Thus, events are preferably included in the active context. The translation layer pref-
erably checks for events based on the position of the cursor (or mouse) received from the force feedback device when
the associated application program is (or becomes) active. The translation layer then sends the event notification up
to the context driver (or API), which sends an event notification to the application program, e.g. sends a message to
a window handler which the application program checks. The event notification includes the event identifier so that the
application program can check its own list and identify the event. Once identified, the application program initiates the
appropriate response as defined by the developer, e.g. running another application program, outputting a sound, dis-
playing a new image, etc. Alternatively, the force feedback device is loaded with the defined event similar to being
loaded with effects. The local microprocessor 130 can check for events (for active application programs) and send
information back through the translation layer to the context driver to notify the application program.
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[0107] For an application program to receive an event notification, the application's context must be active, i.e., the
application must be active or background. Thus, inactive applications will not receive event notifications. Some events
can be defined to have priority over other events. For example, if a trigger is associated with an event in a foreground
context as well as an event in a background context, the foreground context can be defined to have priority so that
only the application program in the foreground receives an event notification. Alternatively, only the background appli-
cation, or both the foreground and background applications, can receive the event notification.
[0108] Preferably, both one-time event triggers and periodic event triggers are available. One time event triggers are
triggers associated with discrete actions that have no significant duration, such as breaking through an enclosure.
Periodic event triggers are associated with conditions that have a finite duration, such as being inside the wall of an
enclosure, or holding down a scroll button. During the duration of the condition which triggers the event (e.g., while the
cursor is inside the enclosure), the API repeatedly sends event notifications to the application program according to a
predetermined periodicity that can be set by the application program.
[0109] As an example, an application program creates an event definition for an enclosure event. This is an event
that occurs when a user moves the cursor into an enclosure. The event definition includes a unique event identifier,
an identifier for the application program that created it, actions that trigger the event notification (entering the enclosure),
and any effects (such as the particular enclosure) which the event is associated with.
[0110] An example of an event structure is provided below:

dwSize : Size of the structure in bytes. This member must be initialized before the structure is used.
hWndEventHandler: Handle of window to which event notifications are sent.
wRef: 16-bit application-defined value to identify the event. This value is defined by the application to identify events
that it has created. The application assigns a separate wRef value to each event at the time of creation. Each subse-
quent event notification that the application receives will be tagged with its associated wRef value. When the application
processes the window message that receives event notifications, it will compare the wRef value to it's own internal list
and take action accordingly.
dwfTrigger: Flags specifying actions that trigger the event notification.
pEffect: Particular effect (e.g. enclosure), if any, in the GUI that this event is associated with.
The following are examples of flags that can be included as triggers for an event.
ONENTERTOP, ONENTERLEFT, etc.: The mouse broke into the associated enclosure by breaking through the top,
bottom, left, or right wall, as specified.
ONEXITTOP, ONEXITLEFT, etc.: The mouse broke out of the associated enclosure by breaking through the top, bottom,
left, or right wall, as specified.
ONENTERANY, ONEXITANY: The mouse broke into or out of the associated enclosure.
INBOUNDTOPWALL, INBOUNDLEFTWALL, etc.: The mouse is in the top, bottom, left, or right wall, as specified, and
attempting to break into the associated enclosure.
OUTBOUNDTOPWAL, OUTBOUNDLEFTWALL, etc.: The mouse is in the top, bottom, left, or right wall, as specified,
and attempting to break out of the associated enclosure.
INBOUNDANYWALL, OUTBOUNDANYWALL: The mouse is in a wall and attempting to break into or out of the asso-
ciated enclosure.
ANYWALL: The mouse is in a wall of the associated enclosure.
ONSCROLL: The user is holding down the scroll button of the mouse.
ONEFFECTCOMPLETION: The associated effect has completed.
[0111] The host computer or force feedback device may also command the mouse 12 to act as a different type of
control device for some embodiments. The force feedback device 11 is primarily intended, in the embodiment described
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in Figure 2, to be used in a graphical environment such as a GUI, in which multi-tasking applications are provided.
When the force feedback device is used as such, the API 208 and other layers described above are preferably used.
However, the force feedback device can also be used as a different type of controller and may use other standard
API's. For example, the mouse force feedback device 11 as shown in Figure 2 may also be desired to be used in
conjunction with game application programs, simulations, or the like, in which a joystick or other type of controller is
typically used. Device 11 can be configured to work with such game applications in a "joystick mode" as if it were a
standard force feedback joystick, or as if it were a non-force-feedback joystick. The user can be provided with a physical
switch on the device 11 to switch from mouse to joystick mode, or a software switch provided in master application
206 or other program on the host computer can be used to switch modes. For example, when the device is in the
joystick mode, the host computer can use the DirectX API from Microsoft Corp. which includes force feedback func-
tionality for standard joystick controllers. The device 11 becomes an absolute position reporting device in joystick mode.
[0112] Mouse device 11 as shown in Figure 2 is not easily applicable to many applications intended for use with a
joystick, since the mouse is a planar device having a free workspace while a joystick typically has rotary degrees of
freedom and springs to bias the joystick to a center position. Thus, forces are preferably used to cause the mouse to
be more similar to a joystick. When the mouse device 11 is used in the joystick mode, in the preferred embodiment,
spring forces are applied to bias the mouse 12 toward the center of its workspace. These forces are applied by actuators
64 and controlled by the local microprocessor 130 as background forces that are always in effect, unless the device
is switched out of joystick mode.

Force Feedback Device Implementations

[0113] The force feedback interface device 11, as described above, preferably includes a local microprocessor 130
that implements various processes to provide the functionality and features of the force feedback implementation de-
scribed herein. Various aspects of the force feedback device implementation are described below.

Reference Frames

[0114] The force feedback mouse device as described herein needs the ability to know the location of the cursor on
the display device of the host computer. This is because the device must monitor the interaction of the cursor with
other objects in the graphical environment to determine when associated forces should be output. The force feedback
device of the present invention uses different reference frames to determine where the cursor is positioned. There are
three primary reference frames that are described herein: the device (or local) frame 30, the ballistic frame and the
screen (or host) frame 28.
[0115] The device frame is the frame of the physical workspace of the force feedback device. In a preferred embod-
iment, the device frame is defined with the origin at the top left, the positive x direction to the right and the positive y
direction down. This frame is used to describe the absolute position of the end point of the mechanism in its workspace.
The scale of "movement units" for the device frame is arbitrary and fixed, although it should be a higher resolution than
the resolution of sensors 62 to guarantee no loss of sensor data. Furthermore, in the preferred embodiment, the device
position is scaled to reflect a 4:3 aspect ratio, which matches the preferred mechanical design (guide opening 76) as
well as the typical computer monitor size. However, in designs having different-sized mechanical workspace, the device
frame is scaled to the provided mechanical workspace.
[0116] In the preferred embodiment, rate-control indexing is provided. This allows the mouse 12 to reach the limit to
its workspace and still control the cursor in the same direction. In brief, the central portion of the device workspace is
designated as the position control region, where a change in position of the mouse in its workspace directly correlates
to a change in position of the cursor on the screen. The change in device position is translated to a change in ballistic
position based on the velocity of the device, according to a ballistics algorithm (described below).
[0117] An edge region of the device frame is designated as the rate-control region, in which the mode of moving the
cursor changes from position control, to rate control, where the cursor continues to move on the screen in the same
direction while the mouse is in the rate control region. The rate control region boundary is accompanied by a repelling
force that pushes the user object towards the center of the device workspace. As the user pushes against this force
the cursor is moved in a speed proportional to the distance the device is displaced into the rate control region. Therefore,
the cursor moves relative to device position in the rate control region, not relative to device motion. This mode may be
thought of as moving the position control central area of the device frame around the screen using rate control. The
size of the rate control region is specified by a percentage. For example, a 400 x 300 device workspace has a rate-
control region of 10%. The cursor position would be determined according to a position control paradigm when the
user object position is read between the values of (x,y) = (20,15) and (380, 285) of the device frame, and according
to a rate control paradigm if the user object position is outside of that range.
[0118] The screen frame is used to describe the position of the cursor (or other user-controlled graphical object) on
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the screen. It is defined with the origin at the top left, the positive x direction to the right and the positive y direction
down. This frame is scaled corresponding to the resolution of the display device 20 (or devices 20). For example, if a
computer monitor resolution is set to 1024 x 768 pixels, the x screen position ranges from 0 to 1023 as the cursor
moves to the right and from 0 to 767 as the cursor moves down. All coordinate communication between the force
feedback device and the host computer are in terms of screen coordinates (normalized for device standards).
[0119] The ballistic frame (or "scaled frame") is a frame created by the force feedback device to determine cursor
position. By applying a ballistics algorithm to the change in position of the user object, the cursor position is determined.
The ballistic frame is defined as a multiple of the screen frame, i.e., the ballistic frame preferably has a higher resolution
than the screen frame, but has the same aspect ratio as the screen frame. The ballistic frame is created by the force
feedback device so that pixel changes smaller than one screen pixel can be made to the cursor position, which is
crucial when implementing the fast control loop rates demanded by force-feedback. For example, if the control fre-
quency is 1kHz, and a monitor provides 1000 pixels across, a change of 1 pixel per control cycle would cause the
cursor to travel the entire screen width in one second. In rate control mode, such adjustments in cursor position may
have to be made every control cycle, which is far too fast to allow control of the cursor. Thus, a frame with higher
resolution, the ballistic frame, needs to be defined to allow the force feedback device to change cursor position at its
own control frequency, but which can be divided down to the screen frame size to slow down the cursor as it is moved
across the screen. In addition, the aspect ratio of the ballistic frame is the same as that of the screen frame. This allows
force effects on the device to spatially correlate with graphical objects displayed on the display device. This is described
in greater detail below.
[0120] The microprocessor must make transformations between frames to convert a device position to an eventual
screen coordinate. When transforming from the device frame to the ballistic frame, the microprocessor may use sen-
sitivity. Sensitivity is the ratio of the size of the device frame to the size of the ballistic frame. A higher value of sensitivity
allows the cursor to traverse the screen with less physical motion of the mouse 12, thus causing the cursor to be harder
to control. A lower value of sensitivity allows more motion on the device to cause less motion of the cursor on the
screen, and is suitable for fine cursor control. At low sensitivity values, the cursor may only be able to reach the entire
screen area by using rate control mode.
[0121] In the preferred embodiment, the cursor can exactly move across the entire width of the screen as the mouse
12 moves across the extent of the position control region of the device workspace, as long as the velocity of the mouse
12 remains in a middle range to provide a one-to-two ballistic mapping (a one-to-one ballistic mapping is provided with
velocities in the lower range, causing less cursor movement; and a one-to-four ballistic mapping is provided with ve-
locities in the high range, causing more cursor movement). As sensitivity is increased, the screen can be traversed in
less than the entire position control region of the device workspace (assuming a middle range velocity). At lower sen-
sitivities, the entire screen cannot be traversed (assuming a middle range velocity) without using the rate control mode.
[0122] Since the aspect ratios of the device frame and the ballistic frame may not match, updating position changes
in the ballistic frame may require that a change in device position (or a simulated change, when in rate control mode)
be added to the ballistic frame. If changes in mouse position are always used, problems with different aspect ratios
are eliminated. This is described in greater detail below.
[0123] Transforming from the ballistic frame to the screen frame is simpler. Once the ballistic cursor position is known,
the cursor position in the screen frame can be found by dividing the ballistic cursor position by the known multiple.
Thus, if the ballistic frame is defined to be 10 times the resolution of the screen frame, the ballistic position is divided
by 10 to obtain the screen position.

Position Reporting

[0124] Standard mouse controllers are open-loop devices which report position changes of the mouse in its work-
space to the host computer and have no ability to know the current cursor position. The force feedback mouse device
of the present invention, in contrast, needs to know the location of the cursor on the display device of the host computer,
since the mouse device must monitor the interaction of the cursor with other objects in the graphical environment to
determine when associated forces should be output.
[0125] There are two primary means for a force feedback mouse to report the position of the mouse to the host and
to know the screen position of the cursor. The first, preferred method for the mouse to know cursor location is for the
mouse to report (normalized) absolute coordinates to the host computer to dictate the position of the cursor. For ex-
ample, the actual screen coordinates of cursor can be determined by the mouse and reported to the host, and the host
simply displays the cursor at the reported coordinates. This allows the mouse to know exactly where the cursor is at
all times, and to therefore have an accurate model of the screen for use with outputting forces. However, any ballistic
behavior of the cursor must be calculated on the mouse device itself, creating more calculation overhead for the local
microprocessor 130. In addition, an absolute reporting scheme is not compatible with traditional, non-force-feedback
mouse devices, thus excluding a default mode in case the force feedback functionality is not operational.
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[0126] A second method provides a force feedback mouse device that reports position changes of the mouse in its
workspace, as a standard mouse does today, rely on the host computer to send back the cursor position. This approach
allows the host software to maintain the job of doing cursor ballistics, but requires twice the communication as well as
a need for the mouse to predict intermediate values of cursor position while waiting for the next host cursor position
update, since the cursor reporting occurs at a slower rate (e.g. about 50-60Hz) than the haptic control rate (e.g. about
1000Hz). This embodiment is described in greater detail with respect to Figure 13.
[0127] The processes described below are preferably implemented as firmware in integrated circuits and memory
provided on the force feedback device. Alternatively, the processes can be implemented as hardware or software, or
a mixture of these. The processes themselves can be implemented using program instructions or code stored on or
transferred through a computer readable medium, such as a memory chip, circuit or other device; magnetic media
such as hard disk, floppy disk, or tape; or other media such as CD-ROM, DVD, PCMCIA cards, etc. The program
instructions may also be transmitted through a channel to device 11 from a different source.
[0128] FIGURE 9 is a block diagram illustrating a first, preferred embodiment 290 of the present invention. In this
embodiment, both relative and absolute position reporting modes are used. As referred to herein, relative position
reporting means that the force feedback device reports only changes in position of the user object 12 to the host
computer, i.e. a difference between a new position and the last reported position, while absolute position reporting
means that absolute coordinates are reported to the host from which the host can directly display the cursor or other
graphical object. Most force feedback controllers use absolute position reporting since the position of the cursor on
the screen must be known to implement forces.
[0129] One problem with absolute position reporting is that the host computer cannot detect the force feedback
device as a standard input controller, such as a mouse. If relative position reporting were provided, the host computer
can detect the force feedback mouse as a traditional non-force-feedback mouse. This is desirable when force feedback
functionality is not currently active to allow the user to select options within the operating system, such as during startup
of the device before force feedback drivers have been loaded or during emergencies when force feedback is not
enabled.
[0130] The present embodiment provides a relative positioning mode when the force feedback device 11 is powered
up or when the host computer 18 first detects the force feedback device. In this mode, the device 11 provides a device
delta position to the host as shown in Figure 9. The host is expecting to receive a delta value upon startup, and thus
simply processes the delta position normally. This allows the user to use the device for normal postioning of the cursor
in a GUI or graphical environment before force functionality has been initialized. The microprocessor does not need
to model the cursor position in this stage of the process because no force feedback functionality has yet been enabled
on the device 11. However, once the force feedback functionality is enabled, e.g., the force feedback driver software
has been enabled on the host computer, then an absolute position is reported to the host in place of the delta position
relative position reporting. In addition, ballistic parameters and the host screen size are sent to the device 11 to allow
the device 11 to determined the absolute cursor position. Force feedback commands are also sent to the device in this
stage when appropriate.
[0131] FIGURE 10 illustrates a process 300 for providing force feedback according to the preferred embodiment 290
of Figure 9. In a first branch of process 300, current joint angles 302 are measured by sensors of the force feedback
device 11. For example, in the embodiment of Figures 1 and 2, the joint angles between members 44, 46, 48, and 50
are determined based on the current position of the encoder arc as sensed by the emitter and detector of sensor 62.
The joint angles can be determined since the precise measurements of the members of linkage 40 are known and are
in a known position relative to each other based on the sensor 62 reading. In a process step 304, the current joint
angles are normalized based on the sensed range of the mouse 12 in its degrees of freedom. Since the exact range
of the mouse 12 (or other user object) may not be precisely known due to variations in the device or other irregularities,
the normalization process uses a sensed range of motion to determine and assign physical angles between the mem-
bers of the linkage 40. For example, the minimum sensor value that has been detected so far is considered to be one
limit of the motion of the mouse, and the maximum sensor value detected so far is considered to be the other limit to
the mouse range. In successive iterations of the process 300, the mouse eventually will be moved to the physical limits
of the device and the angle values will be updated accordingly. This tends to produce more accurate results than an
assumed range of motion, since manufacturing tolerances of the components of device 11 provide slightly varying
dimensions, link lengths, and angle ranges that cause discrepancies from device to device. In an alternate embodiment,
the force feedback device (microprocessor 130) can control the actuators of the device to move the mouse 12 to all
the limits of the mouse 12 in a short start-up procedure to determine the actual angle ranges.
[0132] The normalized joint angles 306 resulting from step 304 are then processed by applying kinematics in step
308. Kinematic equations, as is well known to those skilled in the art, are used to derive a position of a desired point
on a mechanical linkage or other apparatus from known lengths of links in the linkage and the current angles between
those links. For example, a cartesian position of a point on the linkage in a cartesian (or other type) of coordinate
system can be determined using geometrical equations. A current device position 310 is determined from the kinematics



EP 1 036 390 B1

5

10

15

20

25

30

35

40

45

50

55

22

of step 308, which is the position of the mouse 12 in its workspace.
[0133] The current device position 310 is used, with a previous device position 312, to determine a device delta
position 314. The previous device position 312 was the current device position 310 in a previous iteration of process
300; this is indicated by the dashed line 311 between current and previous device positions. The device delta position
314 is simply the difference between the current device position 310 and the previous device position 312. In step 316,
the microprocessor 130 sends the determined delta position 314 to the host computer 18 over bus 120. This is a relative
position reporting step and is only performed if the system 10 does not yet have force feedback functionality, e.g. at
startup when the force feedback drivers are being loaded. The host computer uses the delta position to position the
cursor on the screen of display device 20. For example, the host computer adjusts the position of a cursor by the delta
amount to achieve a new position of the cursor in the screen frame 28. During relative position reporting mode, the
delta position 314 is sent to the host at a slower rate than the rate of process 300; therefore, in some iterations of
process 300, the delta need not be reported to the host. This is because the host only needs to receive a cursor delta
position at the rate of displaying the cursor on the screen, which typically is on the order of 60 Hz or every 20 ms. The
microprocessor 130, on the other hand, must control forces at a much higher rate (1000 Hz or above) and thus needs
to execute process 300 much faster.
[0134] If the device is in relative position reporting mode, the process iteration is complete after the delta position
314 is reported to the host. The process then returns to measure joint angles 302 and start the next iteration when
triggered to do so. The microprocessor does not need to model the cursor position in this mode because no force
feedback functionality has yet been enabled on the device 11.
[0135] Relative position reporting mode is exited and absolute position reporting mode is entered when the appro-
priate software drivers or other programs are loaded into the memory of host computer 18 to allow the host to recognize,
interface with, and command the force feedback of device 11. In absolute position reporting mode, the delta position
314 continues to be determined as described above. However, the delta position is no longer reported directly to the
host computer, but is instead used in a ballistics process to determine a ballistic delta, described below.
[0136] In absolute position reporting mode, the force feedback device 11 also determines a velocity of the user object
12 for use in the present process in addition to the joint angle processing described in steps 304 and 308. A current
joint velocity 320 is first measured. In the preferred embodiment, this is accomplished by a dedicated circuit or device
that determines a velocity from the sensed positions reported by sensors 62, e.g. the sensed positions of members 44
and 48. For example, a "haptic accelerator" device can include a circuit dedicated to calculating velocity from multiple
sensed positions and time periods between the sensed positions. Alternatively, velocity sensors can be used to directly
measure velocity of joints or members of the device.
[0137] The current joint velocity 320 is used in a process step 322 which uses kinematics in determining device
velocity. As described above, kinematics are well-known equations for determining position, and also are used to
determine a velocity of a desired point of a linkage. Thus, the kinematics can be used to determine the velocity of the
mouse 12, which is referred to as the "device velocity" herein. The current device velocity 324 resulting from step 322
indicates the current velocity of mouse 12.
[0138] Ballistics step 328 uses a ballistic algorithm or similar method to model or predict a position of the cursor in
the screen frame 28 based on the position and velocity of the mouse 12. This modelling is accomplished to allow the
local microprocessor 130 to determine where the cursor is positioned in the ballistic frame. Using the spatial layout of
graphical objects that is stored locally in memory 134 and which is continually updated by the host, the local micro-
processor determines when the cursor is interacting with an object and when to output forces associated with the
interaction. The local determination of the cursor position allows the microprocessor to know the position of the cursor
for the determination of forces.
[0139] In the ballistics step 328, the local microprocessor uses a ballistics algorithm to determine a "ballistic delta"
for the cursor, i.e. a change in position of the cursor measured in the ballistic frame. A ballistics algorithm is a method
of changing the position of the cursor so as to break the direct mapping between the mouse 12 position and the cursor
position to allow the user greater control over the cursor position. For example, most ballistics algorithms vary the
position of the cursor based on the velocity of a mouse in its workspace. The faster the velocity of the mouse, the
greater the distance that the cursor is moved on the screen for a given distance the mouse is moved. This allows slow
motions of the mouse to finely control the cursor, while fast motions coarsely control the cursor and allow the cursor
to be moved quickly across the screen. Other algorithms can also be used which are similar to ballistics in that cursor
position is altered to allow fine cursor control in situations when needed (such as for targeting graphical objects with
the cursor) and to allow coarse cursor control when needed.
[0140] The microprocessor 130 preferably uses a ballistic algorithm that provides two velocity thresholds to determine
how far the cursor is to be moved. This is described in greater detail below in the method of Figure 11. Other ballistics
algorithms may be used in other embodiments; e.g., a continuous algorithm that adjusts cursor position continuously
along a range of mouse velocity.
[0141] The microprocessor uses several types of data to determine the ballistic delta of the cursor, including the
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device delta position 314, current device velocity 324, and host ballistic parameters 330. The host ballistic parameters
330 are received by the microprocessor 130 from the host at some point before the process 300 starts, or when the
ballistic model changes, and are stored in local memory 134 to be accessed when required. Such parameters can
include the distance to move the cursor for each threshold range of device velocity, the velocity values of the two
thresholds, and any conditions concerning when to apply the ballistics algorithm. If the host changes ballistics algo-
rithms, notification can be sent to the microprocessor 130 and new parameters stored in local memory 134. The mi-
croprocessor 130 examines the current device velocity 324 and the parameters 330 to determine in which threshold
range the mouse velocity currently is placed, and then multiplies the device delta position by the appropriate amount
(e.g., 1, 2, or 4, depending on the velocity). This results in the ballistic delta 332, which is provided in terms of the
ballistic frame. Changes in mouse position (i.e., delta positions 314) are used in the absolute position reporting mode
of the present invention because this allows problems with changes to screen aspect ratios and resolutions to be
alleviated. In addition, an indexing function of the device 11 is preferably implemented which may cause the ballistic
delta 332 to be calculated differently in a rate control mode, as detailed below in Figure 11.
[0142] The microprocessor then proceeds to a process step 334, in which a current ballistic location (or "scaled
position") 336 of the cursor is determined in the ballistic frame. To accomplish this, the microprocessor uses the ballistic
delta 332, and the previous ballistic location 338. The previous ballistic location 338 was the current ballistic location
336 in an earlier iteration of process 300, as indicated by dashed line 337. Previous location 338 can be stored in local
memory 134 and then discarded after being used to determine the current ballistic location. At its simplest level, the
current ballistic location 336 is determined in step 334 by taking the previous ballistic location 338 and adjusting that
location by the ballistic delta 332.
[0143] The current ballistic location 336, however, cannot be directly transformed to a screen pixel position in the
screen frame. Step 342 uses the current ballistic location 336 and the host screen size 340 to determine the screen
pixel location.
[0144] The host screen size 340 is the current pixel resolution and/or aspect ratio being displayed on the display
device 20 of the host computer 18. For example, the host may be displaying a screen resolution of 800 x 600 pixels,
1024 x 768 pixels, or 1280 x 960 pixels. Also, in some embodiments, the host may be displaying a different aspect
ratio. For example, a typical computer monitor aspect ratio is 4:3; however, if two monitors are connected to provide
a continuous screen space, the aspect ratio becomes 8:3. i.e., double the size of a single screen in one dimension.
The host screen size 340 can be received by the device 11 when the ballistic parameters 330 are received, or at any
other time (and/or when sensitivity information is received, if applicable). Different resolutions or aspect ratios have
different numbers of pixels in respective dimensions of the screen and thus cause displayed objects to appear in
different areas of the screen. For example, if a graphical object is centered in the screen at 640 x 480 resolution, the
object will appear in the upper left quadrant of the screen when the resolution changes to 1280 x 960.
[0145] The change in resolution or aspect ratio can create a problem with force sensations created by the force
feedback device. The device has been sent a spatial layout of objects from the host that indicates the coordinates of
an object on the screen. When the screen size is changed, and the device is not informed, the device will output forces
corresponding to the object as it appeared in the old screen size. This can cause large discrepancies between where
an object is displayed and where the forces of an object are encountered in the device workspace. For example, if an
icon is at coordinates (64,48) on a 640x480 resolution screen, the device knows that the icon is positioned 10% of the
entire screen dimension away from the top and left borders of the screen workspace. The device accordingly outputs
associated forces when the mouse is moved into the region of the device workspace corresponding to the icon, i.e.
10% of the workspace distance from the top and left borders of the workspace. However, after a resolution change to
1280x960, the icon is displayed 5% of the screen dimension away from the top and left borders. The device, however,
would output forces based on the old position of the icon, which no longer corresponds with the position of the icon.
Thus, the device needs to be told the new screen resolution so it may provide forces at the appropriate region of the
device workspace.
[0146] Similarly, a change in aspect ratio can cause distortion in the force feedback sensations. For example, a circle
object is displayed on a 4:3 aspect ratio screen and has a force wall surrounding its shape. The circle will feel like a
circle on the device if the ballistic frame also has an aspect ratio of 4:3. However, if another monitor is activated so
that the screen has an 8:3 aspect ratio, the circle object will feel like an oval due if the screen is directly mapped to the
device frame, i.e. if the device frame is " stretched" to fit the screen frame. The use of delta positions 314 prevents this
distortion. Since only changes in the mouse position are used to determine cursor position, and not an absolute mouse
position in the device workspace, the cursor is positioned without distortion. However, the new aspect ratio still needs
to be communicated to the force feedback device since there is a larger area in which the cursor may be positioned.
For example, in a 4:3 aspect ratio, the microprocessor might clip a pixel location to the edge of the screen if that location
were beyond the edge of the displayed range. However, on an 8:3 aspect ratio, the location should not be clipped since
the displayed range is larger.
[0147] To prevent distortion caused by a change in screen size, the ballistic location 336 of the cursor is divided by
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a divisor that takes the host screen size into account. For example, if the ballistic frame is 10 times the resolution of
the screen frame, then the divisor is 10: the ballistic location 336 would be divided by 10 to achieve a screen pixel
position of the cursor if the host screen size had not changed. If the host screen size did change, then the ballistic
frame is resized to take the new screen size into account. Preferably, the screen pixel position is equal to the screen
size times the ballistic location divided by the ballistic frame size (i.e. the divisor). Thus, if screen resolution on the host
has doubled, the divisor would halve, and the screen pixel location would double. The host can also send sensitivity
information to the device. If a new sensitivity value is received, the ballistic frame is resized accordingly; as sensitivity
is increased, the ballistic frame size is decreased.
[0148] Once the screen pixel location is translated from the ballistic position 336, the screen pixel location is then
typically normalized to a standardized range of numbers since communication software and devices have standard
values to receive. The normalized screen pixel position 346 is then sent to the host computer as an absolute position
in step 350, e.g., as coordinates for display on the screen. The host receives the screen pixel location 346 and displays
the cursor appropriately.
[0149] In step 344, the local processor 130 uses the (preferably non-normalized) screen pixel location (and other
data) to determine whether any forces should be output, and outputs those forces. For example, the local microproc-
essor checks the spatial layout of graphical objects which is stored in local memory 134 and determines whether the
screen pixel location intersects or contacts any of those objects. If so, there may be a force associated with the inter-
action, depending on the graphical object intersected. Such a force would be calculated based on a variety of data.
Such data may include the device velocity 324, the device position 310, the elapsed time from an event, the distance
from a different graphical object in the graphical environment, a history of past mouse motion, etc.
[0150] Once step 346 is complete (and any other desired steps in the provision of forces, which is not detailed herein),
the process when needed returns to the measuring of joint angles 302 and joint velocity 320 to begin another iteration
of the absolute position reporting process.
[0151] No error correction is required in the present embodiment, unlike the embodiment below, because the force
feedback device 11 is operating in absolute mode when the pixel position is determined. The host is no longer receiving
simply a change in position (delta) of the user object, but is receiving an absolute coordinate in a coordinate system
and need perform no other significant processing (such as ballistics) to display the cursor, i.e., the local microprocessor
solely performs the necessary adjustments, such as ballistics, and reports the adjusted position to the host computer.
Thus, the host and local microprocessor have the same position value for the cursor, and no opportunity exists for the
two positions to diverge.
[0152] FIGURE 11 is a flow diagram illustrating a method 360 of the present invention for implementing enhanced
cursor control and indexing in the absolute position reporting mode of method 300. This method provides ballistics for
cursor positioning as well as indexing functionality, and many of the steps of method 360 overlap those of method 300.
As described above, the mouse workspace preferably includes a central position control region in which the mouse
controls the cursor according to a position control scheme. An isometric edge region is provided around the position
control region of the mouse workspace. When the mouse is moved into the isometric region, a resistive force is applied
to the mouse and the cursor is moved according to a rate control method, where the speed of the cursor is proportional
to the amount of penetration into the isometric region. This allows a user to move the cursor throughout the screen
frame without causing the user to experience disconcerting interruptions due to the mouse colliding with physical limits
to the mouse workspace.
[0153] The method 360 is similar to the indexing methods described above in that a position control region and
isometric edge region are provided in the mouse workspace. Method 360 is intended to be used on the preferred
embodiment 290 of Figures 9 and 10 and accounts for the use of a ballistic frame on the mouse and for changes in
screen size.
[0154] Method 360 begins at 362, in which raw sensor data is read using the sensors 62. In step 364, the joint
positions of linkage 40 are calculated from the raw sensor data. In step 366, position kinematics are used to determined
the device position (position of the mouse 12 or other user object) in the device frame, as explained above with reference
to Figure 10. The last device position is stored in local memory 134 in step 368, and a delta device position is determined
in step 370 using the current device position resulting from step 366 and the last device position stored in step 368.
From step 366, step 372 is initiated, which checks whether the device position is in the position control region of the
device frame. If not, the mouse is in the isometric region and is in rate control mode, where a resistive force is preferably
output on the mouse opposing movement into the region. In step 374, the rate control delta is calculated to be the
difference between the device position and the rate control edge; this provides the distance of penetration into the
isometric region. In step 376, the rate of cursor movement is equal to the maximum rate times the rate control delta
divided by the rate control edge width (i.e., the width of the isometric region). The rate control delta divided by the rate
control edge width provides the percentage of penetration of the mouse into the isometric region, which is designated
to be the same percentage of the maximum rate of the mouse. The maximum rate can be set by the developer; for
example, 1000 ballistic pixels per second or 8000 ballistic pixels per second. In step 378, the ballistic position (i.e. the
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position of the cursor in the ballistic frame) is set equal to the old ballistic position plus the rate determined in step 376.
The process then continues to step 394, detailed below.
[0155] If the device position is in the position control region in step 372, then a position control method is followed.
Steps 384-392 implement a preferred ballistics algorithm to provide enhanced cursor control to the user of device 11.
This algorithm is generally as follows. If the current device velocity is below the first threshold, the cursor is moved by
the smallest amount, e.g., a one-to-one mapping between device movement units and ballistic pixels. If the current
device velocity is between the first and second thresholds, the cursor is moved double the amount of pixels as it is
moved when mouse velocity is under the first threshold, e.g. a one-to-two mapping between device and ballistic frames.
If the user object velocity is above the second threshold, the cursor is moved double the amount of pixels as between
the first and second thresholds (a one-to-four mapping between device and ballistic frames). In other embodiments
more or less thresholds, or a continuous function, can be used. Also, the host may change the ballistics algorithm in
a variety of ways and indicate the changes to the device 11 using ballistic parameters 330 as described for Figure 10.
[0156] Thus, step 384 checks the device velocity so that a ballistic position may be determined. The device velocity
is determined in steps 380 and 382, where step 380 determines joint velocities from the sensor data read in step 362
and device velocity is determined from the joint velocities and velocity kinematics in step 382, as described above in
Figure 10. In step 384, this device velocity is compared to the ballistic thresholds used in the ballistics algorithm. If the
device velocity is within the first ballistic threshold in step 384, then step 386 determines the new ballistic position to
be the old ballistic position plus the delta device position (from step 370). The process then continues to step 394,
detailed below. If the device velocity is greater than the first ballistic threshold, then in step 388 the device velocity is
compared to the second ballistic threshold. If the device velocity is between the first and second thresholds, then in
step 390 the new ballistic position is set equal to the old ballistic position plus twice the delta device position. This
causes the cursor to move at a faster rate, based on mouse velocity. The process then continues to step 394, detailed
below. If the device velocity is greater than the second ballistic threshold in step 388, then in step 392 the new ballistic
position is set equal to the old ballistic position plus 4 times the delta device position. The process then continues to
step 394.
[0157] In step 394, the screen position of the cursor is set equal to the ballistic position as determined in one of steps
378, 386, 390, and 392 divided by a divisor. The divisor is known from the resolution of the ballistic frame and the
resolution of the screen frame, as follows. In step 396, the screen resolution (or size) is obtained from the host. In step
398, the divisor is set equal to the ballistic range (or resolution) divided by the screen resolution as detailed above.
[0158] After the screen position is determined in step 394, it is sent to the host computer in step 399 and used in the
display of the cursor in the screen frame. The device 11 also determines and outputs forces, as detailed in Figure 10.
It should be noted that the forces on mouse 12 may be determined or calculated differently in rate control (isometric)
mode than in position control mode, as described in greater detail in co-pending application serial no. 08/924,462.
[0159] FIGURE 12 is a block diagram illustrating a second embodiment 400 of the present invention for reporting
positions to a host computer from a force feedback device. Embodiment 400 provides only relative position reporting
from the force feedback device 11 to the host computer 18. This is advantageous in that the force feedback mouse
device is detected by the host as a standard non-force-feedback mouse, where the host computer can use standard
drivers and other software. This allows the user to control GUI functions even when force feedback is not currently
active, such as during startup of the device or during failures of the force feedback functionality. In addition, a relative
position reporting process is more appropriate than an absolute position reporting process for such interface devices
as trackballs, in which an unrestricted workspace and range of motion is provided for the user object 12. For example,
the spherical ball in a trackball controller can be moved in any direction for any number of revolutions and is not as
suitable for use with an absolute coordinate system as a device having a workspace with known limits.
[0160] Embodiment 400 provides a device delta position to the host computer from which the host computer deter-
mines a cursor screen pixel position. The host computer sends cursor position updates to the force feedback device
to provide the cursor position which the device needs to determine when forces are output and to determine the force
characteristics. However, since the host cursor position updates occur at a much slower rate, the device must model
the cursor position on its own to be able to output forces between host cursor updates. Thus, the host sends ballistic
parameters and screen size information so the device can model the cursor position. When the device receives an
update, it corrects for any error between its modelled position and the actual cursor position, as detailed below. The
host also sends force feedback commands to the device indicate which forces are to be output.
[0161] FIGURE 13 illustrates a process 410 for implementing the second embodiment 400 of Figure 12. A significant
difference between method 300 and method 410 of the first embodiment is that the host independently determines a
screen cursor position in the present embodiment in parallel with the microprocessor modeling the cursor screen po-
sition. Since the host controls the actual position of the cursor, its screen position is considered the "correct" or actual
cursor position, while the device modeled value is only approximate. The host must continually send the actual screen
position to the device so that errors in the modeled screen position can be corrected and so that the forces can be
correctly correlated with actual cursor position.
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[0162] Process 410 includes many similar steps to process 300. The current joint angles 302 are measured and
normalized in step 304, and the normalized joint angles 306 are processed with kinematics in step 308 to provide a
current device position 310. The current device position 310 and previous device position 312 are used to determine
a delta position 314, which is reported to the host computer 18 in step 316 over bus 120. As in process 300, this portion
of the process 410 functions like a traditional relative mouse, where only a delta value is reported to the host computer.
However, unlike the process 300, the delta position 314 is always reported to the host computer, i.e., there is no absolute
position to report at any stage of the process. The host computer uses the delta position to position the cursor or other
user-controlled graphical object on the display device 20. For example, the host computer adjusts the position of a
cursor using the delta amount and its own ballistics algorithm to achieve a new position of the cursor in the screen
frame 28. The delta position 314 is sent to the host at a slower rate than the rate of process 410; therefore, in some
iterations of process 410, the delta need not be reported to the host. This is because the host only needs to receive a
cursor delta position at the rate of displaying the cursor on the screen, which typically is on the order of 60 Hz or every
20 ms. The microprocessor 130, on the other hand, must compute forces at a much higher rate (1000 Hz or above)
and thus needs to execute process 300 much faster.
[0163] The current joint velocity 320 also is read in process 410 (both the joint angles 302 and the joint velocity 320
are always measured in the current process). Kinematics are applied in step 322 to obtain the current device velocity
324, and ballistics are applied in step 328 using the device velocity 324, ballistic parameters 330, and delta position
314 to obtain a "modeled" pixel delta 332. The pixel delta 332 is a modeled or predicted value in this embodiment
because the host has determined the actual screen position using its own ballistics algorithm and using the delta
position 314 provided by the device. The microprocessor 130 preferably uses in step 328 the same ballistics algorithm
used by the host computer in its determination of cursor position.
[0164] In step 412, a current pixel location is modeled using the modeled pixel delta 332, a previous pixel location
416, and the host screen size 340, resulting in a current pixel location 414. Step 412 is similar to step 334 of process
300 in that pixel delta 332 and the previous pixel location 416 are used substantially similarly. The host screen size
information can be used to determine whether the determined pixel location should be clipped or not. For example, if
the aspect ratio has changed from 4:3 to 8:3, double the amount of area is provided. If the pixel location is one that
would normally extend beyond the edge of a 4:3 screen area, it would be clipped to the border of the 4:3 screen, but
may not be clipped if it is still within the 8:3 area. In one embodiment, if the change in screen size is to a different
resolution, the current pixel location can also be adjusted depending on the change in resolution. For example, if screen
resolution has been adjusted from 640x480 to 1280x960, then the pixel delta can be doubled before it is added to the
previous pixel location.
[0165] Step 412 is different from step 334 in Figure 10 in that a current pixel error 418 is included in the determination
of the current pixel location 414. The pixel error 414 is the error between the cursor position modeled by the local
microprocessor and the actual cursor position as determined and displayed by the host computer. Although the micro-
processor is typically applying the same ballistics algorithm and screen size adjustments to the cursor pixel location
as the host computer, errors can be introduced to cause the two cursor location calculations to diverge. For example,
in some embodiments, the host computer can "clip" the received delta position 314, i.e., ignore the delta position so
that the cursor stays at a constant position. Or, error can be caused by an application program on the host computer
moving the cursor based on the program's own criteria and completely independently of the force feedback device.
Or, error can be caused by the host computer switching to a different ballistics algorithm, where a delay exists between
the host using the new ballistic algorithm and the force feedback device receiving the parameters for the new algorithm.
[0166] The current pixel error 414 is determined by examining the current pixel location 414 at the time of reporting
the delta position 314 and a current screen position of the cursor that has been received from the host computer. The
host computer periodically reports a current screen position 420 of the cursor to the microprocessor 130, where the
screen position is based on the delta position 314 reported to the host in step 316. The reporting of the screen position
by the host is triggered by receiving the delta position 314 from the device, and the microprocessor recalculates pixel
error when it receives the host screen position 420.
[0167] The microprocessor compares the received screen position 420 with the modeled current pixel location 414
at the time of report 316 (it should be noted that the current pixel location 414 may have a previously-determined error
correction value included in its determination, as explained below). If the two locations are the same, no error exists
between the two cursor positions, and the microprocessor uses the current pixel location 414 as the location of the
cursor in its force calculations and force outputs. If the two locations are not the same, error exists between the two
cursor positions and the current pixel location 414 must therefore be corrected. An error correction value is determined
as the difference between the current pixel location 414 and the host screen position 420. This value, when added to
(or subtracted from) the pixel location 414, will cause the two cursor locations to be the same. Alternatively, if the
microprocessor knows the error, then the current pixel location can be adjusted to provide no error.
[0168] The screen position 414 from the host is reported to the microprocessor 130 at a slower rate than the rate of
process 410, since the force feedback process must be much faster than the displaying processes of the host computer.
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There may therefore be several iterations of process 410 before the screen position 420 is reported by the host to the
microprocessor 130. Therefore, once the error correction value is determined after one report of screen position 420,
that same value is continually used in iterations providing the determination of current pixel location 414 until the next
screen position 420 is received from the host.
[0169] In the preferred embodiment, it is desirable to "smooth out" the correction of the error in pixel location 414 by
only incrementally changing the pixel location 414 in each iteration of process 410. For example, if the current pixel
location 414 were adjusted with the entire error correction value at one time, this might cause a large change in the
pixel location 414. If forces output on the user object are based on the current pixel location 414 of the cursor, then
the user may notice the correction of the error by feeling a small jump or discontinuity in the forces applied to mouse
12 after the error is corrected. This is because the forces were determined based on a pixel location having a large
error at one point in time, and then the forces are based on the corrected pixel location at the next point in time. Thus,
the difference in pixel locations in each iteration is preferably smoothed by only partially correcting the current pixel
location 414. With such smoothing, the user does not feel as large a discontinuity in forces when the error in pixel
position 414 is corrected. The error correction rate is preferably based on the desired system modeling. The error can
be corrected at a rate so that there is no error between the pixel location 414 and the host screen position 420 by the
time a new host screen position 420 is received (which may provide a new error, of course). Or, the error can be
corrected at a rate that spans multiple received host screen positions 420. Typically, the correction of errors is desired
to be as slow as possible to maintain high fidelity of forces to the user, yet the error must be corrected fast enough so
as not to create a discontinuity between what the host is displaying on the display device and the forces the user feels
on the force feedback device.
[0170] FIGURE 14 is a diagrammatic illustration of an example of the pixel location error correction process explained
above. The line 426 represents a time scale, and each vertical mark represents another iteration of process 410. At
the first iteration, the pixel location 414 (PL) is determined to be 192 (assuming a single dimension of user object
motion) and the error 418 between the pixel location and host screen position is 0. At the next iteration, the pixel location
is 200, and the delta position of 4 is reported to the host as in step 316. Over the next iterations, the pixel location is
determined to be 200, 201, and 202. At the sixth iteration, the pixel location is determined to be 203; in addition, the
host reports a host screen position of 201. Since this screen position was determined based on the delta position 314
reported to the host in the second iteration, the error is measured between the pixel location determined at the second
iteration (200) and the host screen position received at the sixth iteration (201). The error value of 1 is then included
in the current pixel location, so that the pixel location of 203 is corrected to be 204 based on the error value. This
example demonstrates that the pixel location 384 determined by the microprocessor 130, when error exists, is corrected
a few iterations behind the actual screen position determined by the host. The microprocessor 130 locally stores the
pixel location 414 that was determined in the iteration when the delta position 314 was reported to the host so that the
error correction value can be accurately determined.
[0171] It should be noted that, in the example of Figure 14, the error value determined at the sixth iteration continues
to be added indefinitely. Thus, if further errors are indicated at later host reports, the new error value must be added
to the old error value. FIGURE 15 is a diagrammatic illustration of the error correction value increasing over time.
Initially the error correction value is 0, then 1. Over the next host report of the screen position, the current error is 2
pixels, which is added to the previous error correction value of 1 so that the total error correction value is 3. Likewise,
in the next host report, the current error is 3 pixels, so that the total error correction value is 6. In one embodiment, if
a very large error accumulates, the microprocessor can make the error zero in one iteration regardless of the effect
on the user.
[0172] Figure 15 also demonstrates the smoothing or incremental correction of the modeled pixel location in the
present invention. An error of 2 pixels exists at the iteration 428. The value of 2 is not added to the previous error value
of 1 immediately, since that may cause a force discontinuity to the user. Instead the 2 pixels are added gradually to
the error correction value over the next few iterations. For example, the actual value (AV) added to the pixel location
414 is 0 for the first two iterations after iteration 428, then AV = 2 for three more iterations, until the full value of 2 is
added in following iterations.
[0173] Referring back to Figure 13, once the current pixel location 414 is determined, the local processor 130 uses
that location in step 424 to determine whether any forces should be output and outputs those forces. It should be noted
that most forces are determined preferably based on the velocity of the user object in its workspace, not the velocity
of the cursor in the graphical environment. Thus, these forces will always feel the same to the user, regardless of any
error between the modeled pixel location 414 and the host screen position 420, since they is independent of screen
velocity. However, some forces are dependent on interactions in the graphical environment, and will be affected by a
cursor position error. Likewise, the ability to initiate or discontinue forces based on interactions in the graphical envi-
ronment is also affected by cursor position error.
[0174] Once step 424 is complete (and any other desired steps in the provision of forces, which is not detailed herein),
the process preferably returns to the measuring of joint angles 302 and joint velocity 320 to begin another iteration of
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the process.

Force Feedback Features as Implemented in the Present Invention

[0175] In the above described embodiments, the host computer performs such tasks as the implementation and
display of the graphical (or other) environment and cursor, the implementation of multi-tasking application programs,
the sending of high-level force feedback commands to the force feedback device, and the reception of position (or
other) data from the force feedback device indicating the user's desired interaction with the computer-implemented
environment. The force feedback device, in contrast, performs such tasks as reading the position of the user object,
receiving high level force feedback commands from the host computer, determining whether a force should be output
based on conditions sent from the host computer, and implementing and outputting the required forces when necessary.
[0176] Some tasks, however, may be implemented in either the host computer or the force feedback device, and
there are different tradeoffs to choosing one implementation over the other. Events, for example, are one such feature.
Another force feedback feature that can be implemented in either the host or the force feedback device is "clipping."
Clipping is the selective omission of reported position data when displaying the cursor or other user-controlled graphical
object to cause a sensory effect on the user in certain circumstances. Such circumstances include those where dis-
playing the cursor in correlation with the precise user object position would not provide a desired effect. The most
common case for clipping is when the cursor encounters a surface or object in the graphical environment which is
desired for the user to experience as a hard obstruction or wall. The wall is desired to prohibit further movement into
the surface or object; however, due to limitations in hardware, a strong enough force cannot be output on the user
object to actually prevent motion into the wall. Thus, clipping is performed: the user object (e.g., mouse) is allowed to
be moved by the user into the wall against a resistive force, but the reported position data indicating this movement is
clipped or ignored so that the cursor is displayed positioned against the wall surface where it first encountered the wall.
The user sees the cursor prevented from moving into the wall and feels a resistive force, and believes that it is a hard
obstruction even though the user object can actually be moved into the wall; this is because the user heavily relies on
the visual perception of the interaction..
[0177] Clipping can be easily performed by the force feedback device to ease computational burden on the host.
For example, the local microprocessor 130 can check whether the user object is being moved into a wall in the graphical
environment; if so, the microprocessor can simply discard the position data and report a constant position (or delta) to
the host computer that would cause the host to display the cursor against the wall surface. This allows the host computer
to be completely ignorant of the clipping process and simply display the cursor at the reported position, thus freeing
the host to perform other tasks. However, problems occur in this implementation due to extra burden on the local
microprocessor. Since the microprocessor is implementing a very fast force feedback loop in which the user object
position is read and forces are output, it is very disruptive to this loop when the microprocessor has to check whether
to clip the read position of the user object, and may cause a small distortion in output forces.
[0178] The host computer 18 can also perform clipping in an alternate embodiment. Since it is desirable to keep the
application programs 202 and 204, the operating system, and other high level programs ignorant of the clipping process,
a lower level program preferably handles the clipping. For example, the translation layer 218 as shown in Figure 4 (or
alternatively the context driver or API) can check for the conditions that cause clipping to be applied. If clipping is to
be performed, the translation layer alters the input position data appropriately before it is sent on to the context driver,
API, operating system and any application programs. Problems with this implementation include increased load on the
host with the overhead of intercepting and translating incoming messages.
[0179] A different force feedback feature that can be implemented either by the force feedback device or the host
computer is "pressure clicks" or " click surfaces." As described above, these are surfaces, objects or regions in a
graphical environment which have additional functionality based on the position of the cursor in relation to the object.
Thus, a border of a window can be designated a click surface such that if the user overcomes a resistive force and
moves the cursor (or user object) over a threshold distance into the border, a function is activated. The function can
be scrolling a document in the window, closing the window, expanding the window size, etc. A similar click surface can
be used on an icon or button to select or activate the icon or button.
[0180] The force feedback device can implement click surfaces to ease computational burden on the host computer.
The local microprocessor can check whether the cursor has moved into an click surface or region and output the
resistive force as appropriate. When the cursor is moved past the threshold distance, the microprocessor reports to
the host computer that the action associated with the click surface has been made; for example, the microprocessor
reports that a button press or double click has been performed by the user. The host receives a signal that a button
has been pressed and acts accordingly. Or, the microprocessor reports that a particular click surface has been spe-
cifically selected, where the host can interpret the selection and implement an associated function.
[0181] The host may also implement at least a portion of the functionality of click surfaces. The microprocessor can
output the resistive (or other type) force associated with the click surface, but only reports the user object position to
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the host. When the host determines that the cursor (or user object) has moved beyond the threshold distance, the host
implements the function associated with the click surface (scrolling text, closing a window, etc.) As with clipping, it is
preferred that the translation layer handle this functionality by modifying data accordingly before passing it to the context
driver and API.
[0182] While this invention has been described in terms of several preferred embodiments, it is contemplated that
alterations, permutations and equivalents thereof will become apparent to those skilled in the art upon a reading of the
specification and study of the drawings. For example, although examples in a GUI are described, the embodiments
herein are also very well suited for other two-dimensional graphical environments and especially three-dimensional
graphical environments, where a user would like fine positioning in manipulating 3-D objects and moving in a 3-D
space. For example, the isometric limits are quite helpful to move a cursor or controlled object in a 3-D environment
further than physical limits of the interface device allow.
[0183] In addition, many different types of forces can be applied to the user object 12 in accordance with different
graphical objects or regions appearing on the computer's display screen and which may be mouse-based force sen-
sations or cursor-based force sensations. Also, the various features of the embodiments herein can be combined in
various ways to provide additional embodiments of the present invention. In addition, many types of user objects and
mechanisms can be provided to transmit the forces to the user, such as a mouse, trackball, joystick, stylus, or other
objects. Furthermore, certain terminology has been used for the purposes of descriptive clarity, and not to limit the
present invention.

Claims

1. A method for interfacing a multi-tasking graphical environment implemented on a host computer (18) with a force
feedback interface device (12, 14) coupled to said host computer, wherein a plurality of application programs are
running in said multi-tasking environment, the method comprising:

creating a context, i.e. a group or set of effects and events, (214) associated with each application program
running in said multi-tasking graphical environment, said contexts being allocated in memory of said host
computer (18);

receiving force effect commands from said application programs, said force effect commands commanding
said force feedback interface device (12, 14) to output a force effect, i.e. a standardized forces, (222) specified
by said command;

storing said force effect commands into said contexts, wherein each of said contexts is associated with one
of said application programs running on said host computer (18), and wherein each of said force effect com-
mands is stored in a context associated with said application program that sent said force effect command; and

sending said force effect commands in said context of an application program to said force feedback device
(12, 14) when said application program is active in said multi-tasking environment.

2. A method as recited in claim 1 wherein said force effect commands in said contexts of inactive application programs
are not sent to said force feedback device (12, 14).

3. A method as recited in claim 2 wherein when said application program becomes inactive and a new application
program becomes active, new force effect commands are sent to said force feedback device (12, 14) to replace
said force effect commands, said new force effect commands being included in a context associated with said new
application program.

4. A method as recited in claim 1 further comprising a step of sending force effect commands in a context associated
with a background application program to said force feedback interface device (12, 14), wherein said background
application program is not active in said multi-tasking environment, such that said force feedback device may
output forces based on force effects from said active application program or said background application program.

5. A method as recited in claim 4 wherein only said background application program may send said force effect
commands to said force feedback interface device (12, 14) when inactive.

6. A method as recited in claim 1 wherein said contexts further include at least one event that can be triggered by
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said force feedback device (12, 14), wherein said event includes conditions based on interactions of a cursor in
said graphical environment such that when said conditions are met, an event notification is sent to an application
program associated with said event.

7. A method as recited in claim 1 wherein said force effect commands include commands for a spring, a damper, and
a vibration.

8. A method as recited in claim 1 wherein said multi-tasking graphical environment includes a Windows® operating
system environment.

9. A method as recited in claim 8 wherein said force effect commands are created as effect objects in an application
programming interface in said Windows® operating system environment, and wherein said effect objects are sent
to said force feedback device (12, 14) when created by said active application program.

Patentansprüche

1. Verfahren zur Verbindung einer auf einem Host-Computer (18) implementierten Multitasking-Grafikumgebung mit
einer an den Host-Computer angeschlossenen Kraftrückkopplung-Schnittstellenvorrichtung (12, 14), wobei eine
Vielzahl von Anwendungsprogrammen in der Multitasking-Umgebung läuft, und das Verfahren umfasst:

- Erstellen eines Kontextes, d. h. einer Gruppe oder Menge von mit jedem in der Multitasking-Grafikumgebung
laufenden Anwendungsprogramm verbundenen Effekten und Ereignissen (214), wobei die Kontexte im Spei-
cher des Host-Computers (18) zugeordnet werden;

- Empfangen von Krafteffekt-Steuerbefehlen von den Anwendungsprogrammen, wobei die Krafteffekt-Steuer-
befehle die Kraftrückkopplung-Schnittstellenvorrichtung (12, 14) ansteuern, um einen durch den Steuerbefehl
spezifizierten Krafteffekt, d. h. standardisierte Kräfte (222), auszugeben;

- Einspeichern der Krafteffekt-Steuerbefehle in die Kontexte, wobei jeder der Kontexte mit einem der auf dem
Host-Computer (18) laufenden Anwendungsprogramme verbunden wird und wobei jeder der Krafteffekt-Steu-
erbefehle in einem Kontext gespeichert wird, der mit dem Anwendungsprogramm verbunden ist, das den
Krafteffekt-Steuerbefehl gesendet hat; und

- Senden der Krafteffekt-Steuerbefehle in dem Kontext eines Anwendungsprogramms an die Kraftrückkopp-
lungsvorrichtung (12, 14), wenn das Anwendungsprogramm in der Multitasking-Umgebung aktiv ist.

2. Verfahren nach Anspruch 1, wobei die Krafteffekt-Steuerbefehle in den Kontexten inaktiver Anwendungsprogram-
me nicht an die Kraftrückkopplungsvorrichtung (12, 14) gesendet werden.

3. Verfahren nach Anspruch 2, wobei wenn das Anwendungsprogramm inaktiv wird und ein neues Anwendungspro-
gramm aktiv wird, neue Krafteffekt-Steuerbefehle an die Kraftrückkopplungsvorrichtung (12, 14) gesendet werden,
um die Krafteffekt-Steuerbefehle zu ersetzen, wobei die neuen Krafteffekt-Steuerbefehle in einen mit dem neuen
Anwendungsprogramm verbundenen Kontext einbezogen werden.

4. Verfahren nach Anspruch 1, das ferner einen Schritt Senden von Krafteffekt-Steuerbefehlen in einem mit einem
Hintergrund-Anwendungsprogramm verbundenen Kontext an die Kraftrückkopplung-Schnittstellenvorrichtung
(12, 14) umfasst, wobei das Hintergrund-Anwendungsprogramm in der Multitasking-Umgebung nicht aktiv ist, so
dass die Kraftrückkopplungsvorrichtung auf Krafteffekten von dem aktiven Anwendungsprogramm oder dem Hin-
tergrund-Anwendungsprogramm basierende Kräfte ausgeben kann.

5. Verfahren nach Anspruch 4, wobei nur das Hintergrund-Anwendungsprogramm die Krafteffekt-Steuerbefehle an
die Kraftrückkopplung-Schnittstellenvorrichtung (12, 14) senden kann, wenn es inaktiv ist.

6. Verfahren nach Anspruch 1, wobei die Kontexte ferner zumindest ein Ereignis einschließen, das von der Kraft-
rückkopplungsvorrichtung (12, 14) ausgelöst werden kann, wobei das Ereignis auf Dialogeingriffen eines Positi-
onsanzeigers in der grafischen Umgebung basierende Bedingungen einbezieht, so dass bei Erfüllen der Bedin-
gungen eine Ereignismeldung an ein mit dem Ereignis verbundenes Anwendungsprogramm gesendet wird.

7. Verfahren nach Anspruch 1, wobei die Krafteffekt-Steuerbefehle Steuerbefehle für eine Feder, einen Dämpfer und
eine Vibration einschließen.
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8. Verfahren nach Anspruch 1, wobei die Multitasking-Grafikumgebung eine Windows®-Betriebssystemumgebung
einschließt.

9. Verfahren nach Anspruch 8, wobei die Krafteffekt-Steuerbefehle als Effektobjekte in einer Anwendungsprogram-
mierung-Schnittstelle in der Windows®-Betriebssystemumgebung erstellt werden und wobei die Effektobjekte bei
Erstellung durch das aktive Anwendungsprogramm an die Kraftrückkopplungsvorrichtung (12, 14) gesendet wer-
den.

Revendications

1. Procédé de réalisation d'interface pour un environnement graphique multitâche mis en oeuvre sur un ordinateur
principal (18) au moyen d'un dispositif d'interface de renvoi de force (12, 14) couplé audit ordinateur principal, où
une pluralité de programmes d'application tournent dans ledit environnement multitâche, le procédé comprenant
les opérations suivantes :

créer un contexte, à savoir un groupe ou ensemble d'effets et d'événements (214), associé à chaque pro-
gramme d'application tournant dans ledit environnement graphique multitâche, lesdits contextes étant affectés
dans la mémoire dudit ordinateur principal (18) ;
recevoir des instructions d'effet de force de la part desdits programmes d'application, lesdites instructions
d'effet de force donnant instruction audit dispositif d'interface (12, 14) de délivrer un effet de force, à savoir
des forces normalisées, (222) spécifié par ladite instruction ;
stocker lesdites instructions d'effet de force dans lesdits contextes, où chacun desdits contextes est associé
à l'un desdits programmes d'application qui tournent dans ledit ordinateur principal (18), et où chacune desdites
instructions d'effet de force est stockée dans un contexte associé avec ledit programme d'application qui a
envoyé ladite instruction d'effet de force ; et
envoyer lesdites instructions d'effet de force présentes dans ledit contexte d'un programme d'application audit
dispositif de renvoi de force (12, 14) lorsque ledit programme d'application est actif dans ledit environnement
multitâche.

2. Procédé selon la revendication 1, où lesdites instructions d'effet de force présentes dans lesdits contextes de
programmes d'application inactifs ne sont pas envoyées audit dispositif de renvoi de force (12, 14).

3. Procédé selon la revendication 2, où lorsque ledit programme d'application devient inactif et qu'un nouveau pro-
gramme d'application devient actif, de nouvelles instructions d'effet de force sont envoyées audit dispositif de
renvoi de force (12, 14) afin de remplacer lesdites instructions d'effet de force, les nouvelles instructions d'effet
de force étant incluses dans un contexte qui est associé audit nouveau programme d'application.

4. Procédé selon la revendication 1, comprenant en outre l'opération qui consiste à envoyer des instructions d'effet
de force se trouvant dans un contexte associé à un programme d'application en arrière-plan audit dispositif d'in-
terface de renvoi de force (12, 14), où ledit programme d'application en arrière-plan n'est pas actif dans ledit
environnement multitâche, de sorte que ledit dispositif de renvoi de force peut délivrer des forces qui sont basées
sur des effets de force venant dudit programme d'application actif ou dudit programme d'application en arrière-plan.

5. Procédé selon la revendication 4, où seul ledit programme d'application en arrière-plan peut envoyer les instruc-
tions d'effet de force audit dispositif d'interface de renvoi de force (12, 14) lorsqu'il est inactif.

6. Procédé selon la revendication 1, où lesdits contextes comprennent en outre au moins un événement qui peut
être déclenché par ledit dispositif de renvoi de force (12, 14), où ledit événement comporte des conditions basées
sur les interactions d'un curseur dans ledit environnement graphique de sorte que, lorsque lesdites conditions sont
satisfaites, une notification d'événement est envoyée à un programme d'application associé audit événement.

7. Procédé selon la revendication 1, où lesdites instructions d'effet de force comprennent des instructions se rappor-
tant à un ressort, un amortisseur et une vibration.

8. Procédé selon la revendication 1, où ledit environnement graphique multitâche comporte un environnement du
système d'exploitation Windows®.
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9. Procédé selon la revendication 8, où lesdites instructions d'effet de force sont créées sous forme d'objets d'effet
dans une interface de programmation d'application se trouvant dans l'environnement du système d'exploitation
Windows®, et où lesdits objets d'effet sont envoyés audit dispositif de renvoi de force (12, 14) lors de leur création
par ledit programme d'activation actif.
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