

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) **EP 1 036 658 A2**

(12)

(43) Veröffentlichungstag:

20.09.2000 Patentblatt 2000/38

(21) Anmeldenummer: 00103319.0

(22) Anmeldetag: 18.02.2000

(51) Int. Cl.⁷: **B41F 7/36**, B41F 7/26

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

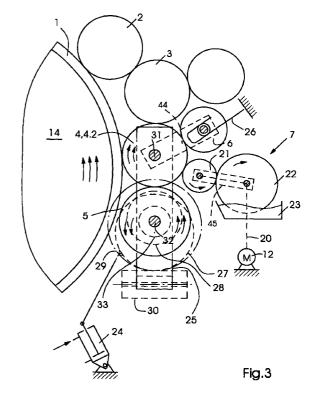
(30) Priorität: 16.03.1999 DE 19911568

(71) Anmelder:

Heidelberger Druckmaschinen Aktiengesellschaft 69115 Heidelberg (DE) (72) Erfinder:

EUROPÄISCHE PATENTANMELDUNG

- Eltner, Bruno 69124 Heidelberg (DE)
- Müller, Bernd
 69226 Nussloch (DE)
- Zuber, Mathias
 74921 Helmstadt-Bargen (DE)


(54) Verfahren zum Einfeuchten einer Flachdruckform und Feuchtwerk einer Flachdruckmaschine

(57) Die Erfindung betrifft ein Verfahren zur Einfeuchtung einer rotierenden Flachdruckform (1) über eine die Flachdruckform (1) indirekt einfeuchtende Farbauftragswalze (2) und eine dabei an letzterer anliegende Verbindungswalze (3), an welcher eine die Flachdruckform (1) einfeuchtende Feuchtauftragswalze (4) anliegt.

Das Verfahren zeichnet sich dadurch aus, daß die Feuchtauftragswalze (4) bei der Einfeuchtung mit von der Umfangsgeschwindigkeit der Flachdruckform (1) abweichender Umfangsgeschwindigkeit rotiert.

Die Erfindung betrifft weiterhin ein Feuchtwerk (7) einer Flachdruckmaschine (8) mit einer ersten Feuchtwerkswalze (5), welche ausschließlich an einer Feuchtauftragswalze (4) anliegt.

Das Feuchtwerk (7) zeichnet sich dadurch aus, daß die Feuchtauftragswalze (4) mittels einer Verstelleinrichtung (9) aus einer Abstandsstellung (4.1) in eine Anlagestellung (4.2) an eine Verbindungswalze (3) verlagerbar ist und daß die erste Feuchtwerkswalze (5) von einem Rotationsantrieb (10) formschlüssig antreibbar ist und bei in der Anlagestellung (4.2) befindlicher Feuchtauftragswalze (4) an letzterer anliegt.

25

Beschreibung

[0001] Die Erfindung bezieht sich auf ein Verfahren zur Einfeuchtung einer rotierenden Flachdruckform über eine die Flachdruckform indirekt einfeuchtende Farbauftragswalze und eine an dieser anliegende Verbindungswalze, an welcher eine die Flachdruckform einfeuchtende Feuchtauftragswalze anliegt, nach dem Oberbegriff von Anspruch 1. Die Erfindung bezieht sich weiterhin auf ein Feuchtwerk einer Flachdruckmaschine, mit einer ersten Feuchtwerkswalze, welche ausschließlich an einer Feuchtauftragswalze anliegt, nach dem Oberbegriff von Anspruch 7.

[0002] Es sind zwei grundsätzliche Möglichkeiten zur Einfeuchtung von Flachdruckformen bekannt, das ist einerseits der direkte Auftrag des puren Feuchtmittels über eine Feuchtauftragswalze und andererseits der indirekte Auftrag des Feuchtmittels in Form einer Druckfarbe-Feuchtmittel-Emulsion über eine Feuchtauftragswalze oder eine Farbauftragswalze.

[0003] Moderne Offsetdruckmaschinen weisen Farb- und Feuchtwerke auf, bei deren gekoppelten Betrieb das Feuchtmittel teilweise indirekt über eine Feuchtauftragswalze und teilweise indirekt über eine der Feuchtauftragswalze in Zylinderdrehrichtung des Druckformzylinders unmittelbar nachfolgende Farbauftragswalze auf die Druckform aufgetragen wird und die Feuchtauftragswalze eine Feuchtmittel-Druckfarbe-Emulsion auf die Druckform aufträgt. Der indirekte Feuchtmittelauftrag wird durch eine die Farbauftragswalze mit der Feuchtauftragswalze koppelnde Verbindungswalze ermöglicht.

Beispielsweise ist ein Feucht-Farbwerk einer solchen Offset-Druckmaschine in dem DE 87 16 847 U1 beschrieben. Das Feucht-Farbwerk weist zur indirekten Einfeuchtung eine Farbauftragswalze und eine Feuchtauftragswalze auf Eine Farb-Reibwalze bildet eine der Farbauftragswalze und der Feuchtauftragswalze zwischengeordnete Verbindungswalze. Zur Art des rotati-Antriebes einer ausschließlich an Feuchtauftragswalze anliegenden Feuchtwalze, das heißt ob diese z. B. über Friktion von der Feuchtauftragswalze angetrieben wird, und zur Umfangsgeschwindigkeit der Feuchtauftragswalze wird in dem Gebrauchsmuster keine Aussage getroffen. Nachteilig an diesem FeuchtFarbwerk ist, daß die damit eingefeuchtete Druckform, insbesondere beim Bedrucken fusseliger Bedruckstoffe, vergleichsweise häufig gewaschen werden muß, weil sich infolge eines fehlenden Abrollschlupfes zwischen der Feuchtauftragswalze und der Druckform sogenannte Butzen im Druckbild verursachende freie Papierfasern auf der Druckform absetzen. Das häufige Waschen führt bei Druckaufträgen hoher Auflage zu Druckunterbrechungen, welche iedes Mal mit Wiederanfahrmakulatur verbunden sind.

[0005] Ein in der DE 31 46 223 C2 beschriebenes Feucht- und Farbwerk ist ein weiteres Beispiel für die Ausbildung derartiger Offset-Druckmaschinen. Mit die-

sem Feucht- und Farbwerk läßt sich das zuvor beschriebene Problem nicht lösen, weil sich die hier ungewöhnlicherweise als Farbauftragswalze bezeichnete Feuchtauftragswalze mit Platten zylinderumfangsgeschwindigkeit drehen muß, wie dies in der Patentschrift ausdrücklich betont wird.

[0006] In dem DE 93 05 742 U1 ist ferner ein Feuchtwerk für Offset-Druckmaschinen beschrieben, dessen Auftragswalze zwar mit einer Differenzgeschwindigkeit zu einem Plattenzylinder antreibbar ist, jedoch nicht an einer Verbindungswalze anliegt, so daß sich dieses Feuchtwerk nur zur direkten Feuchtung über die Auftragswalze und nicht zur indirekten Feuchtung nutzen läßt. Auf der Auftragswalze bildet sich durch Farbabnahme von der Druckform eine Druckfarbe-Feuchtmittel-Emulsion.

[0007] Zur Erzielung einer guten Druckqualität ist nicht nur ein schablonierfreies Einfärben sondern auch ein schablonierfreies Einfeuchten der Druckform anzustreben. Insbesondere bei die Druckform indirekt einfeuchtenden Feuchtwerken bestehen diesbezüglich höchste Anforderungen. Durch eine ausschließlich auf der Feuchtauftragswalze abrollende Feuchtwerkswalze kann man bei der Konstruktion von Feuchtwerken diesen Anforderungen entsprechen.

[8000] Ein in dem DE 91 10 345 beschriebenes Feuchtwerk erfüllt die Anforderungen hinsichtlich eines schablonierfreien Feuchtmittelauftrages nur bei reiner Direktfeuchtung. Bei dieser Feuchtwerksschaltung liegt eine Feuchtauftragswalze an einer über ihren Achsschenkel über Zahnräder und somit formschlüssig angetriebene Feuchtreibwalze an und ist von einer nächstliegenden Farbwerkswalze getrennt. Ungünstig an diesem Feuchtwerk ist, daß eine Feuchtwerksschaltung für die indirekte Feuchtung eines Plattenzylinders nicht vorgesehen ist. Die Anstellung der Feuchtauftragswalze an die nächstliegende Farbwerkswalze dient entweder zur Nutzung der Feuchtauftragswalze als ausschließlich Druckfarbe auf den Plattenzylinder auftragende Auftragswalze oder als Waschschaltung. Zudem ist eine Anstellung der Feuchtauftragswalze an die nächstliegende Farbwerkswalze konstruktiv bedingt zwangsweise mit einer Abstellung der Feuchtauftragswalze von der gestellfest in einem Seitengestell gelagerten Feuchtreibwalze verbunden, so daß eine schablonierfreie indirekte Feuchtung mit diesem Feuchtwerk auch aus diesem Grund nicht möglich ist.

[0009] In der DE 29 02 228 C2 sind ferner ein Farbwerk und ein Feuchtwerk beschrieben, bei denen sich eine Farbwerkswalze bei indirekter Feuchtung mit einer etwa der Oberflächengeschwindigkeit des Plattenzylinders entsprechenden Oberflächengeschwindigkeit dreht und die Oberflächengeschwindigkeit einer anliegenden Feuchtauftragswalze diktiert, welche somit ohne Schlupf auf dem Plattenzylinder abrollt. Nur bei von der Farbzuführung getrennter reiner Direktfeuchtung läuft die Feuchtauftragswalze mit einer Umfangsgeschwindigkeit um, welche etwa 10 % über oder unter

der Umfangsgeschwindigkeit des Plattenzylinders liegt. Sehr nachteilig an diesem Feuchtwerk ist, daß bei diesem keine den Feuchtmittelfilm auf der Feuchtauftragswalze glättende und dazu ausschließlich an dieser Feuchtauftragswalze anliegende Feuchtwerkswalze vorgesehen ist. Einer das Feuchtmittel von einer Wasserkastenwalze auf die Feuchtauftragswalze übertragenden Feuchtwerkswalze fehlt die zur wirksamen Verhinderung eines Schablonierens erforderliche konstruktive Voraussetzung, welche das Anliegen nur an der Feuchtauftragswalze ist.

[0010] Es ist die Aufgabe der Erfindung, ein Verfahren zur makulaturreduzierten indirekten Einfeuchtung einer Flachdruckform anzugeben und ein die Flachdruckform praktisch schablonierfrei einfeuchtendes Feuchtwerk zu schaffen, mit welchem sich das Verfahren durchführen läßt.

[0011] Die gestellte Aufgabe wird durch ein Feuchtungsverfahren mit den Merkmalen des Anspruches 1 und durch ein Feuchtwerk mit den Merkmalen des Anspruches 7 gelöst.

[0012] Das erfindungsgemäße Verfahren zur Einfeuchtung einer rotierenden Flachdruckform über eine die Flachdruckform indirekt einfeuchtende Farbauftragswalze und eine dabei an letzterer anliegende Verbindungswalze, an welcher eine die Flachdruckform einfeuchtende Feuchtauftragswalze anliegt, zeichnet sich dadurch aus, daß die Feuchtauftragswalze bei der Einfeuchtung mit von der Umfangsgeschwindigkeit der Flachdruckform abweichender Umfangsgeschwindigkeit rotiert.

[0013] Durch die Geschwindigkeitsdifferenz zwischen den Umfangsgeschwindigkeiten der Flachdruckform und der Feuchtauftragswalze werden Butzen im Druckbild verursachende freie Papierfasern und dergleichen durch die Feuchtauftragswalze von der Flachdruckform abgenommen, so daß die Flachdruckform nur noch selten gewaschen werden muß und somit vorteilhafterweise Wiederanfahrmakulatur vermieden wird. Der Reinigungseffekt ist bei einem gleichzeitigen Auftrag einer Druckfarbe-Feuchtmittel-Emulsion durch die Farbauftragswalze auf die Flachdruckform gegeben. Dazu ist die Verbindungswalze sowohl mit der Farbauftragswalze als auch mit der Feuchtauftragswalze in umfangsseitigem Abrollkontakt, so daß das Feuchtmittel von der Feuchtauftragswalze über die Verbindungswalze auf die Farbauftragswalze gefördert wird und sich mit auf der Farbauftragswalze befindlicher Druckfarbe zu einem für das Drucken optimalen Druckfarbe-Feuchtmittel-Gemisch vermengt. Dabei kann auch über die Feuchtauftragswalze eine indirekte Einfeuchtung der Flachdruckform erfolgen, indem ein Teil der auf der Farbauftragswalze befindlichen Druckfarbe über die Verbindungswalze auf die Feuchtauftragswalze gelangt und zusammen mit dem auf der Feuchtauftragswalze befindlichen Feuchtmittel ebenfalls eine Druckfarbe-Feuchtmittel-Emulsion bildet. In der Regel wird in einem solchen Fall der Druckfarbeanteil der auf der Farbauftragswalze befindlichen Emulsion größer sein als der Druckfarbeanteil der auf der Feuchtauftragswalze befindlichen Emulsion.

[0014] Eine das erfindungsgemäße Verfahren besonders vorteilhaft weiterbildende Verfahrensausgestaltung zeichnet sich dadurch aus, daß eine erste Feuchtwerkswalze bei der Einfeuchtung nur an der Feuchtauftragswalze und sonst an keiner anderen Walze anliegt und dadurch im Gegensatz zu einer an zwei Walzen anliegenden Übertragungswalze besonders gut in der Lage ist, das Feuchtmittel in die auf die Feuchtauftragswalze gelangte Druckfarbe einzuarbeiten und den Feuchtmittelfilm in Umfangsrichtung zu glätten.

[0015] Eine weitere Verfahrensausgestaltung zeichnet sich dadurch aus, daß durch eine seitliche Oszillation der ersten Feuchtwerkswalze eine Glättung des Feuchtmittelfilmes in deren Axialrichtung erfolgt. Auf diese Weise wird ein sogenanntes axiales Schablonieren sehr sicher vermieden und erfolgt eine besonders gründliche Vermengung der auf die Feuchtauftragswalze gelangten Druckfarbe mit dem darauf befindlichen Feuchtmittel zu einer druckgerechten Emulsion.

[0016] weitere Verfahrensausgestaltung Eine zeichnet sich dadurch aus, daß neben der bereits erwähnten ersten Feuchtwerkswalze noch eine weitere Feuchtwerkswalze zur Vergleichmäßigung des auf der Feuchtauftragswalze befindlichen Feuchtmittelfilmes auf der Feuchtwerkswalze abrollt. Diese zusätzliche zweite Feuchtwerkswalze ist, genauso wie die erste Feuchtwerkswalze, keine Ubertragungswalze, sondern liegt nur an einer einzigen Walze, nämlich der Feuchtauftragswalze, an. Es hat sich gezeigt, daß bei einer Nutzung des Farbwerkes, zu welchem die Farbauftragswalze gehört, als ein sogenanntes Kurzfarbwerk, erhöhte Anforderungen an das Einarbeiten des Feuchtmittels in die auf der Feuchtauftragswalze befindliche Druckfarbe bestehen. Im sogenannten Kurzfarbwerksbetrieb werden zur Einfärbung der Flachdruckform nicht alle der insgesamt vorhandenen Farbauftragswalzen des Farbwerkes eingesetzt. Beispielsweise wird nur eine Farbauftragswalze oder werden nur zwei Farbauftragswalzen von insgesamt vorhandenen vier Farbauftragswalzen eingesetzt. Gegenüber einem sogenannten Normalfarbwerksbetrieb des Farbwerkes, bei welchem sämtliche vorhandene Farbauftragswalzen zur Einfärbung genutzt werden, verschieben sich somit die von den Auftragswalzen aufgetragenen prozentualen Druckfarbeanteile. Mit anderen Worten gesagt, wird im Kurzfarbwerksbetrieb von der Feuchtauftragswalze ein höherer Anteil, bezogen auf die insgesamt aufgetragene Druckfarbe, als im Normalfarbwerksbetrieb aufgetragen. Den somit auch erhöhten Anforderungen hinsichtlich des Feuchtmittelauftrages durch die Feuchtauftragswalze im Kurzfarbwerksbetrieb kann durch zwei ausschließlich auf der Feuchtauftragswalze abrollende Feuchtwerkswalzen besonders gut entsprochen wer-

den. Es hat sich weiterhin gezeigt, daß der Einsatz zweier ausschließlich auf der Feuchtauftragswalze abrollender Feuchtwerkswalzen nicht nur im Kurzfarbwerksbetrieb sondern auch im Normalfarbwerksbetrieb und nicht nur bei indirekter Einfeuchtung der Flachdruckform über die Farbauftragswalze sondern auch bei reiner Direkteinfeuchtung der Flachdruckform über die Feuchtauftragswalze zweckmäßig ist. Deshalb ist es günstig, daß bei einer Trennung des Feuchtwerks vom Farbwerk, beispielsweise durch eine Abstandsstellung der Feuchtauftragswalze zur Verbindungswalze, während der direkten Einfeuchtung der Flachdruckform ausschließlich über die Feuchtauftragswalze, sowohl die erste Feuchtwerkswalze als auch die zweite Feuchtwerkswalze in Anlage an der Feuchtauftragswalze verbleibt.

[0017] Eine weitere Verfahrenausgestaltung zeichnet sich dadurch aus, daß zur axialen Glättung des auf der Feuchtauftragswalze befindlichen Feuchtmittelfilmes die zweite Feuchtwerkswalze seitlich oszilliert. In manchen Anwendungsfällen kann zwar die erste Feuchtwerkswalze in Axialrichtung stillstehen, während die zweite Feuchtwerkswalze axial changiert, vorzugsweise changieren jedoch sowohl die erste Feuchtwerkswalze walze als auch die zweite Feuchtwerkswalze gleichzeitig in Axialrichtung. Das sogenannte Axialschablonieren wird auf diese Weise absolut sicher vermieden.

weitere Verfahrensausgestaltung [0018] zeichnet sich dadurch aus, daß die Feuchtauftragswalze nicht in ihrer Axialrichtung changiert. In manchen Anwendungsfällen kann die Feuchtauftragswalze zwar axial changieren, wobei diese Oszillation über axiale Friktionsmitnahme von der axial changierenden ersten Feuchtwerkswalze und/oder der axial changierenden zweiten Feuchtwerkswalze angetrieben sein kann. Es hat sich jedoch gezeigt, daß bei in Axialrichtung stillstehender Feuchtauftragswalze und zumindest einer auf dieser abrollenden und dabei oszillierenden Feuchtreiberwalze ein günstiger Feuchtmittelauftrag auf die Flachdruckform gegeben ist. Der Einsatz von zwei auf der in Axialrichtung stillstehenden Feuchtauftragswalze abrollenden und dabei oszillierenden Feuchtreiberwalzen bewirkt eine hohe Stabilität des Feuchtmittelauftrages auf die Flachdruckform auch bei durch Störgrößen wie z. B. Druckunterbrechungen zwischenzeitlich veränderten Druckbedingungen.

[0019] Das erfindungsgemäße Feuchtwerk einer Flachdruckmaschine, mit einer Feuchtwerkswalze, welche ausschließlich an einer Feuchtauftragswalze anliegt, zeichnet sich dadurch aus, daß die Feuchtauftragswalze mittels einer Verstelleinrichtung aus einer Abstandsstellung in eine Anlagestellung an eine Verbindungswalze verlagerbar ist und daß die Feuchtwerkswalze von einem Rotationsantrieb formschlüssig antreibbar ist und bei in der Anlagestellung befindlicher Feuchtauftragswalze an letzterer anliegt.

[0020] Dieses Feuchtwerk ist besonders gut zur

Durchführung des erfindungsgemäßen Verfahrens geeignet. Bei der indirekten Einfeuchtung einer Flachdruckform bewirkt die nur auf der Feuchtauftragswalze und sonst auf keiner anderen Walze abrollende Feuchtwalze eine Vergleichmäßigung des Feuchtmittelfilmes, so daß ein Schablonieren weitgehend vermieden wird. Die Feuchtauftragswalze befindet sich bei dieser indirekten Einfeuchtung in Abrollkontakt zur Verbindungswalze, so daß das Feuchtmittel von der Feuchtauftragswalze über die Verbindungswalze in das Farbwerk gelangt. An der Verbindungswalze liegt dabei neben der Feuchtauftragswalze auch eine Farbwerkswalze an, welche vorzugsweise die zur indirekten Einfeuchtung der Flachdruckform dienende Farbauftragswalze ist. Soll das Feuchtwerk ausschließlich zur direkten Einfeuchtung der Flachdruckform genutzt werden, ist es möglich, die Feuchtauftragswalze mittels der Verstelleinrichtung von der Verbindungswalze abzustellen, so daß aus dem Feuchtwerk kein Feuchtmittel mehr über die Verbindungswalze in das Farbwerk fließt.

Durch den Antrieb der Feuchtwerkswalze mittels des Rotationsantriebes ergeben sich vorteilhafte konstruktive Ausführungsformen des Feuchtwerkes. Beispielsweise kann neben der Feuchtwerkswalze auch zugleich die Feuchtauftragswalze von dem Rotationsantrieb angetrieben werden. Dazu kann der Rotationsantrieb die Feuchtwerkswalze über ein Getriebe rotativ antreiben, wobei die Feuchtwerkswalze die Feuchtauftragswalze ausschließlich über Friktionsmitnahme rotativ antreibt. Dazu kann die Umfangsmantelfläche der Feuchtwerkswalze aufgerauht sein und beispielsweise mit näpfchenförmigen Vertiefungen und/oder kalottenförmigen Erhebungen versehen sein. Die Feuchtauftragswalze hat in diesem Fall eine weiche und beispielsweise aus Gummi bestehende Umfangsmantelfläche. Eine zweite Variante des gemeinsamen Antriebes der Feuchtwerkswalze und der Feuchtauftragswalze durch den Rotationsantrieb besteht darin, daß nicht nur die Feuchtwerkswalze über ein Getriebe sondern auch die Feuchtauftragswalze über ein Getriebe vom Rotationsantrieb angetrieben wird. Vorzugsweise ist ein drehfest mit der Feuchtauftragswalze verbundenes und koaxial zu dieser angeordnetes Zahnrad in kämmenden Eingriff mit einem drehfest mit der Feuchtwerkswalze verbundenen und koaxial zu letzterer angeordneten weiteren Zahnrad, welches auf einer vom Rotationsantrieb angetriebenen Achse sitzt oder sich in kämmenden Eingriff mit einem vom Rotationsantrieb angetriebenen dritten Zahnrad befindet.

[0022] Der die Feuchtwerkswatze rotativ antreibende Rotationsantrieb kann bei allen genannten Antriebsvarianten der Feuchtauftragswalze, d. h. über Friktionsmitnahme oder mittels eines Getriebes, ein die Flachdruckform rotativ antreibender elektromotorischer Rotationsantrieb der Flachdruckmaschine oder ein zu diesem zusätzlicher elektromotorischer Einzelantrieb des Feuchtwerks sein. Im erstgenannten Fall ist der Rotationsantrieb ein Elektromotor, welcher über ein

Getriebe den Druckformzylinder rotiert, welcher die mit dem Feuchtwerk einzufeuchtende Flachdruckform trägt. Dieser Elektromotor kann beispielsweise ein mehrere Druckwerke der Flachdruckmaschine zugleich rotativ antreibender Hauptantrieb der Flachdruckmaschine sein. Im zweitgenannten Fall weist die Flachdruckmaschine neben dem Elektromotor zum Antreiben des Druckformzylinders mit der Flachdruckform noch einen weiteren Elektromotor auf, mittels welchem die Feuchtwerkswalze formschlüssig antreibbar ist und auch die Feuchtauftragswalze antreibbar ist. Mittels einer elektronischen Steuereinrichtung kann der Einzelantrieb in Abstimmung zum den Druckformzylinder antreibenden Rotationsantrieb ansteuerbar und beispielsweise bei einer Veränderung der Druckgeschwindigkeit der Richtung der Veränderung, d. h. einer Erhöhung oder Absenkung, entsprechend nachgeführt sein. Zusätzlich zu dieser zum Rotationsantrieb der Flachdruckform abgestimmten Ansteuerung des Einzelantriebes des Feuchtwerkswalze kann dieser mittels der elektronischen Steuereinrichtung unabhängig vom Rotationsantrieb der Flachdruckform ansteuerbar sein. Beispielsweise können an der elektronischen Steuereinrichtung Prozentualwerte einstellbar oder programmierbar sein, die auf die Umfangsgeschwindigkeit der Flachdruckform bezogen sind und welche die Geschwindigkeitsdifferenz der Umfangsgeschwindigkeit der Feuchtauftragswalze und der Feuchtwerkswalze zur Umfangsgeschwindigkeit der Flachdruckform beschreiben.

[0023] Eine das erfindungsgemäße Feuchtwerk weiterbildende vorteilhafte Ausführungsform zeichnet sich dadurch aus, daß die Verstelleinrichtung derart ausgebildet ist, daß bei der Anstellung der Feuchtauftragswalze an die Verbindungswalze eine gleichzeitige Verlagerung der Feuchtwerkswalze gewährleistet ist, so daß deren umfangsseitiger Kontakt zur Feuchtauftragswalze nicht verlorengeht. Ebenso ist die Feuchtwerkswalze bei der Abstellung der Feuchtauftragswalze von der Verbindungswalze in permanenter Anlage an der Feuchtauftragswalze mit letzterer mitführbar. Es gehören aber auch Feuchtwerke in den Bereich der Erfindung, deren Verstelleinrichtung derart ausgebildet ist, daß zuerst eine Verlagerung der Feuchtauftragswalze aus deren Abstandsstellung zur Verbindungswalze in deren Anlagestellung an der Verbindungswalze und nachfolgend eine Anstellung der Feuchtwerkswalze an die Feuchtauftragswalze erfolgt, wobei sich die Feuchtauftragswalze bei der Verlagerung aus der Abstandsstellung in die Anlagestellung an der Verbindungswalze zeitweise von der Feuchtwerkswalze löst. Die Feuchtwerkswalze ist in diesem Fall der Verlagerung der Feuchtauftragswalze nachfolgend der Feuchtauftragswalze nachführbar. Es hat sich jedoch gezeigt, daß es günstiger ist, die Feuchtauftragswalze und die Feuchtwerkswalze als eine Einheit zu verlagern. Dies kann vorteilhafterweise während des Einfeuchtens der rotierenden Flachdruckform mittels des Feuchtwerkes erfolgen, so daß bei laufender Feuchtung eine Umstellung der Flachdruckmaschine von einer rein direkten Einfeuchtung über die Feuchtauftragswalze bei vom Feuchtwerk entkoppeltem Farbwerk in eine indirekte Feuchtung über die Farbauftragswalze bei über die Verbindungswalze mit dem Feuchtwerk verbundenem Farbwerk möglich ist. Bei während der Verlagerung permanent in Anlage an der Feuchtauftragswalze gehaltener Feuchtwerkswalze werden somit Schablonierstreifen vermieden, welche in manchen Fällen durch ein nachfolgendes Aufsetzen der Feuchtwerkswalze auf die bereits in der Anlagestellung befindliche Feuchtauftragswalze zu befürchten wären.

[0024] Eine weitere Ausführungsform des Feuchtwerkes zeichnet sich dadurch aus, daß neben der bereits erwähnten ersten Feuchtwerkswalze des Feuchtwerkes dieses noch eine zweite Feuchtwerkswalze umfaßt, welche ebenso wie die erste Feuchtwerkswalze nur an der Feuchtauftragswalze und sonst an keiner anderen Walze anliegt. Ein derart ausgebildetes Feuchtwerk ist insbesondere zur Durchführung von einer das eifindungsgemäße Verfahren weiterbildenden und in diesem Zusammenhang bereits beschriebenen Verfahrensausgestaltung geeignet.

[0025] Eine weitere Ausführungsform des Feuchtwerks zeichnet sich dadurch aus, daß zur Anstellung der Feuchtauftragswalze an die Verbindungswalze die Feuchtauftragswalze, die erste Feuchtwerkswalze und die zweite Feuchtwerkswalze mittels der Verstelleinrichtung gleichzeitig verlagerbar sind, ohne daß der umfangsseitige Kontakt der ersten Feuchtwerkswalze zur Feuchtauftragswalze und der zweiten Feuchtwerkswalze zur Feuchtauftragswalze bei der Verlagerung verlorengeht. Diese Variante ist besonders Ankoppelung des Feuchtwerkes an das Farbwerk bei laufender Einfeuchtung der Flachdruckform durch das Feuchtwerk vorteilhaft, weil mit einem solcherart ausgebildeten Feuchtwerk sowohl durch die erste Feuchtwerkswalze verursachte etwaige Aufsetzstreifen als auch durch die zweite Feuchtwerkswafze verursachte etwaige Aufsetzstreifen auf der Feuchtauftragswalze sicher vermieden werden. Die Feuchtauftragswalze, die erste Feuchtwerkswalze und die zweite Feuchtwerkswalze können in einem gemeinsamen, z. B. lagerplattenförmigen Walzenträger jeweils drehbar gelagert sein, wobei durch Verstellung des Walzenträgers, beispielsweise durch ein Schwenken des Walzenträgers, die Feuchtauftragswalze aus der Abstellstellung in die Antagestellung an der Verbindungswalze stellbar ist und der Walzenträger die erste Feuchtwerkswalze im Dauerkontakt zur Feuchtauftragswalze und die zweite Feuchtwerkswalze ebenfalls im Dauerkontakt zur Feuchtauftragswalze hält. In manchen Anwendungsfällen ist auch ein der Verlagerung der Feuchtauftragswalze aus Abstellstellung in die Anlagestellung an der Verbindungswalze nachfolgendes Anstellen der ersten Feuchtwerkswalze und/oder der zweiten Feuchtwerkswalze an die bereits in die Anlagestellung verstellte

10

Feuchtauftragswalze möglich.

[0026] Eine weitere Ausführungsform zeichnet sich dadurch aus, daß die Verstelleinrichtung aus einem Exzenterlager besteht. Zusätzlich kann die Verstelleinrichtung einen fernsteuerbaren Stellantrieb umfassen, mittels welchem das Exzenterlager zur Verlagerung der Feuchtauftragswalze an die Verbindungswalze und zur Abstellung der Feuchtauftragswalze von der Verbindungswalze verdrehbar ist. Das Exzenterlager beansprucht wenig Bauraum und ist beispielsweise in der konstruktiv einfachen Ausführung als Exzenterbüchse kostengünstig herstellbar.

Eine weitere Ausführungsform zeichnet sich [0027] dadurch aus, daß die auf der Flachdruckform und auf der Verbindungswalze abrollende Feuchtauftragswalze bei der Einfeuchtung der Flachdruckform mit von der Umfangsgeschwindigkeit der Flachdruckform abweichender Umfangsgeschwindigkeit vom Rotationsantrieb antreibbar ist. Ein somit zwischen der Flachdruckform und der Feuchtauftragswalze wirksamer Abrollschlupf bewirkt eine Reinigung der Flachdruckform, indem fusselige Papierfasern durch die Feuchtauftragswalze von der Flachdruckform abgenommen werden. Dies ist bei über die Verbindungswalze mit dem Farbwerk verbundenem Feuchtwerk möglich, so daß diese Druckformreinigung während der indirekten Einfeuchtung der Flachdruckform über die Farbauftragswalze, welche dazu über die Verbindungswalze mit Feuchtmittel aus dem Feuchtwerk versorgt wird, erfolgt. Vorzugsweise ergibt sich der Schlupf dadurch, daß der Rotationsantrieb die Feuchtauftragswalze mit einer relativ zur Umfangsgeschwindigkeit der Flachdruckform geringeren Umfangsgeschwindigkeit antreibt. Wie bereits im Zusammenhang mit dem erfindungsgemäßen Verfahren erwähnt, kann die Feuchtauftragswalze vom Rotationsantrieb über ein formschlüssiges Getriebe antreibbar sein. Wie ebenfalls bereits erwähnt, kann die Feuchtauftragswalze mittels Friktionsmitnahme durch die erste Feuchtwerkswalze antreibbar sein, welche dazu wiederum vom Rotationsantrieb über ein formschlüssiges Getriebe antreibbar sein kann.

[0028] Das Verfahren ist vorzugsweise für die Einfeuchtung einer im Offsetdruckverfahren druckenden Flachdruckform geeignet und kann auch zur Einfeuchtung einer im direkten Flachdruck (Dilitho) druckenden Flachdruckform verwandt werden. Die Flachdruckmaschine kann eine Dilitho-Rotationsdruckmaschine sein und ist vorzugsweise eine Offset-Rotationsdruckmaschine, mittels welcher eine Bedruckstoffbahn oder Bedruckstoffbögen bedruckbar sind.

[0029] Die Erfindung wird nachfolgend anhand eines bevorzugten Ausführungsbeispieles mit Bezug auf die Zeichnung näher erläutert.

[0030] In der Zeichnung zeigt:

Fig. 1 Eine Offset-Rotationsdruckmaschine mit mehreren gleichartig aufgebauten Druckwer-

ken, denen jeweils ein Farbwerk und ein Feuchtwerk zugeordnet ist,

Fig. 2 das eine Flachdruckform direkt einfeuchtende Feuchtwerk,

Fig. 3 das die Flachdruckform sowohl über die Feuchtauftragswalze als auch über eine Farbauftragswalze mit einer Druckfarbe-Feuchtmittel-Emulsion indirekt einfeuchtende Feuchtwerk und

Fig. 4 eine mit der Fig. 2 korrespondierende Seitenansicht des Feuchtwerkes, in welcher eine Verstelleinrichtung zur gemeinsamen Verlagerung einer Feuchtauftragswalze und einer Feuchtwerkswalze detailliert dargestellt ist.

In Fig. 1 ist eine als Bogenoffset-Rotations-[0031] druckmaschine ausgebildete Flachdruckmaschine 8 mit mindestens einem Druckwerk 13 dargestellt. Das Druckwerk 13 besteht aus einem Druckformzylinder 14 mit darauf aufgespannter Flachdruckform 1, einem bedruckstofführenden Gegendruckzylinder 16 sowie einen das Druckfarbebild von der Flachdruckform 1 auf den Bedruckstoff übertragenden Gummituchzylinder 15. Zur Einfärbung der Flachdruckform 1 ist dieser ein als Heberfarbwerk ausgebildetes Farbwerk 42 mit einer die Flachdruckform 1 bei jeder Druckformrotation zuerst einfärbenden Farbauftragswalze 2 und drei weiteren, der Farbauftragswalze in Zylinderrotationsrichtung nachgeordneten Farbauftragswalzen zugeordnet. Zur Einfeuchtung der Flachdruckform 1 ist dieser ein Feuchtwerk 7 zugeordnet, welches sich wahlweise mit dem Farbwerk 42 verbinden oder von diesem trennen läßt. Bei mit dem Farbwerk 42 verbundenem Feuchtwerk 7 strömt das Feuchtmittel vom Feuchtwerk 7 über die Farbauftragswalze 2 auf die Flachdruckform 1. Der Rotationsantrieb 11 ist ein Elektromotor und treibt über ein aus miteinander in Eingriff stehenden Zahnrädern bestehendes Getriebe 17 die Zylinder 14, 15 und 16 zum Drucken und bei der Einfeuchtung rotativ an.

Wie in den Fig. 2 und 4 zu sehen ist, besteht das Feuchtwerk 7 aus einem wannenförmigen Feuchtmittelbehälter 23, in welchen eine Tauchwalze 22 eintaucht, die das Feuchtwasser aus dem Feuchtmittelbehälter 23 schöpft und an eine mit ihr in Abrollkontakt stehende Übertragungswalze 21 abgibt. Die Übertragungswalze 21 ist drehbar in einem um die Rotationsachse der Tauchwalze 22 schwenkbaren Walzenträger 45 gelagert. Die Walzen 21 und 22 sind über ein Zahnradgetriebe 20 miteinander und mit dem als ein ausgebildeten Rotationsantrieb Elektromotor antriebsmäßig verbunden. Die Übertragungswalze 21 überträgt den auf ihr befindlichen Feuchtwasserfilm auf eine Feuchtauftragswalze 4. Die Feuchtauftragswalze 4 befindet sich in ihrer an einer Flachdruckform 1 anliegenden Stellung und trägt das von der Übertragungswalze 21 übernommene Feuchtmittel auf die Flachdruckform 1 auf Im Rotationsrichtungssinn der Feuchtauftragswalze 4 gesehen liegen in ständigem Kontakt an dieser dem Kontaktpunkt der Feuchtauftragswalze mit der Übertragungswalze 21 folgend und dem Kontaktpunkt der Feuchtauftragswalze 4 mit der Flachdruckform 1 vorangehend eine erste Feuchtwerkswalze 5 und dem Kontaktpunkt der Feuchtauftragswalze 4 mit der Flachdruckform 1 nachfolgend und dem Kontaktpunkt der Feuchtauftragswalze 4 mit der Übertragungswalze 21 vorangehend eine zweite Feuchtwerkswalze 6 an.

Ein als ein Elektromotor ausgebildeter Rotationsantrieb 10 treibt über ein Zahnradgetriebe 18.1, 18.2 die erste Feuchtwerkswalze 5 an. Der Rotationsantrieb 10 treibt auch die Feuchtauftragswalze 4 an. Diesbezüglich sind in der Fig. 4 zwei Antriebsvarianten in einem Bild dargestellt. Ein formschlüssiger Antrieb der Feuchtauftragswalze 4 durch den Rotationsantrieb 10 kann dadurch bewirkt sein, daß der Rotationsantrieb 10 die Feuchtauftragswalze 4 über ein Zahnradgetriebe 18.3, 18.4 antreibt. Das Zahnradgetriebe 18.3, 18.4 kann beispielsweise aus einem mit der ersten Feuchtwerkswalze 5 drehfest verbundenen und zu dieser koaxial angeordneten Zahnrad 18.3 bestehen, welches mit einem Zahnrad 18.4 im kämmenden Eingriff ist, das koaxial zur Feuchtauftragswalze 4 angeordnet und mit dieser drehtest verbunden ist. Der Antrieb der Feuchtauftragswalze 4 durch den Rotationsantrieb 10 kann auch dadurch bewirkt sein, daß der Rotationsantrieb 10 über das Zahnradgetriebe 18.1, 18.2 die erste Feuchtwerkswalze 5 antreibt und letztere über umfangsseitige Friktionsmitnahme die Feuchtauftragswalze 4 reibschlüssig antreibt. In diesem Fall kann das Zahnradgetriebe 18.3, 18.4 entfallen.

[0034] In Fig. 2 symbolisieren drei der Flachdruckform, 1 zugeordnete und dicht beieinanderliegende Pfeile, daß die Flachdruckform 1 mit einer vergleichsweise hohen Umfangsgeschwindigkeit rotiert. Mittels zweier jeweils den Walzen 4 und 5 zugeordneter Pfeile ist angedeutet, daß die Walzen 4 und 5 mit der gleichen Umfangsgeschwindigkeit zueinander rotieren, welche nur geringfügig langsamer als die Umfangsgeschwindigkeit der Flachdruckform 1 ist. Jeweils ein den Walzen 21 und 22 zugeordneter Pfeil besagt, daß auch die Walzen 21 und 22 mit zueinander derselben Umfangsgeschwindigkeit rotieren, welche jedoch wesentlich geringer als die Umfangsgeschwindigkeit der Feuchtauftragswalze 4 ist. Die zwischen den Walzen 4 und 21 bestehende Geschwindigkeitsdifferenz ist mittels der den Rotationsantrieb 12 ansteuernden elektronischen Steuereinrichtung 40 zur genauen Dosierung der in der Berührungsstelle von der Walze 21 auf die Walze 4 übertragenen Feuchtmittelmenge regulierbar.

[0035] Die Steuereinrichtung 40 steuert die Rotationsantriebe 10 und 12 zueinander abgestimmt und in Abhängigkeit vom Rotationsantrieb 11, so daß die

Rotationsantriebe 10 und 12 bei einer einer Druckgeschwindigkeitsänderung entsprechenden Erhöhung oder Verringerung der Umfangsgeschwindigkeit der Flachdruckform 1 dem Antrieb 11 in die entsprechende Geschwindigkeitsverstellrichtung folgend nachsteuerbar sind.

[0036] Bei einer nicht näher dargestellten weiteren Ausführungsform sind die Rotationsantriebe 10 und 11 nicht zwei verschiedene Elektromotoren sondern ein und derselbe Elektromotor.

Zudem steuert bei der dargestellten Ausfüh-[0037] rungsform die Steuereinrichtung 40 einen zu einer Verstelleinrichtung 9 gehörigen Stellantrieb 24 an, welcher ein druckfluidbeaufschlagbarer Hubkolbenzylinder und beispielsweise ein Pneumatikzylinder ist. Die Verstelleinrichtung 9 ermöglicht eine Verstellung der Feuchtauftragswalze 4 aus der in Fig. 2 gezeigten, von einer Verbindungswalze 3 zum Farbwerk 42 abgestellten Stellung 4.1 in eine in der Fig. 3 gezeigte, an der Verbindungswalze 3 angestellte Stellung 4.2 sowie aus der Stellung 4.2 wieder zurück in die Stellung 4.1. Die Verbindungswalze 3 braucht zur Koppelung des Feuchtwerks 7 an das Farbwerk 42 nicht verlagert werden und kann in einem orts- bzw.gestellfesten Drehlager gelagert sein.

[0038] Zur Durchführung dieser Verlagerungen ist ein zur Verstelleinrichtung 9 zugehöriges und als eine erste Exzenterbüchse 27 ausgebildetes Exzenterlager mittels des Stellantriebes 24 um seine Mittelachse 36 verdrehbar. Das Exzenterlager 27 trägt einen als eine verstellbare Lagerplatte ausgebildeten Walzenträger 25, in welchem ein Walzenzapfen 31 der Feuchtauftragswalze 4 drehbar gelagert und durch welchen ein Achszapfen 32 der ersten Feuchtwerkswalze 5 hindurchgeführt ist. Das erste Exzenterlager 27 trägt ein ebenfalls als Exzenterbüchse ausgebildetes zweites Exzenterlager 28, welches manuell um seine Mittelachse 37 verdrehbar ist.

Am Exzenterlager 28 ist koaxial zu diesem [0039] ein Schneckenrad 29 befestigt, welches mit einer drehbar im Walzenträger 25 gelagerten Schnecke 30 kämmt. Mittels eines in die Schnecke 30 ein- oder aufsteckbaren Werkzeuges ist letztere und somit das Exzenterlager 28 verdrehbar. Das Exzenterlager 27 kann in einer Seitenwand 41 mittels einer Wälzkörperoder Gleitlagerung um seine Mittelachse 36 drehbar gelagert sein. Mittels solcher Drehlagerungen können auch die Walzen 4 und 5 sowie das Exzenterlager 28 drehbar gelagert sein. Die Exzentrizität e₂₇ beschreibt das Maß, um welches die Mittelachse 35 der ersten Feuchtwerkswalze 5 zur Mittelachse 36 des Exzenterlagers 27 versetzt ist. Die auf seine Mittelachse 36 bezogene Exzentrizität e27 des Exzenterlagers 27 ist so groß, daß eine Verdrehung des Exzenterlagers 27 um einen bestimmten Drehwinkel eine gemeinsame Verlagerung der Walzen 4 und 5 um den Betrag des Walzenabstandes Wje nach Drehrichtungssinn der Verdrehung des Exzenterlagers 27 zur Verbindungswalze 3 hin oder

35

weg bewirkt. Beispielsweise kann die Exzentrizität e_{27} ca. 15 mm betragen. Eine den Walzenzapfen 32 drehbar aufnehmende Bohrung durchdringt das Exzenterlager 27 und dessen buchsenförmigen Absatz 33, welcher zur Mittelachse 36 somit ebenfalls um die Exzentrizität e_{27} versetzt ist. Das Exzenterlager 28 weist eine zu dessen Mittelachse 37 um die Exzentrizität e_{28} versetzte Bohrung auf, in welche der Buchsenabsatz 33 drehbar eingesteckt ist.

[0040] Bei anderen, nicht näher dargestellten Ausführungsformen kann ein am Exzenterlager 28 angebrachter oder ausgeformter Buchsenabsatz 33 drehbar in das Exzenterlager 27 eingesteckt sein. Auch kann eine die Exzenterlager 27 und 28 drehgelenkig miteinander verbindende Buchse anstelle des Buchsenabsatzes 33 sowohl in das Exzenterlager 27 als auch in das Exzenterlager 28 eingesteckt sein.

[0041] Bei der dargestellten Ausführungsform ist das Maß der Exzentrizität e28 wesentlich geringer als das Maß der Exzentrizität e₂₇ und kann beispielsweise ca. 2 mm betragen. Eine Verdrehung des Exzenterlagers 28 mittels des Schneckengetriebes 29, 30 um die Mittelachse 37 bewirkt je nach Drehrichtungssinn der Verdrehung eine Vergrößerung oder eine Verringerung des Achsenabstandes A der Walzen 4 und 5 zueinander, so daß die Stärke der Gegeneinanderpressung der Walzen 4 und 5 einstellbar ist. Die Variation des Achsenabstandes A wird je nach Drehrichtungssinn des Exzenterlagers 28 durch eine Verlagerung der Feuchtauftragswalze 4 zur ersten Feuchtwerkswalze 5 hin oder von dieser weg bzw. durch eine Verlagerung des Walzenträgers 25 relativ zur Mittelachse 35 bewirkt. Die Einstellung des Achsenabstandes A erfolgt innerhalb eines Einstellbereiches, in welchem der zwischen den Walzen 4 und 5 vorhandene Anpreßdruck hinreichend groß zur rotativen Friktionsmitnahme der Walze 4 durch die Walze 5 ist oder in welchem die Zahnräder 18.3 und 18.4 miteinander in wirksamem Eingriff bleiben.

[0042] Ähnliches gilt für das koaxial zur ersten Feuchtwerkswalze 5 angeordnete und mit dieser drehfest verbundene Zahnrad 18.2. Das Zahnrad 18.2 bleibt bei jeder den Walzenabstand W herstellenden oder aufhebenden gemeinsamen Verlagerung der ersten Feuchtwerkswalze 5 mit der Feuchtauftragswalze 4 in ständigem wirksamem Eingriff mit dem das Zahnrad 18.2 antreibenden Zahnrad 18.1.

[0043] Der Stellantrieb 24 ist vorzugsweise ein durch Druckfluidbeaufschlagung einer Kolbenvorderfläche ausfahrbarer und durch Druckfluidbeaufschlagung einer Kolbenrückfläche einfahrbarer doppeltwirkender Hubkolbenzylinder, dessen Kolbenstange am Exzenterlager 27 exzentrisch angelenkt ist. Der die Rotation der ersten Feuchtwerkswalze 5 antreibende Rotationsantrieb 10, welcher, wie bereits beschrieben, ein vom Rotationsantrieb 11 der Flachdruckform 1 separater Elektromotor oder der Rotationsantrieb 11 selbst sein kann, ist über ein weiteres Zahnradgetriebe 19 mit einem Changierantrieb 39 zur axialen Oszillation der

ersten Feuchtwerkswalze 5 antriebsmäßig gekoppelt. Beispielsweise kann der in Fig. 4 schematisch dargestellte Changierantrieb 39 ein vom Rotationsantrieb 10 angetriebenes Kurbelgetriebe sein, welches über eine an einem Walzenzapfen der ersten Feuchtwerkswalze 5 angreifende schwingende Mitnehmerrolle der rotierenden ersten Feuchtwerkswalze 5 eine axiale Reiberhubbewegung aufzwingt.

[0044] In zwischen dem Kontaktpunkt der Feuchtauftragswalze 4 zur Verbindungswalze 3 und dem Kontaktpunkt der Feuchtauftragswalze 4 zur Übertragungswalze 21 liegendem Umfangsbereich liegt eine zweite Feuchtwerkswalze 6 in ständigem Kontakt an der Feuchtauftragswalze 4 an. Die zweite Feuchtwerkswalze 6 ist eine sogenannte Reiterwalze, welche zugleich als eine axial oszillierende Reiberwalze ausgebildet ist. Die zweite Feuchtwerkswalze 6 ist drehbar in einem gesteilfestem Walzenträger 26 gelagert. Die zweite Feuchtwerkswalze 6 ist den Verlagerungen der Feuchtauftragswalze 4 in deren Stellungen 4.1 und 4.2 nachführbar, indem die Walzenachse der zweiten Feuchtwerkswalze 6 in einer Ausgleichsbewegungen der zweiten Feuchtwerkswalze 6 ermöglichenden Führung im Walzenträger 26 geführt ist. Eine hierzu bevorzugte Linearführung kann beispielsweise aus einem runden Nutstein bestehen, welcher einen Walzenzapfen der zweiten Feuchtwerkswalze 6, wie gezeigt als Buchse zumindest teilweise umschließt oder der als Rolle koaxial zum Walzenzapfen befestigt sein kann. Der Nutstein 37 ist in einer Nut oder einem Schlitz des Walzenträgers 26 geführt und an einer Koppel 44 befestigt. Eine solche in den Fig. 2 und 3 schematisch angedeutete und nicht näher bezeichnete Führung ist beidseitig der zweiten Feuchtwerkswalze 6 angeordnet. [0045] Die Feuchtauftragswalze 4 und die zweite Feuchtwerkswalze 6 sind drehbar in Koppel 44 gelagert. Durch eine nicht näher dargestellte Justiereinrichtung, z. B. eine Schraube, ist der Achsabstand und damit die Preßstreifenbreite der Walzen 4 und 6 durch Verstellung der zweiten Feuchtwerkswalze 6 einstellbar. [0046] Alternativ zur gezeigten Ausführungsform kann die zweite Feuchtwerkswalze 6 der Verlagerung

45 [0047] In der Fig. 4 ist dargestellt, daß die zweite Feuchtwerkswalze 26 einen in den Walzenkörper integrierten sogenannten inneren Changierantrieb 38 aufweist, welcher ein die rotative Bewegung der zweiten Feuchtwerkswalze 6 zusätzlich in eine axiale Oszillation formschlüssig umsetzendes Getriebe ist. Der Changierantrieb 38 kann beispielsweise ein Kurvengetriebe sein. Die axiale Oszillation der zweiten Feuchtwerkswalze 6 wird vom Rotationsantrieb 10 über die die zweite Feuchtwerkswalze 6 reibschlüssig rotativ antreibende
 55 Feuchtauftragswalze 4 bewirkt.

der Feuchtauftragswalze 4 schwenkbeweglich folgend

vom Walzenträger 26 gehalten werden.

[0048] Weiterhin ist in der Fig. 4 die Lagerung der Walzen 4 und 5 auf der sogenannten Antriebsseite der Druckmaschinen dargestellt. Auf der dieser gegenüber-

liegenden, nicht dargestellten sogenannten Bedienseite der Druckmaschine 8 sind die Walzen 4 und 5 in einem im wesentlichen dem Walzenträger 25 entsprechenden weiteren Walzenträger und in den Exzenterlagern 27 und 28 im wesentlichen entsprechenden weiteren Exzenterlagern gelagert Die gezeigte antriebsseitige Verstelleinrichtung 9 kann über ein Synchronisationsgetriebe mit der nicht gezeigten bedienseitigen Verstellgekoppelt einrichtung sein. so daß beide Verstelleinrichtungen gleichzeitig durch den Stellantrieb 24 verdrehbar sind. Im einfachsten Fall kann das Exzenterlager 27 mit dem zu diesen, bezogen auf eine Vertikalachse, spiegelbildlich ausgebildeten bedienseitigen Exzenterlager durch eine zur Mittelachse 36 der Exzenterlager exzentrische und an beiden Exzenterlagern befestigte Verbindungsstange verbunden sein, so daß ein Verkanten der Walzen 4 und 5 bei deren Verlagerung ausgeschlossen ist.

Vorteilhaft an der in den Figuren 1 bis 4 dargestellten Vorrichtung ist nicht nur, daß die Feuchtauftragswalze 4 bei der Einfeuchtung der Flachdruckform 1 mit von der Umfangsgeschwindigkeit der Flachdruckform 1 abweichender Umfangsgeschwindigkeit rotiert und somit auf der Flachdruckform 1 befindliche Verunreinigungen von dieser abnimmt. Es ist ebenso vorteilhaft, daß die erste Feuchtwerkswalze 5 vom Rotationsantrieb 10 bei der Einfeuchtung formschlüssig angetrieben und die ersten Feuchtwerkswalze 5 an der Feuchtauftragswalze 4 anliegt, wenn letztere an der Verbindungswalze 3 anliegt. Somit eröffnet sich die Möglichkeit, auch im mit dem Farbwerk 42 gekoppelten Betrieb des Feuchtwerkes 7 das auf der Feuchtauftragswalze 4 befindliche Feuchtmittel zu vergleichmäßigen. Zudem ist ein rotativer Antrieb der Feuchtauftragswalze 4 sowohl in deren Stellung 4.1 als auch in deren Stellung 4.2 über Friktionsmitnahme durch die erste Feuchtwerkswalze 5 möglich.

Bei dem dargestellten Feuchtwerk 7 ist es nicht mehr unbedingt erforderlich, daß die Feuchtauftragswalze 4 bei der Einfeuchtung der Flachdruckform 1 in axialer Richtung oszilliert. Es hat sich gezeigt, daß sich in vielen Fällen mit einer axial nicht bewegten Feuchtauftragswalze 4 eine gleichmäßigere Einfeuchtung erzielen läßt, als dies bei einer axial oszillierenden Feuchtauftragswalze der Fall ist. Dadurch, daß die Walzen 4 und 5 durch den Walzenträger 25 in konstantem Umfangskontakt zueinander gehalten werden und die Verstelleinrichtung 9 eine Verlagerung bei permanenter Beibehaltung des mittels der im wesentlichen aus dem Exzenterlager 28 bestehenden Justiereinrichtung eingestellten Achsenabstandes A gewährleistet, ist der sogenannte Preßstreifen der Walzen 4 und 5 absolut stabil. Der Preßstreifen ist eine sich entlang der Berührungslinie zwischen den Walzen 4 und 5 erstreckende umfangsseitige Abflachung der vergleichsweise weichen und beispielsweise außenseitig gummierten Feuchtauftragswalze 4.

[0051] Die erste Feuchtwerkswalze 5 ist vergleichs-

weise hart und beispielsweise metallen und hat vorzugsweise eine rauhe oder eine mit groben Erhöhungen und/oder Vertiefungen strukturierte Umfangsoberfläche, welche verchromt ist. Im Gegensatz zu bekannten Feuchtwerken (DE 91 10 345) kann auf der ersten Feuchtwerkswalze 5 befindliche Druckfarbe nicht an dieser antrocknen, beispielsweise, wenn das Feuchtwerk 7 von der in der Fig. 2 gezeigten Betriebsart "direkte Feuchtung" in die in Fig. 3 gezeigte Betriebsart "indirekte Feuchtung" umgeschaltet bzw. mit dem Farbwerk 42 gekoppelt wird. Diese Umschaltung ist bei dem gezeigten Feuchtwerk 7 nicht nur im Stillstand sondern auch bei laufender Druckmaschine 8 möglich. Die Stelleinrichtung 9, der verlagerbare Walzenträger 25 und der Walzenträger 26 gewährleisten, daß die Feuchtwerkswalzen 5 und 6 sowohl bei an die Flachdruckform 1 angestellter Feuchtauftragswalze 4 als auch bei von der Flachdruckform 1 abgestellter Feuchtauftragswalze 4 und somit im permanenten Kontakt an der Feuchtauftragswalze 4 anliegen.

[0052] Ein weiterer Vorteil gegenüber dem aus dem Stand der Technik bekannten und oben erwähnten Feuchtwerk besteht darin, daß beim dargestellten Feuchtwerk 7 die ausschließlich an der Feuchtauftragswalze 4 anliegende erste Feuchtwerkswalze 5 mittels einer dem Farbwerk 42 zugeordneter Reinigungseinrichtung 43 mitgewaschen werden kann. Die Reinigungseinrichtung 43 umfaßt eine z. B. als Sprührohr ausgebildete Reinigungsflüssigkeitszufuhr auf eine Walze des Farbwerkes 42 und eine an eine Walze des Farbwerkes 42 anstellbare Rakel mit einer die von der Walze abgeschabte Druckfarbe auffangenden Rakelwanne. Zur Reinigung des Feuchtwerkes 7 ist der umfangsseitige Kontakt zwischen den Walzen 4 und 21 aufhebbar und wird die Feuchtauftragswalze 4 in deren Stellung 4.2 an die Verbindungswalze 3 angestellt, so daß die mittels der Reinigungseinrichtung 43 in das Farbwerk 42 eingebrachte Reinigungsflüssigkeit über die rotierende Verbindungswalze 3 auf die rotierende Feuchtauftragswalze 4 gelangt und von letzterer somit auf die Feuchtwerkswalzen 5 und 6, welche somit von der Reinigungseinrichtung 43 mitgereinigt werden und nicht manuell vom Drucker gereinigt werden brauchen.

BEZUGSZEICHENLISTE

[0053]

	1	Flachdruckform
50	2	Farbauftragswalze
	3	Verbindungswalze
	4	Feuchtauftragswalze
	4.1	Abstandsstellung
	4.2	Anlagestellung
55	5, 6	Feuchtwerkswalze
	7	Feuchtwerk
	8	Flachdruckmaschine
	9	Verstelleinrichtung

10, 11,12	Rotationsantrieb	
13	Druckwerk	
14	Druckformzylinder	
15	Gummituchzylinder	
16	Gegendruckzylinder	5
17	Zahnradgetriebe	
18.1, 18.2, 18.3, 18.4	Zahnrad	
19, 20	Zahnradgetriebe	
21	Übertragungswalze	
22	Tauchwalze	10
23	Feuchtmittelbehälter	
24	Stellantrieb	
25, 26	Walzenträger	
27, 28	Exzenterlager	
29	Schneckenrad	15
30	Schnecke	
31, 32	Walzenzapfen	
33	Buchsenabsatz	
34 bis 37	Mittelachse	
38, 39	Changierantrieb	20
40	Steuereinrichtung	
41	Seitenwand	
42	Farbwerk	
43	Reinigungseinrichtung	
44	Koppel	25
45	Walzenträger	
A	Achsenabstand	
W	Walzenabstand	
e ₂₇ , e ₂₈	Exzentrizität	
		30

Patentansprüche

1. Verfahren zur Einfeuchtung einer rotierenden Flachdruckform (1) über eine die Flachdruckform (1) indirekt einfeuchtende Farbauftragswalze (2) und eine an dieser anliegende Verbindungswalze (3), an welcher eine die Flachdruckform (1) einfeuchtende Feuchtauftragswalze (4) anliegt,

dadurch gekennzeichnet,

daß die Feuchtauftragswalze (4) bei der Einfeuchtung mit von der Umfangsgeschwindigkeit der Flachdruckform (1) abweichender Umfangsgeschwindigkeit rotiert.

2. Verfahren nach Anspruch 1,

dadurch gekennzeichnet,

daß eine ausschließlich auf der Feuchtauftragswalze (4) abrollende erste Feuchtwerkswalze (5) einen auf der Feuchtauftragswalze (4) befindlichen Feuchtmittelfilm in Umfangsrichtung vergleichmäßigt.

3. Verfahren nach Anspruch 2

dadurch gekennzeichnet,

daß die erste Feuchtwerkswalze (5) axial changiert 55 und dadurch den Feuchtmittelfilm in Axialrichtung vergleichmäßigt.

4. Verfahren nach Anspruch 2 oder 3 dadurch gekennzeichnet,

> daß eine ausschließlich auf der Feuchtauftragswalze (4) abrollende zweite Feuchtwerkswalze (6) den Feuchtmittelfilm in Umfangsrichtung vergleichmäßigt.

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet,

> daß die zweite Feuchtwerkswalze (6) axial changiert und dadurch den Feuchtmittelfilm in Axialrichtung vergleichmäßigt.

6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet,

daß die Feuchtauftragswalze (4) in Axialrichtung stillsteht.

7. Feuchtwerk (7) einer Flachdruckmaschine (8), mit einer ersten Feuchtwerkswalze (5), welche ausschließlich an einer Feuchtauftragswalze (4) anliegt, insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 6,

dadurch gekennzeichnet,

daß die Feuchtauftragswalze (4) mittels einer Verstelleinrichtung (9) aus einer Abstandstellung (4.1) in eine Anlagestellung (4.2) an eine Verbindungswalze (3) verlagerbar ist und daß die erste Feuchtwerkswalze (5) von einem Rotationsantrieb (10) formschlüssig antreibbar ist und bei in der Anlagestellung (4.2) befindlicher Feuchtauftragswalze (4) an letzterer anliegt.

Feuchtwerk nach Anspruch 7,

dadurch gekennzeichnet,

daß die Feuchtauftragswalze (4) und die erste Feuchtwerkswalze (5) mittels der Verstelleinrichtung (9) gemeinsam verlagerbar sind, so daß die Feuchtauftragswalze (4) aus der Abstandstellung (4.1) in die Anlagestellung (4.2) an die Verbindungswalze (3) verlagerbar und die erste Feuchtwerkswalze (5) dabei in permanenter Anlage an der Feuchtauftragswalze (4) mitführbar ist.

45 9. Feuchtwerk nach Anspruch 7 oder 8,

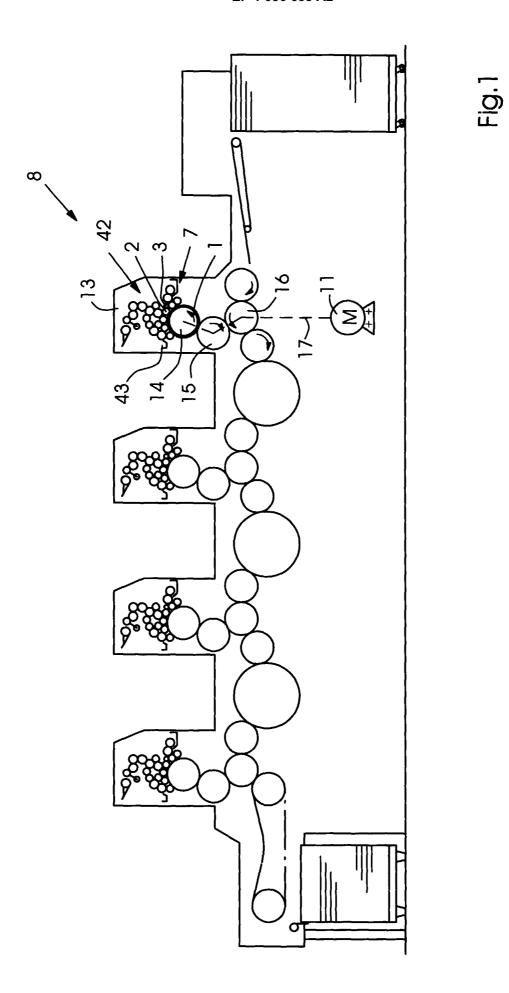
dadurch gekennzeichnet,

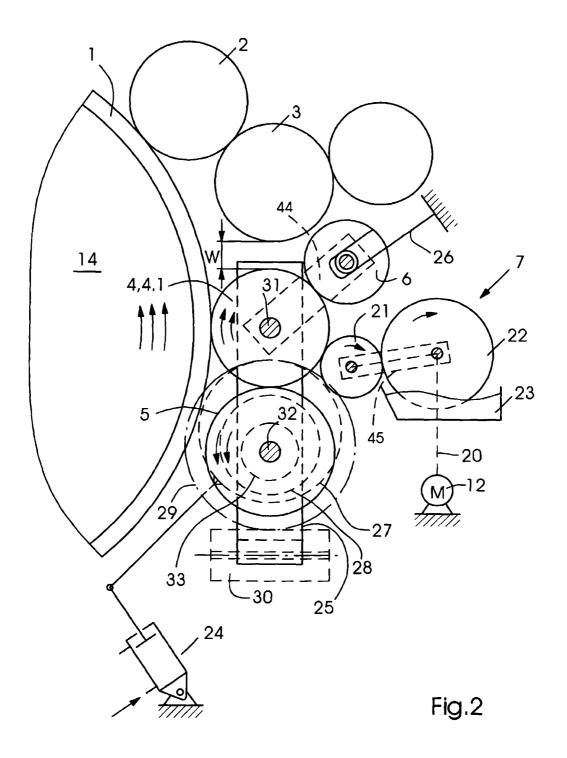
daß eine zweite Feuchtwerkswalze (6) ausschließlich an der Feuchtauftragswalze (4) anliegt.

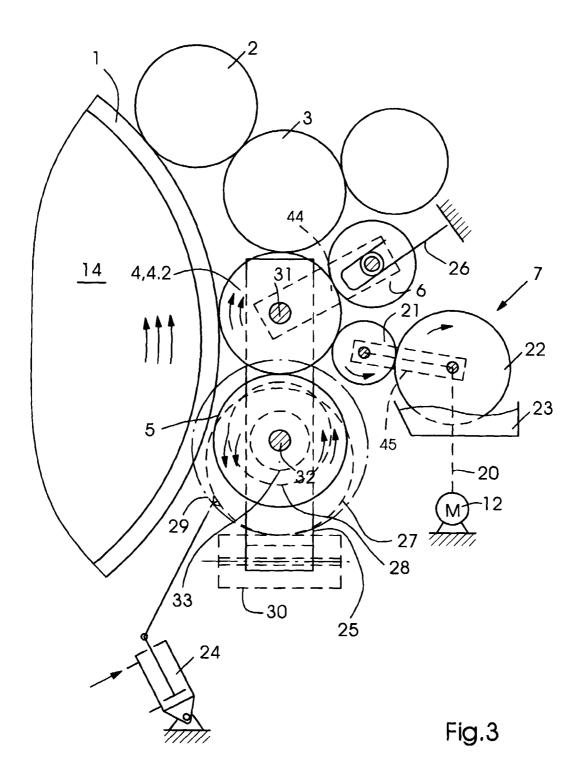
10. Feuchtwerk nach Anspruch 9,

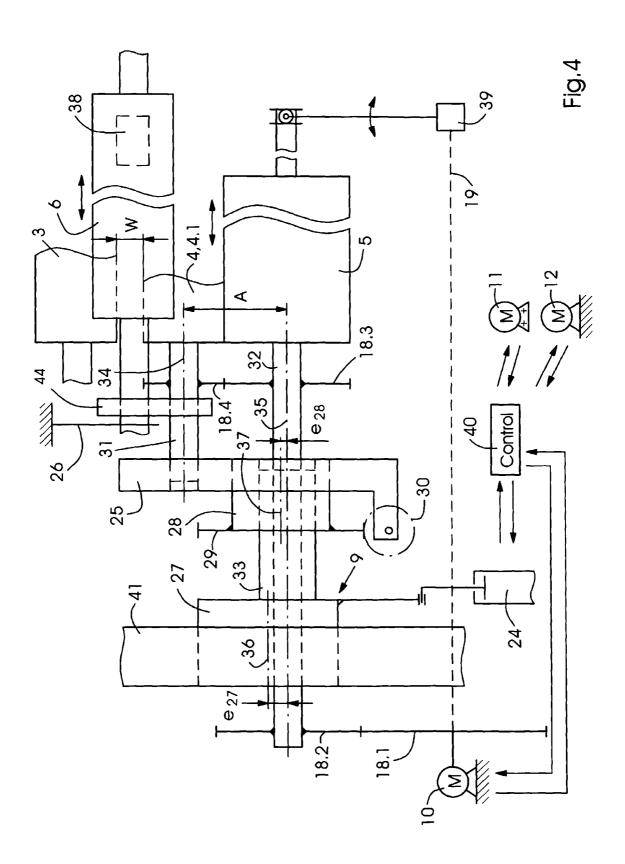
dadurch gekennzeichnet,

daß die Feuchtauftragswalze (4) die erste Feuchtwerkswalze (5) und die zweite Feuchtwerkswalze (6) mittels der Verstelleinrichtung (9) gemeinsam verlagerbar sind, so daß die Feuchtauftragswalze (4) aus der Abstandstellung (4.1) in die Anlagestellung (4.2) an die Verbindungswalze (3) verlagerbar und sowohl die erste Feuchtwerkswalze (5) als


50


auch die zweite Feuchtwerkswalze (6) dabei in permanenter Anlage an der Feuchtauftragswalze (4) mitführbar sind.


11. Feuchtwerk nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß die Verstelleinrichtung (9) ein Exzenterlager umfaßt.


12. Feuchtwerk nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet,
daß die in der Anlagestellung (4.2) an der Verbindungswalze (3) anliegende Feuchtauftragswalze
(4) mit Schlupf relativ zu einer Flachdruckform (1) auf dieser abrollend vom Rotationsantrieb (10) 15 antreibbar ist.

13. Flachdruckmaschine (8), insbesondere Offset-Rotationsdruckmaschine, mit mindestens einem nach einem der Ansprüche 7 bis 12 ausgebildeten *20* Feuchtwerk (7).

