Field of application
[0001] The present invention relates to a method for the modernisation of a plant for urea
production according to the process with stripping with carbon dioxide.
[0002] More specifically, the invention relates to a method for the modernisation of a plant
for urea production of the type comprising:
- a reactor for urea synthesis;
- means for feeding ammonia and carbon dioxide to the reactor for urea synthesis;
- a stripping unit with carbon dioxide for subjecting a reaction mixture comprising
urea, carbamate and free ammonia in aqueous solution leaving the reactor to a treatment
of partial decomposition of carbamate and partial separation of free ammonia, thus
obtaining a flow comprising ammonia and carbon dioxide in vapour phase and a flow
comprising urea and residual carbamate in aqueous solution, respectively;
- a recovery section for the flow comprising urea and residual carbamate in aqueous
solution leaving the stripping unit for separating urea from the residual carbamate
in aqueous solution;
- at least one vertical condensation unit of the film type, comprising a tube bundle
for subjecting to partial condensation the flow comprising ammonia and carbon dioxide
in vapour phase leaving the stripping unit, thus obtaining a liquid flow comprising
carbamate in aqueous solution and a gaseous flow comprising ammonia and carbon dioxide
in vapour phase;
- means for respectively feeding the flow comprising carbamate in aqueous solution and
the flow comprising ammonia and carbon dioxide in vapour phase to the reactor for
urea synthesis;
- means for feeding a gaseous flow comprising one or more passivating agents, inert
with respect to the synthesis reaction of urea, to the stripping unit and from the
stripping unit to the reactor for urea synthesis through the condensation unit.
[0003] In the following description and enclosed claims, with the term "modernisation",
it is intended to mean the modification of a pre-existing plant with the purpose of
improving its performance and obtaining, for example, an increase of the production
capacity and/or of the conversion yield as well as a reduction of the energy consumption.
In particular, the modernisation of a urea plant according to the present invention
foresees to increase the capacity, maintaining the main equipment of the high pressure
synthesis section (synthesis loop).
[0004] In the following description and enclosed claims, with the term "condensation unit
of the film type", it is intended to mean an apparatus wherein the condensation of
the gaseous phase occurs in a liquid film, flowing downwards inside a plurality of
tubes in co-current with the gaseous flow. The liquid film flows in contact with the
tube wall whereas the gaseous phase flows inside the tubes.
[0005] According to a further aspect of thereof, the present invention also relates to a
process for urea production as well as to a plant for carrying out such process.
[0006] As known, with respect to urea production, the need is more and more felt of having
on one hand plants of always greater capacity and operation efficiency available,
and on the other hand of having lower and lower investment and operation costs, as
well as lower energy consumption.
Prior art
[0007] To this end, methods for the modernisation of existing plants for urea production
according to the stripping process with carbon dioxide have been recently set forth
in the field, substantially based on the modification of the synthesis reactor, on
the replacement of the apparatuses downstream the synthesis reactor with apparatuses
of greater capacity and/or on the addition of new apparatuses in parallel to the existent
apparatuses.
[0008] For example, in EP-A-0 796 244 a method of modernisation of a plant for urea production
is disclosed, which foresees the addition of a partial decomposition step of the carbamate
in aqueous solution recycled to the synthesis reactor. With this method of modernisation,
it is possible to remarkably reduce the amount of water recycled to the synthesis
reactor, thus permitting to obtain an increase of the conversion yield and therefore
of the production capacity of the plant.
[0009] One of the main problems that is encountered when an increase of production capacity
is considered in existing plants for urea production according to a stripping process
with carbon dioxide, is that of increasing the capacity of the high pressure condensation
section which may comprise one or more condensation units.
[0010] The methods of modernisation for increasing the capacity of said condensation section
proposed to date always foresee the insertion in parallel of additional condensation
units of the film type or of a unit provided with a high exchange coefficient, for
example a horizontal condensation unit of the Kettle type (pool condenser).
[0011] In some instances the replacement of the existing unit(s) with new units of greater
capacity must be even taken into account.
[0012] Such provisions have a very negative impact both on investment costs and on the constructional
complexity relative to the modernisation of the condensation section according to
the above mentioned methods of the prior art.
[0013] Because of these disadvantages, the modernisation of plants for urea production according
to the stripping process with carbon dioxide has found to date a relatively reduced
application, notwithstanding the ever increasing interest of industry of modifying
the existing plants - instead of replacing them with new plants - with the purpose
of increasing the production capacity and decreasing the energy costs.
Summary of the invention
[0014] The technical problem underlying the present invention is therefore that of providing
a method for the modernisation of a plant for urea production which allows an increase
of the production capacity thereof, implies low energy consumption and investment
costs and is technically easy to be implemented.
[0015] According to the present invention, this problem is solved by a method of the aforementioned
type, which is characterised by comprising the steps of:
- providing means for feeding a minor portion of the flow comprising ammonia and carbon
dioxide in vapour phase together with a minor portion of the gaseous flow comprising
one or more passivating agents leaving the stripping unit directly to the reactor
for urea synthesis;
- providing means for feeding a major portion of the flow comprising ammonia and carbon
dioxide in vapour phase together with a major portion of the gaseous flow comprising
one or more passivating agents leaving the stripping unit to such at least one condensation
unit;
- providing in such at least one condensation unit means for subjecting to substantially
total condensation the major portion of the flow comprising ammonia and carbon dioxide
in vapour phase, obtaining a flow comprising urea and carbamate in aqueous solution.
[0016] As far as the term major portion is concerned, this indicates a portion greater than
50 % of the total flow of ammonia and carbon dioxide in vapour phase coming out of
the stripping unit. Depending on the operating conditions in the synthesis reactor,
the major portion can be in a range between 65 and 85 % of such flow, for example
between 70 and 75 %.
[0017] Advantageously, the present invention permits to remarkably increase the exchange
coefficient and therefore the efficiency of the condensation section, permitting a
debottlenecking of the existing plant to full advantage of the overall production
capacity, which may be therefore optimally increased.
[0018] All this is attained in a simple and effective way, with minimum and quite secondary
interventions in the high pressure synthesis section that is thus maintained substantially
unchanged, and with low energy consumption.
[0019] Accordingly the investment, implementation and operation costs are considerably lower
than the costs required by the methods of modernisation according to the prior art.
[0020] In fact, thanks to the present method, the pre-existing condensation section is not
upgraded nor replaced with new apparatuses, but advantageously preserved, requiring
only small internal modifications of the condensation unit(s) in such a way to obtain
a substantially total condensation of the gaseous phase fed therein.
[0021] Thanks to the fact of providing means for splitting respectively in a minor and major
portion the flow comprising ammonia and carbon dioxide in vapour phase (coming from
the stripping unit), the portion of reactants in gaseous phase necessary for controlling
the reaction temperature inside the synthesis reactor is not made any longer to pass
through the condensation unit together with the liquid phase, as in the prior art.
So doing, the condensation unit can be modified internally in such a way to permit
the substantial condensation of all the gaseous reactants comprised in the major portion
and hence to operate at the maximum efficiency obtainable.
[0022] In this respect, the present method of modernisation advantageously comprises the
step of providing means for transforming the vertical condensation unit of the film
type in a vertical condensation unit of the "submerged" type.
[0023] In the following description and in the enclosed claims, with the term "condensation
unit of the submerged type", it is intended to mean an apparatus wherein the liquid
phase fills (submerges) the tube bundle and wherein the condensation of the gaseous
phase occurs by passing through such liquid phase. In other words, in this case, the
condensation unit operates having the tube bundle's tubes full of liquid, differently
from the condensation unit of the film type wherein the tubes are substantially empty.
[0024] More in particular, the existing condensation unit is advantageously modified by
providing means for feeding the major portion of the flow comprising ammonia, carbon
dioxide in vapour phase in a lower end of the tube bundle of such at least one unit
and means for circulating a flow of condensation liquid comprising carbamate in aqueous
solution and ammonia inside the condensation unit with a thermosiphon like motion.
[0025] Thanks to the present invention, the vertical position and the dimension of the existing
condensation unit are exploited, which guarantee - once transformed - a high liquid
head (height) and therefore a natural circulation of the same inside the tube bundle
(thermosiphon like motion).
[0026] The circulation according to a thermosiphon like motion of the liquid phase is due
to the difference of specific weight between the flow comprising liquid and vapours
flowing upwards in the apparatus and the flow of liquid only directed downwards through
respective portions of the tube bundles.
[0027] In this respect, particularly satisfying results have been obtained providing a gas
distributor proximate to the lower end of the tube bundle in fluid communication with
the means for feeding the major portion of the flow comprising ammonia and carbon
dioxide in vapour phase, so as to distribute the ammonia and carbon dioxide in vapour
phase in a preferably central, predetermined portion of the tube bundle.
[0028] In this way, the condensation of ammonia and carbon dioxide in vapour phase is made
advantageously occur only in a well defined portion of the tube bundle, thus promoting
an optimal circulation in a thermosiphon like motion of the liquid phase inside the
condensation unit between the portion of the tube bundle through which the low specific
weight flow passes (gaseous phase mixed with the liquid phase) and the portion of
tube bundle (preferably in a peripheral position) through which the high specific
weight flow passes (liquid phase only).
[0029] With respect to a condensation unit of the film type, the condensation unit provided
by the present method of modernisation permits an effective mixing of the gaseous
phase in the liquid phase obtaining in this way a remarkable increase of the exchange
coefficient inside the tubes and therefore increasing the overall exchange coefficient
and the efficiency of the pre-existing condensation section.
[0030] This allows to increase the capacity of the existing condensation section.
[0031] Test results have shown that it is even possible to double the overall exchange coefficient
of the existing condensation unit.
[0032] Further, thanks to the step of modifying the vertical condensation unit(s) from the
film type to the "submerged" type, with thermosiphon like circulation of the liquid
phase, it is possible to increase - in a simple and effective way - the residence
time in such units of the therein provided carbamate, which can thus react and be
partially transformed in urea.
[0033] In doing so, it is possible to obtain an increase even equal to 10-20 %, of the overall
reaction volume, that is of the residence time of the carbamate in the condensation
unit and in the reaction space. This factor advantageously implies a corresponding
increase of the conversion yield of the carbon dioxide into urea.
[0034] In order to extract from the condensation section the flow comprising carbamate in
aqueous solution and urea so obtained without having to bring remarkable modifications
to the original structure, the method of modernisation according to the present invention
comprises advantageously the provision in the condensation unit(s) of means for collecting
and feeding the aforesaid flow from an area above the tube bundle to a lower end of
the condensation unit in fluid communication with the means for feeding the liquid
phase to the reactor for urea synthesis.
[0035] It is important to notice how, contrary to the recurrent teaching of the prior art,
that suggests to upgrade the condensation section adding new condensation units or
replacing the existing one with a new unit with a high exchange coefficient, the method
of modernisation according to the present invention permits to achieve the same (if
not greater) capacity increases with the existing condensation unit(s), which are
advantageously only slightly modified from the structural point of view but are dramatically
changed as far as their operation is concerned.
[0036] This result is absolutely surprising if we consider that according to the methods
of modernisation of the prior art it was not conceivable to obtain substantial capacity
increases in the condensation section with the existing apparatuses only.
[0037] According to a particularly advantageous and preferred embodiment of the present
invention, the present method of modernisation further comprises the step of:
- providing means for extracting and feeding the major portion of the gaseous flow comprising
one or more passivating agents together with possible traces of ammonia and carbon
dioxide in vapour phase from such at least one condensation unit to a washing unit
provided downstream the reactor for urea synthesis.
[0038] In other words, through the introduction of suitable means, the major portion of
the gaseous flow comprising the passivating agents fed by the stripping unit to the
condensation unit is advantageously deviated to any one of the washing units located
in the plant downstream of the reaction space instead of passing through the same.
[0039] Advantageously, the method of modernisation according to the present invention permits
therefore to feed to the reactor for urea synthesis only a minor portion of the gaseous
flow comprising the passivating agents, thus reducing to a minimum the presence of
substances extraneous to the conversion reaction - to full advantage of the overall
conversion yield that is increased by 1 to 3 percentage points- and at the same time
guaranteeing a suitable protection of the reaction space against the corrosion.
[0040] In the same way as for the flow comprising ammonia and carbon dioxide in vapour phase,
also in this case the term "major portion" is meant to indicate a portion greater
than 50 % of the overall flow of passivating agents coming out of the stripping unit.
[0041] For example, in case of a major portion comprised between 65-85% of the inert gas
flow, only 15-35% of such inert gases is sent to the synthesis reactor, as compared
to 100% for the prior art, with ensuing remarkable advantages in terms of greater
conversion yield.
[0042] In this regard, it shall be noticed how it is praxis in the field to feed to the
stripping unit a predetermined amount of passivating agents (for example, air or oxygen)
together with the flow of carbon dioxide, in order to protect the apparatuses of the
synthesis section of the urea plants - and in particular the stripping unit - from
a fast deterioration due to the corrosive action of the substances involved in such
reaction. Therefore, the passivating agents and other possible inert substances, which
may be contained in the flow of carbon dioxide, pass through the condensation unit(s)
and are then sent to the reactor for urea synthesis.
[0043] As the operative conditions are less critical than for the stripping unit, the amount
of passivating agents theoretically required for protecting the condensation section
and the reaction space is substantially lower than that effectively circulating in
the synthesis loop.
[0044] Consequently, both the processes for urea production with stripping in carbon dioxide,
and the methods of modernisation of the plants for urea production according to the
prior art, are influenced by a loss of conversion yield in the reaction space and
therefore of a missing production capacity due to the content in excess of inert substances
in such reaction space.
[0045] Thanks to the present invention, the increase in conversion due to a smaller amount
of inert substances present in the reaction space together with the conversion increase
due to the increase of the previously described overall reaction volume, permits to
maximise the increase of conversion yield in the reaction space and therefore of the
production capacity of the existing plant, without creating in this way imbalances
or disorders downstream the reaction space, and in particular overloads of the existing
condensation section.
[0046] Further on, it is worth mentioning that with the aforesaid increases of conversion
yield, it is advantageously possible to maintain the energy consumption low and even,
in some instances, to reduce the steam consumption with respect to the existing plant
to be modernised.
[0047] The major and minor portions of the flow comprising ammonia and carbon dioxide in
vapour phase respectively of the gaseous flow comprising one or more passivating agents
is preferably adjusted according to this method of modernisation thanks to the step
of providing suitable controlling means in the means for extracting and feeding the
major portion of the gaseous flow comprising one or more passivating agents together
with possible traces of ammonia and carbon dioxide in vapour phase from the condensation
unit to such washing unit.
[0048] According to a further aspect thereof, the present invention relates to a process
for producing urea of the type comprising the steps of:
- reacting ammonia and carbon dioxide in a reaction space, obtaining a reaction mixture
comprising urea, carbamate and free ammonia in aqueous solution;
- feeding the reaction mixture to a stripping section with carbon dioxide and subjecting
the mixture to a treatment of partial decomposition of carbamate and partial separation
of free ammonia, obtaining a flow comprising ammonia and carbon dioxide in vapour
phase and a flow comprising urea and residual carbamate in aqueous solution;
- feeding the flow comprising urea and residual carbamate in aqueous solution to an
urea recovery section;
and which is characterised in that it further comprises the steps of:
- feeding a minor portion of the flow comprising ammonia and carbon dioxide in vapour
phase directly to the reaction space;
- feeding a major portion of the flow comprising ammonia and carbon dioxide in vapour
phase to at least one condensation unit and subjecting such major portion to a substantially
total condensation, obtaining a flow comprising urea and carbamate in aqueous solution;
- feeding the flow comprising urea and carbamate in liquid phase to the reaction space.
[0049] This invention further relates to a plant intended for carrying out the aforesaid
process for producing urea, comprising:
- a reactor for urea synthesis;
- means for feeding ammonia and carbon dioxide to the reactor for urea synthesis;
- a stripping unit with carbon dioxide for subjecting a reaction mixture comprising
urea, carbamate and free ammonia in aqueous solution leaving the reactor to a treatment
of partial decomposition of carbamate and partial separation of free ammonia, obtaining
a flow comprising ammonia and carbon dioxide in vapour phase and a flow comprising
urea and residual carbamate in aqueous solution;
- a recovery section of the flow comprising urea and residual carbamate in aqueous solution
leaving the stripping unit for separating urea from the residual carbamate in aqueous
solution;
and which is characterised in that it further comprises:
- at least one condensation unit of the "submerged" type for subjecting to substantially
total condensation at least part of the flow comprising ammonia and carbon dioxide
in vapour phase leaving the stripping unit, obtaining a flow comprising urea and carbamate
in aqueous solution;
- means for feeding a minor portion of the flow comprising ammonia and carbon dioxide
in vapour phase leaving the stripping unit directly to the reactor for urea synthesis;
- means for feeding a major portion of the flow comprising ammonia and carbon dioxide
in vapour phase leaving the stripping unit to such at least one condensation unit;
- means for feeding the flow comprising urea and carbamate in aqueous solution leaving
said at least one condensation unit to the reactor for urea synthesis.
[0050] According to the invention, the plants intended for carrying out the process for
urea production can be realised both ex-novo or by modifying pre-existing plants,
so as to obtain an increase in the production capacity and in some cases an improved
performance from the point of view of energy consumption.
[0051] Further features and advantages of the present invention will appear more clearly
from the following non limiting description of an embodiment of the method of modernisation
and of the urea synthesis process according to the invention, made with reference
to the attached drawings.
Brief description of the drawings
[0052] In such drawings:
- figure 1 illustrates schematically and partially a plant for urea production according
to the stripping process with carbon dioxide of the prior art;
- figure 2 shows a schematic view in longitudinal section of the vertical condensation
unit of the film type of the plant of figure 1 according to the prior art;
- figure 3 illustrates schematically and partially a plant for urea production according
to the stripping process with carbon dioxide realised by the modernisation of the
plant of figure 1 in accordance with a preferred embodiment of the method of modernisation
according to the invention;
- figure 4 shows a schematic view in longitudinal section of the vertical condensation
unit of the "submerged" type of the plant of figure 3, obtained by modifying the condensation
unit of figure 2 according to the present invention;
- figure 5 illustrates schematically and partially a plant for urea production according
to the stripping process with carbon dioxide realised ex-novo for carrying out the
process according to the invention;
- figure 6 shows a schematic view in longitudinal section of the vertical condensation
unit of the "submerged" type of the plant of figure 5 according to the present invention.
Detailed description of a preferred embodiment.
[0053] Just to simplify the disclosure of the present invention, only a portion of a plant
for urea production is schematically represented in figure 1 and more precisely the
high pressure synthesis section (synthesis loop), the remaining sections being not
significant for the comprehension of the present invention.
[0054] Further on, specific reference to the per se conventional connecting ducts of the
various parts of the plant described hereinbelow and illustrated in figure 1, will
be made only when strictly necessary.
[0055] With reference to figure 1, an existing plant for urea production according to the
stripping process with carbon dioxide and featuring the recycle of the reactants to
the reaction space, is indicated in whole with reference numeral 1.
[0056] Plant 1, and more specifically the high pressure synthesis section, comprises a reactor
2 (or reaction space) for urea synthesis, a stripping unit 3 with carbon dioxide,
a condensation section comprising a vertical condensation unit 4 of the film type,
which will be described in greater detail with reference to figure 2, and a washing
unit 5 of the passivating agents and other possible substances inert to the reaction.
[0057] Moreover, plant 1 comprises a recovery section for the urea produced, not represented
in figure 1, and an apparatus 6 for the separation of the steam produced by the cooling
liquid fed to the condensation unit 4.
[0058] The reactor 2 operates usually at a temperature comprised between 180 and 185°C with
a molar ratio NH
3/CO
2 comprised between 2,8 and 3,0, a molar ratio H
2O/CO
2 comprised between 0,4 and 0,5, and a conversion yield comprised between 58 and 60
%.
[0059] The (isobaric) process pressure in the synthesis section of figure 1 is usually comprised
between 140 and 145 bar. Such pressure is usually indicated in the urea synthesis
processes as "high" pressure, as compared with the terms "medium" (about 18 bar) and
"low" (3-4 bar) pressure, respectively, used in the field to indicate the pressure
in the sections downstream the synthesis loop.
[0060] In figure 1, with the numerals 7-21 respective means for feeding the various flows
to the apparatuses of plant 1 for urea production are generally indicated.
[0061] Such feeding means comprises pipelines or connecting ducts, pumps, compressors, ejectors
and other devices of known type, generally employed in such kind of plants, and therefore
they will not be further described in the following description.
[0062] Generally, in the present description and in the enclosed claims, and where it is
not differently indicated, by the terms: "feeding, connecting or extraction means",
it is intended to mean pipelines, connecting lines or ducts, pumps, compressor, ejectors
or other devices of known type, which are used for transporting a liquid or gaseous
flow from a location to another one in the plant.
[0063] More in particular, with 7 and 8 are indicated respective means for feeding to the
stripping unit 3 a gaseous flow comprising feed carbon dioxide, and to the condensation
unit 4 a flow comprising feed ammonia (in liquid phase).
[0064] The feed carbon dioxide sent to the stripping unit 3 through means 7 is employed
as stripping agent of a reaction mixture comprising urea, carbamate and free ammonia
in aqueous solution leaving the reactor 2 and fed to the unit 3 through means 9.
[0065] The stripping unit 3 is of the film type with an external heating with steam. Means
for feeding and extracting steam for the heating of the stripping unit 3 on the shell
side are generally indicated with 22.
[0066] The reaction mixture flowing downwards in the unit 3 in countercurrent with the gaseous
flow comprising carbon dioxide is subjected to a treatment of partial decomposition
of carbamate and partial separation of the free ammonia, obtaining a flow comprising
ammonia and carbon dioxide in vapour phase and a flow comprising urea and residual
carbamate in aqueous solution.
[0067] The flow comprising urea and residual carbamate in aqueous solution is extracted
from the bottom of the stripping unit 3 and sent to the urea recovery section (non
represented) through the feeding means 10.
[0068] The gaseous flow obtained in the stripping unit 3 and comprising also water in addition
to ammonia and carbon dioxide, flows out from an upper end of such unit 3 and is fed
to an upper end of the condensation unit 4 through feeding means 11.
[0069] The condensation unit 4 is of the vertical film type for subjecting to partial condensation
all the flow comprising ammonia and carbon dioxide in vapour phase coming from the
unit 3 through means 11.
[0070] Further on, the flow comprising feed ammonia is fed to the upper end of the condensation
unit 4 through means 8 together with a recycled flow comprising ammonia and carbamate
in aqueous solution. Recycled ammonia and carbamate in aqueous solution are fed into
the flow comprising feed ammonia through feeding means 13. Connecting means 12 are
also provided between the reactor 2 and the feeding means 13.
[0071] As shown in figure 2, the partial condensation of the gaseous phase takes place as
a result of the contact of such phase with the liquid phase, flowing in co-current
downwards inside a plurality of tubes of a tube bundle 23 enclosed in a shell 24 of
the condensation unit 4.
[0072] In such figure, details of plant 1 equivalent as for structure and operation to those
of figure 1 will be indicated using the same reference numerals and will not be described
any more.
[0073] The tube bundle 23 is delimited on its upper and lower part by tube plates 25 and
26 respectively, to which the upper and lower heads 27, 28, of the condensation unit
4 are respectively fixed.
[0074] In particular, the liquid phase comprising feed ammonia and recycled carbamate in
aqueous solution is introduced through the inlet nozzle 30 in the space 29 defined
by the upper head 27, spread on the upper tube plate 25 and made to fall by gravity
along the tubes of the tube bundle 23 thus forming a film. Also the gaseous phase
comprising ammonia and carbon dioxide fed to the upper tube plate 25 through the inlet
nozzle 31 flows inside such tubes (which operates substantially empty).
[0075] As a consequence of the partial condensation, a liquid flow comprising carbamate
in aqueous solution and a gaseous flow comprising ammonia and carbon dioxide in vapour
are obtained at the tubes outlet of the tube bundle 23. Such flows pass through the
space 32 defined inside the lower head 28 and flow out of the condensation unit 4
through the outlet nozzles 33, 34 for the liquid and for the gaseous phase, respectively.
[0076] The phase comprising ammonia and carbon dioxide in gaseous phase, as well as the
phase comprising carbamate in aqueous solution are hence separately sent from the
bottom of the condensation unit 4 to the reactor 2 for urea synthesis through respective
feeding means 14, 15.
[0077] In figure 2, the flows of the gaseous phase and the liquid phase inside the condensation
unit 4 are generally indicated with Fg and Fl, respectively.
[0078] It is clear that in the condensation unit 4 according to the prior art, the residence
times of the phases inside the tubes of the tube bundle 23 are extremely low, as well
as an uniform distribution of the liquid phase on the upper tube plate 26 can be rather
difficult to be achieved. All this is detrimental for an effective condensation of
the reactants in gaseous phase.
[0079] The heat produced during the partial condensation of the flow comprising ammonia
and carbon dioxide in vapour phase inside the unit 4, is removed by making a cooling
liquid, i.e. water, to flow through the tube bundle 23 - on the shell side - producing
recovery steam (generally at 4.5 absolute bar).
[0080] The water flow is fed on the shell side to the condensation unit 4 through means
16, and extracted from such unit through means 17.
[0081] The water flow coming out of the unit 4, and comprising also the steam produced by
indirect heat exchange with the process fluids flowing inside the condensation unit
4 on the tubes side, is fed through means 17 to the apparatus 6 for the separation
of the steam produced from the water. This water is thus recycled through means 16
to the condensation unit 4 on the shell side, whereas the steam is extracted from
the separation apparatus 6 through means 18.
[0082] In the technical language of the field, the separation apparatus 6 is also indicated
with the term "steam drum".
[0083] In order to protect the apparatuses of the high pressure synthesis section from corrosion,
the plant 1 further comprises the possibility of flowing one or more passivating agents,
for example oxygen or air, inert to urea synthesis reaction, through such devices.
[0084] To this end, means are generally provided for feeding a gaseous flow, comprising
the passivating agents, to the stripping unit 3 and from such stripping unit to the
urea synthesis reactor 2, passing through the condensation unit 4.
[0085] In the example of figure 1, the passivating agents are directly mixed with the gaseous
flow comprising feed carbon dioxide, therefore the aforesaid means for feeding the
gaseous flow comprising passivating agents corresponds to feeding means 7.
[0086] Since the operation conditions in the stripping unit 3 are the most critical from
the corrosion point of view, such unit requires an amount of passivating agents substantially
greater than that practically required for the passivation of the other apparatuses.
Accordingly, beside the stripping unit 3, the other apparatuses of the synthesis section
are fed with overabundant amounts of passivating agents.
[0087] Moreover, the gaseous flow comprising carbon dioxide fed to the stripping unit 3
through the means 7 contains a certain amount of other inert substances, for example
1-3 % in volume, which, together with the passivating agents, pass through the various
apparatuses of the high pressure synthesis section.
[0088] In particular, the amount of passivating and inert agents usually fed to the urea
synthesis reactor 2 is such to reduce by some percentage points the conversion yield
of carbon dioxide in urea with respect to the yield achievable with a lower contents
of substances inert to the synthesis reaction.
[0089] The flow of inert substances passes through the urea synthesis reactor 2 entraining
a part of the unreacted ammonia and carbon dioxide in vapour phase, and is thus fed
through means 19 from an upper end of the reactor 2 to the washing unit 5.
[0090] In the washing unit 5, ammonia and carbon dioxide in vapour phase are condensed by
means of a washing flow comprising - in the example of figure 1 - carbamate in aqueous
solution coming from the urea recovery section (not represented) and fed to the unit
5 through means 20.
[0091] From the washing unit 5, the extraction of the passivating agents and of the inert
substances in general from the high pressure synthesis section takes place through
means 21, whereas the washing flow suitably enriched in ammonia and carbon dioxide
is sent to the condensation unit 4 through means 13.
[0092] With reference to figure 3, the plant for urea production of figure 1 is advantageously
represented suitably modified according to a first embodiment of the method of modernisation
of the present invention.
[0093] The particulars related to the modifications brought into the existing condensation
unit, are better highlighted with reference to figure 4.
[0094] In figures 3 and 4, the details of plant 1 and of the condensation unit 4 equivalent
as for structure and operation to those illustrated in figures 1 and 2, will be indicated
with the same reference numerals and will not be described again.
[0095] Thanks to the present method of modernisation, the feeding means to the condensation
unit 4 of the flow comprising ammonia and carbon dioxide in vapour phase coming out
of the stripping unit 3 are suitably modified in such a way to subject only a major
portion of such flow to condensation with the liquid phase.
[0096] Further on, the condensation unit 4 is advantageously modified in its internal so
as to permit a substantially total condensation of such major portion.
[0097] To this end, according to the embodiment of figure 3, means 11 of the existing plant
of figure 1 are modified and means 35 and 36 are provided for feeding a minor portion
of the flow comprising ammonia and carbon dioxide in vapour phase from the stripping
unit 3 directly to the urea synthesis reactor 2, and for feeding a major portion of
such flow to the condensation unit 4, respectively. Means 35 and 36 comprises for
examples respective connection ducts.
[0098] It is clear that, by making the gaseous flow comprising one or more passivating agents
to flow inside the feeding means 11 together with the flow comprising ammonia and
carbon dioxide in vapour phase, the provision of means 36 and 35 inevitably causes
a corresponding separation in a minor and a major portion of the passivating agents
fed to the reactor 2 and to the condensation unit 4, respectively.
[0099] Inside the condensation unit 4, means are provided, which are described in more detail
in figure 4, for allowing condensation of substantially all the reactants in gaseous
phase fed thereto in a simple and effective way.
[0100] In other words, the existing vertical condensation unit of the film type is advantageously
transformed in a vertical condensation unit of the "submerged" type, i.e. with the
tube bundle full of condensation liquid, remarkably improving the efficiency of such
unit and thus its capacity. Moreover, this change allows to increase the residence
time of formation carbamate in the condensation unit 4, which partially reacts in
urea.
[0101] In particular, the condensation liquid comprising carbamate in aqueous solution and
ammonia is advantageously made to circulate inside the tube bundle 23 with a termosiphon
like motion. The major portion of the flow comprising ammonia and carbon dioxide in
vapour phase is instead fed through means 36 into the lower space 32 near a lower
end of the tube bundle 23, and more precisely proximate to the lower tube plate 26.
[0102] In doing so, ammonia and carbon dioxide in vapour phase pass through the condensation
unit 4 upwards - in co-current with the condensation liquid - gurgling inside the
tubes full of liquid of the tube bundle 23 and thus with a considerable exchange coefficient
on the tubes side.
[0103] In order to allow a correct circulation with a termosiphon like motion of the condensation
liquid inside the condensation unit 4, the present method of modernisation comprises
the provision of a gas distributor 37 comprising a perforated wall 37a provided proximate
to the lower tube plate 26 in fluid communication with the feeding means 36 of the
major portion of the flow comprising ammonia and carbon dioxide in vapour phase.
[0104] The distributor 37 is dimensioned in such a way to distribute advantageously the
ammonia and carbon dioxide in vapour phase only in a determined portion of the tube
bundle 23.
[0105] In this way, the tube bundle 23 is inherently subdivided in a first portion 38 (a
central portion in figure 4) through which a low specific weight liquid/gaseous flow
passes upwards, and in a second portion 39 (a peripheral portion in figure 4) through
which only the high specific weight liquid flow passes downwards, which circulates
therefore in a thermosiphon like motion inside the condensation unit 4.
[0106] As illustrated in figure 4, a further peripheral portion 40 of the tube bundle 23
is used for the passage from the upper space 29 to the feeding means 15 of the flow
comprising urea and carbamate in aqueous solution to be sent to the synthesis reactor
2.
[0107] In this respect, the method of modernisation according to the invention provides
that suitable means, indicated in figure 4 with 41 and 42, be provided inside the
condensation unit 4 for collecting and feeding such flow comprising urea and carbamate
in aqueous solution from the space 29 to the means 15 through the third portion 40
of the tube bundle 23.
[0108] Such collecting and feeding means comprise a wall 41 which is not perforated and
extends vertically from the upper tube plate 25 for a portion of the upper space 29,
and connecting means 42 between the portion of the lower tube plate 26 which receive
the flow comprising urea and carbamate in aqueous solution to be sent to the reactor
2 and the feeding means 15.
[0109] The wall 41 defines a liquid head in the upper space 29 of the liquid phase circulating
according to a thermosiphon like motion and separates as weir the flow comprising
urea and carbamate in aqueous solution to be sent to means 42 through the portion
40 of the tube bundle 23.
[0110] It shall be noted how, increasing the height of the wall 41 and therefore the level
of the liquid phase in the space 29, it is possible to increase the residence time
of such phase in the condensation unit 4 to full advantage of a higher production
rate of urea in such unit.
[0111] In turn, means 42 may for example comprise a box-shaped device fixed to the lower
tube plate 26 for collecting the liquid phase coming from the portion 40 of the tube
bundle 23, and connected to means 15 through a duct passing through the nozzle 33.
[0112] The flow of condensation liquid comprising carbamate in aqueous solution and ammonia
fed to the condensation unit 4 through means 8 leads into the upper space 29 through
the inlet nozzle 30 and is distributed through a toroidal distributor 43 proximate
to the upper tube plate 25 in the portion 39 of the tube bundle 23.
[0113] The passivating agents and other possible inert substances for the urea synthesis
reaction fed to the condensation unit 4 through means 34 pass through the tube bundles
23 upwards and separate from the liquid phase in the upper space 29 of unit 4 together
with possible uncondensed traces of ammonia and carbon dioxide in vapour phase.
[0114] Advantageously, the gaseous phase that separates from the liquid phase in the upper
space 29 is extracted from the condensation unit 4 and fed to the washing unit 5 downstream
the reactor 2 thanks to the provision - according to the present method of modernisation
- of suitable means 44.
[0115] Such means 44, for example, consist of a duct in fluid communication with the upper
space 29 of the condensation unit 4 through the nozzle 31.
[0116] As seen with reference to the summary of the invention, thanks to this feature it
is possible to increase the conversion yield in the urea synthesis reactor 2 by some
percentage point (1-3 %) with considerable advantages as far as an increase of the
production capacity of the existing plant is concerned.
[0117] In doing so, not only the conversion yield is increased, but the reactor 2 may operate
in more favourable conditions and the plant energy consumption are lower than before
the modernisation (lower steam consumption) .
[0118] A further advantage resulting from this embodiment of the present method of modernisation
consists in that, feeding to the synthesis reactor 2 exclusively a minor portion of
the inert substances, the amount of ammonia and carbon dioxide in vapour phase leaving
the reactor 2 will be remarkably lower than when all inert substances are fed to the
reactor 2.
[0119] Accordingly, as the major portion of the inert substances coming from the condensation
unit 4 contains only traces of ammonia and carbon dioxide, a decrease of the load
of the washing unit 5 is further obtained; hence, this unit will have to recover smaller
amounts of reactants in gaseous phase (to separate from the flow of inert substances
smaller amounts of ammonia and carbon dioxide in vapour phase), allowing better operation
conditions of unit 5 and therefore an increase in the capacity of such unit.
[0120] According to further embodiments (not shown), it is foreseen to provide means for
feeding the flow of inert substances coming from the condensation section 4 to other
washing units downstream of the reactor 2, which are present in the existing plant
for urea production. Alternatively, whenever the content of ammonia and carbon dioxide
in the flow of inert substances coming out of the unit 4 is null or substantially
null, it is possible to foresee the step of providing means (not shown) for evacuating
such flow immediately into the environment, for example a vent valve connected to
the gas outlet nozzle 31.
[0121] Preferably, according to the present method of modernisation, it is foreseen to provide,
in means 44, suitable means 45, illustrated in figure 3 by a control valve, for the
control of the major and minor portion of the gaseous flow comprising ammonia and
carbon dioxide in vapour phase, respectively of the gaseous flow comprising one or
more passivating agents.
[0122] As the means 44 put in fluid communication the top of the condensation unit 4 with
the top of reactor 2, the control valve 45 permits to control the amount of ammonia
and carbon dioxide in vapour phase to be sent to the condensation unit 4, respectively
to the urea synthesis reactor 2.
[0123] Depending on the size and specific geometry of the tube bundle 23, the present invention
provides a method of modernisation that allows to further increase the overall exchange
coefficient of the condensation unit 4, increasing the heat exchange coefficient outside
of the tube bundle 23 (shell side) where the cooling water is made to flow, in addition
to the increase inside the tubes (tube side) where the process flows pass, to full
advantage of the condensation unit capacity which is thereby improved.
[0124] It has been surprisingly found that in order to ameliorate the removal of heat produced
during the condensation of ammonia and carbon dioxide in vapour phase and therefore
to increase the heat exchange coefficient, it is preferable not to generate steam
during the crossing on the shell side of the tube bundle 23 by the cooling water.
[0125] In fact, in the specific case wherein the tube bundle 23 of the existing condensation
unit 4 has a very high number of tubes provided close to each other and the space
available for the passage of water on the shell side is small, the presence of steam
of formation in the cooling water flowing on the shell side in the condensation unit
4 seems to be detrimental for the circulation of the liquid. This would imply a decrease
in the heat exchange and accordingly a reduced removal of condensation heat between
the flows flowing on the tube side and the cooling water.
[0126] It is worth noting that this feature is well in contrast with the teaching of the
prior art, wherein evaporation of the cooling water for the removal of condensation
heat is carried out during the crossing on the shell side of the tube bundle, with
the purpose of promoting the heat removal and having a good exchange coefficient on
the shell side.
[0127] Therefore, in the specific cases of condensation units with a high number of tubes
arranged close to each other, the present invention provides advantageously the arrangement
of suitable means for increasing the flow rate of the cooling water in such a way
to prevent the formation of steam inside the condensation unit 4 and further increase
the overall heat exchange coefficient.
[0128] The increase of the flow rate and hence of the circulation of water inside the cooling
loop is obtained, for example, through the arrangement of a ricirculation pump (not
shown) in the means 16 or, alternatively, by increasing the height of the apparatus
6, i.e. increasing the difference in height between the apparatus 6 and the unit 4
so as to increase the liquid head.
[0129] In doing so, the inlet pressure at the shell side of unit 4 increases and the temperature
increase becomes smaller so that steam is formed only at the outlet of such unit 4.
[0130] Thanks to these modifications of the cooling loop, high exchange coefficients on
the shell side may be attained, even in those specific cases wherein the condensation
unit has a tube bundle with the above mentioned characteristics.
[0131] In general, the method of modernisation according to the present invention allows
not only to increase the capacity of the condensation unit 4 but also to obtain an
increase of the pressure of the steam produced, and therefore a heat recovery at a
higher thermal level.
[0132] The steam at higher pressure so obtained may advantageously be used in other parts
of the plant 1 for urea production, for example in the heat exchangers downstream
the synthesis section or in the CO
2 compressor turbine, reducing the loads and the energy consumption of such apparatuses.
[0133] With reference to figure 5, a plant 46 for urea production according to the stripping
process with carbon dioxide is advantageously represented, realised ex-novo for carrying
out the process according to the invention.
[0134] The particulars related to the condensation unit 4 of the new plant are better shown
in figure 6.
[0135] In figures 5 and 6, the details of the plant 46 and of the condensation unit 4 which
are structurally and functionally equivalent to those illustrated in the preceding
figures will be indicated with the same reference numerals and will not be further.
[0136] In other words, as far as the description of the various means and apparatuses of
plant 46, as well as the description of its operation is concerned, reference is substantially
made to figures 3 and 4.
[0137] The only relevant difference is given by the different inlet into the unit 4 of the
flow comprising ammonia and carbamate in aqueous solution (means 8) and by the different
outlet from such unit of the flow comprising urea and carbamate in aqueous solution
to be sent to the reactor 2 (means 15).
[0138] These differences are due to the fact that, as the construction of a new condensation
unit was possible, the arrangement of the inlet and outlet nozzles for the various
streams was optimised.
[0139] In this way, the presence of collecting and feeding means 41, 42, in the upper and
lower spaces 29 and 30, respectively, is avoided. Further on, it is avoided to use
a part of the tube bundle 23 for the extraction of the flow comprising urea and carbamate
in aqueous solution from the condensation unit 4. Therefore, it is obtained a maximum
exploitation of the inner volume of the unit 4 available for the condensation of ammonia
and carbon dioxide in vapour phase.
[0140] In particular, the phase comprising ammonia and carbamate in aqueous solution is
now fed - through means 8 - to the unit 4 through the nozzle 34 arranged at the bottom
of such unit. Moreover, the flow comprising urea and carbamate in aqueous solution
to be fed to the reactor 2 through means 15, leaves the unit 4 through a nozzle 48
arranged proximate to its upper end.
[0141] In order to secure a constant flow of liquid leaving the nozzle 48, the upper collection
chamber 29 is further provided with a collection vessel 47 that operates as collector
of the liquid phase to be supplied to the reactor 2.
[0142] The scheme of figure 5 represents anyway only a preferred embodiment of a new plant
for urea production according to the present invention. In fact, nothing prevents
new plants to be realised in an advantageous way according to the scheme of figure
3.
[0143] The advantages described with reference to the modernisation of existing plants recur
in the plant realised ex-novo of figure 5, with the exception of the investment costs
that are, of course, much higher for a new plant.
[0144] Thanks to the plant of figure 3 obtained after the modernisation of an existing plant
and to the new plant of figure 5, it is advantageously possible to carry out the process
for urea production described and claimed in the enclosed claims 9-13.
[0145] In particular, such process is characterised in that it comprises the steps of feeding
(means 35) a minor portion of the flow comprising ammonia and carbon dioxide in vapour
phase directly to the reaction space 2, of feeding (means 36) a major portion of the
flow comprising ammonia and carbon dioxide in vapour phase to at least one condensation
unit 4 and subjecting this major portion to substantially total condensation thus
obtaining a flow comprising urea and carbamate in aqueous solution, of feeding (means
15) the flow comprising urea and carbamate in aqueous solution to the reaction space
2.
[0146] Preferably, in order to promote the above mentioned substantially total condensation
of the major portion of the gaseous phase fed to the condensation unit 4, the process
according to the invention comprises the step of flowing such major portion in the
condensation unit 4 through a flow of liquid comprising carbamate in aqueous solution
and ammonia circulating inside such unit in a thermosiphon-like motion.
[0147] Still more precisely, the process comprises the step of flowing the major portion
of the flow comprising ammonia and carbon dioxide in vapour phase together with the
flow of liquid comprising carbamate in aqueous solution and ammonia upwards inside
a preferably central, predetermined portion 38 of a vertical tube bundle 23 of the
condensation unit 4.
[0148] According to a preferred embodiment of the present invention, the process comprises
advantageously the steps of extracting and feeding (means 44) the major portion of
the gaseous flow comprising one or more passivating agents together with possible
traces of ammonia and carbon dioxide in vapour phase from the condensation unit 4
to a washing unit 5 downstream of the reaction space 2, for the recovery of the traces
of ammonia and carbon dioxide with a washing flow, preferably a flow comprising carbamate
in aqueous solution coming from the recovery section for urea.
[0149] Further on, in some specific cases, it may be advantageous to feed the flow comprising
cooling water (means 16) to the condensation unit 4 (on the shell side) with such
a flow rate so as to limit at least partially the formation of steam inside said unit
4.
[0150] The advantages attained with the process according to the present invention are various.
In particular it is worth stressing that such process allows to obtain - simply and
effectively - a high exchange coefficient in the condensation unit 4, high conversion
yields and therefore high production capacity. Further on, its realisation is technically
easy, with low energy consumption and investment costs.
[0151] Finally, the scope of protection defined by the method of modernisation according
to the present invention shall be considered as being extended - beside the modification
of existing structures - also to the particular case of a replacement - because of
wear - of the existing condensation unit with a new unit having a configuration of
the kind represented in figures 4 and 6. This specific case occurs whenever the existing
unit is at the end of its operating life and does not guarantee a reliable and lasting
operation any more.
1. Method for the modernisation of a plant for urea production of the type comprising:
- a reactor (2) for urea synthesis;
- means (7, 8) for feeding ammonia and carbon dioxide to said reactor (2) for urea
synthesis;
- a stripping unit (3) with carbon dioxide for subjecting a reaction mixture comprising
urea, carbamate and free ammonia in aqueous solution leaving said reactor (2) to a
treatment of partial decomposition of carbamate and partial separation of free ammonia,
thus obtaining a flow comprising ammonia and carbon dioxide in vapour phase and a
flow comprising urea and residual carbamate in aqueous solution, respectively;
- a recovery section for said flow comprising urea and residual carbamate in aqueous
solution leaving said stripping unit (3) for separating the urea from the residual
carbamate in aqueous solution;
- at least one vertical condensation unit (4) of the film type, comprising a tube
bundle (23) for subjecting to partial condensation said flow comprising ammonia and
carbon dioxide in vapour phase leaving said stripping unit (3), thus obtaining a liquid
flow comprising carbamate in aqueous solution and a gaseous flow comprising ammonia
and carbon dioxide in vapour phase;
- means (15, 14) for respectively feeding the flow comprising carbamate in aqueous
solution and the gaseous flow comprising ammonia and carbon dioxide in vapour phase
to said reactor (2) for urea synthesis;
- means (7, 11, 14) for feeding a gaseous flow comprising one or more passivating
agents, inert with respect to the synthesis reaction of urea, to said stripping unit
(3) and from the stripping unit (3) to said reactor (2) for urea synthesis through
said at least one condensation unit (4);
said modernisation method being
characterised in that it comprises the steps of:
- providing means (35) for feeding a minor portion of said flow comprising ammonia
and carbon dioxide in vapour phase together with a minor portion of said gaseous flow
comprising one or more passivating agents leaving said stripping unit (3) directly
to said reactor (2) for urea synthesis;
- providing means (36) for feeding a major portion of said flow comprising ammonia
and carbon dioxide in vapour phase together with a major portion of said gaseous flow
comprising one or more passivating agents leaving said stripping unit (3) to said
at least one condensation unit (4);
- providing in said at least one condensation unit (4) means (37) for subjecting to
substantially total condensation said major portion of the flow comprising ammonia
and carbon dioxide in vapour phase, obtaining a flow comprising urea and carbamate
in aqueous solution.
2. Method according to claim 1, characterised in that it provides means (17) for transforming said at least one vertical condensation unit
(4) of the film type in a vertical condensation unit of the "submerged" type.
3. Method according to claim 2, characterised in that it provides means (36, 37) for feeding the major portion of said flow comprising
ammonia and carbon dioxide in vapour phase in a lower end (26) of the tube bundle
(23) of said at least one condensation unit (4) and means (37a) for circulating a
condensation liquid flow comprising carbamate in aqueous solution and ammonia inside
the condensation unit with a thermosiphon like motion.
4. Method according to claim 3, characterised in that it provides a gas distributor (37, 37a) proximate to said lower end (26) of the tube
bundle (23) in fluid communication with said means (36) for feeding the major portion
of the flow comprising ammonia and carbon dioxide in vapour phase, to distribute ammonia
and carbon dioxide in vapour phase in a preferably central, predetermined portion
(38) of the tube bundle (23).
5. Method according to claim 2, characterised in that it provides in said at least one condensation unit (4) means (41, 42) for collecting
and feeding said flow comprising urea and carbamate in aqueous solution from an area
(29) located above said tube bundle (23) to a lower end of said at least one condensation
unit (4) in fluid communication with said means (15) for feeding the liquid phase
to the reactor (2) for urea synthesis.
6. Method according to claim 1,
characterised in that it further comprises the step of:
- providing means (44) for extracting and feeding said major portion of the gaseous
flow comprising one or more passivating agents together with possible traces of ammonia
and carbon dioxide in vapour phase from said at least one condensation unit (4) to
a washing unit (5) provided downstream said reactor (2) for urea synthesis.
7. Method according to claim 6,
characterised in that it further comprises the step of:
- providing suitable means (45) for controlling the major and minor portions of said
flow comprising ammonia and carbon dioxide in vapour phase and of said gaseous flow
comprising one or more passivating agents respectively, in said means (44) for extracting
and feeding said major portion of gaseous flow comprising one or more passivating
agents together with possible traces of ammonia and carbon dioxide in vapour phase
from said at least one condensation unit (4) to said washing unit (5).
8. Method of modernisation according to claim 1,
characterised in that it further comprises the step of:
- providing means for increasing the flow rate of a flow comprising cooling water
fed to said at least one condensation unit (4).
9. Process for producing urea of the type comprising the steps of:
- reacting ammonia and carbon dioxide in a reaction space (2), obtaining a reaction
mixture comprising urea, carbamate and free ammonia in aqueous solution;
- feeding said reaction mixture to a stripping unit (3) with carbon dioxide and subjecting
said mixture to a treatment of partial decomposition of carbamate and partial separation
of free ammonia, obtaining a flow comprising ammonia and carbon dioxide in vapour
phase and a flow comprising urea and residual carbamate in aqueous solution;
- feeding said flow comprising urea and residual carbamate in aqueous solution to
an urea recovery section;
characterised in that it further comprises the steps of:
- feeding a minor portion of said flow comprising ammonia and carbon dioxide in vapour
phase directly(35) to said reaction space (2);
- feeding a major portion of said flow comprising ammonia and carbon dioxide in vapour
phase (36) to at least one condensation unit (4) and subjecting such major portion
to a substantially total condensation, obtaining a flow comprising urea and carbamate
in aqueous solution;
- feeding said flow comprising urea and carbamate in aqueous solution to said reaction
space (2).
10. Process according to claim 9, characterised in that said major portion of the flow comprising ammonia and carbon dioxide in vapour phase
is made to flow in said at least one condensation unit (4) through a liquid flow comprising
carbamate in aqueous solution and ammonia circulating inside said at least one condensation
unit (4) with a thermosiphon like motion.
11. Process according to claim 10, characterised in that said major portion of the flow comprising ammonia and carbon dioxide in vapour phase
is made to flow upwards inside a preferably central, predetermined portion (38) of
a vertical tube bundle (23) of said at least one condensation unit (4) together with
the liquid flow comprising carbamate in aqueous solution and ammonia.
12. Process according to claim 9,
characterised in that in further comprises the steps of:
- feeding a gaseous flow comprising one or more passivating agents, inert to the synthesis
reaction for urea, to said stripping section (3);
- feeding a minor portion of said gaseous flow comprising one or more passivating
agents from said stripping section (3) directly to said reaction space (2);
- feeding a major portion of said gaseous flow comprising one or more passivating
agents from said stripping section (3) to said at least one condensation unit (4).
- extracting and feeding said major portion of the gaseous flow comprising one or
more passivating agents together with possible traces of ammonia and carbon dioxide
in vapour phase from said at least one condensation unit (4) to a washing unit (5)
arranged downstream said reaction space (2).
13. Process according to claim 9,
characterised in that it further comprises the step of:
- feeding a flow comprising cooling water to said at least one condensation unit (4)
at such a flow rate as to limit at least partially the formation of steam inside said
condensation unit (4).
14. Plant for urea production, comprising:
- a reactor (2) for urea synthesis;
- means (7, 8) for feeding ammonia and carbon dioxide to said reactor (2) for urea
synthesis;
- a stripping unit (3) with carbon dioxide for subjecting a reaction mixture comprising
urea, carbamate and free ammonia in aqueous solution leaving said reactor (2) to a
treatment of partial decomposition of carbamate and partial separation of free ammonia,
obtaining a flow comprising ammonia and carbon dioxide in vapour phase and a flow
comprising urea and residual carbamate in aqueous solution;
- a recovery section of said flow comprising urea and residual carbamate in aqueous
solution leaving said stripping unit (3) for separating urea from the residual carbamate
in aqueous solution;
characterised in that it further comprises:
- at least one condensation unit (4) of the "submerged" type for subjecting to substantially
total condensation at least part of said flow comprising ammonia and carbon dioxide
in vapour phase leaving said stripping unit (3), obtaining a flow comprising urea
and carbamate in aqueous solution;
- means (35) for feeding a minor portion of said flow comprising ammonia and carbon
dioxide in vapour phase leaving said stripping unit (3) directly to said reactor (2)
for urea synthesis;
- means (36) for feeding a major portion of said flow comprising ammonia and carbon
dioxide in vapour phase leaving said stripping unit (3) to said at least one condensation
unit (4);
- means (15) for feeding said flow comprising urea and carbamate in aqueous solution
leaving said at least one condensation unit (4) to said reactor (2) for urea synthesis.
15. Plant according to claim 14 characterised in that said at least one condensation unit (4) is vertical and comprises inlet nozzles (33,
34) for feeding said major portion of the flow comprising ammonia and carbon dioxide
in vapour phase and for feeding a condensation liquid flow comprising carbamate in
aqueous solution and ammonia respectively, arranged in a lower end thereof, and an
outlet nozzle (48) of said flow comprising urea and carbamate in aqueous solution
arranged proximate to an upper end thereof.
16. Plant according to claim 15 characterised in that said at least one condensation unit (4) comprises a tube bundle (23) and a gas distributor
(37, 37a) proximate to a lower end (26) of the tube bundle (23) in fluid communication
with said means (33) for feeding the major portion of the flow comprising ammonia
and carbon dioxide in vapour phase, to distribute the ammonia and carbon dioxide in
vapour phase in a preferably central, predetermined portion (38) of the tube bundle
(23).
17. Plant according to claim 16,
characterised in that it further comprises:
- means (7) for feeding a gaseous flow comprising one or more passivating agents,
inert to the urea synthesis reaction to said stripping unit (3);
- means (35) for feeding a minor portion of said gaseous flow comprising one or more
passivating agents from said stripping unit (3) directly to said reactor (2) for urea
synthesis;
- means (36) for feeding a major portion of said gaseous flow comprising one or more
passivating agents from said stripping unit (3) to said at least one condensation
unit (4);
- means (44) for extracting and feeding said major portion of the gaseous flow comprising
one or more passivating agents together with possible traces of ammonia and carbon
dioxide in vapour phase from said at least one condensation unit (4) to a washing
unit (5) arranged downstream of said reactor (2) for urea synthesis.
18. Plant according to claim 17, characterised in that it further comprises suitable means (45) for regulating the major and minor portion
of said flow comprising ammonia and carbon dioxide in vapour phase and said gaseous
flow comprising one or more passivating agents respectively, arranged in said means
(44) for feeding the gaseous flows so extracted to said washing unit (5).
19. Plant according to claim 17, characterised in that said at least one condensation unit (4) comprises a nozzle (31) for extracting said
major portion of the gaseous flow comprising one or more passivating agents together
with possible traces of ammonia and carbon dioxide in vapour phase arranged in its
upper end.
1. Verfahren zum Modernisieren einer Anlage für die Harnstoffproduktion von der Bauart,
die folgendes umfasst:
- einen Reaktor (2) für die Harnstoffsynthese;
- Mittel (7, 8) zum Zuführen von Ammoniak und Kohlendioxid zu dem Reaktor (2) für
die Harnstoffsynthese;
- eine Trenneinheit (3) mit Kohlendioxid zum Unterwerfen eines Harnstoff, Carbamat
und freies Ammoniak in wässriger Lösung umfassenden Reaktionsgemischs, das den Reaktor
(2) verlässt, einer Behandlung zur teilweisen Zersetzung von Carbamat und teilweisen
Abtrennung von freiem Ammoniak, um so einen Ammoniak und Kohlendioxid in der Dampfphase
umfassenden Strom bzw. einen Harnstoff und Restcarbamat in wässriger Lösung umfassenden
Strom zu erhalten;
- eine Rückgewinnungszone für den Harnstoff und Restcarbamat in wässriger Lösung umfassenden
Strom, der die Trenneinheit (3) verlässt, zum Abtrennen des Harnstoffs von dem Restcarbamat
in wässriger Lösung;
- mindestens eine vertikale Kondensationseinheit vom Dünnschichttyp, die ein Rohrbündel
(23) umfasst, zum Unterwerfen des Ammoniak und Kohlendioxid in der Dampfphase umfassenden
Stroms, der die Trenneinheit (3) verlässt, einer teilweisen Kondensation, um so einen
flüssigen, Carbamat in wässriger Lösung umfassenden Strom und einen gasförmigen, Ammoniak
und Kohlendioxid in der Dampfphase umfassenden Strom zu erhalten;
- Mittel (15, 14) zum jeweiligen Zuführen des Carbamat in wässriger Lösung umfassenden
Stroms und des gasförmigen, Ammoniak und Kohlendioxid in der Dampfphase umfassenden
Stroms zu dem Reaktor (2) für die Harnstoffsynthese;
- Mittel (7, 11, 14) zum Zuführen eines gasförmigen, ein oder mehr Passivierungsmittel
umfassenden Stroms, die bezüglich der Synthesereaktion von Harnstoff inert sind, zur
Trenneinheit (3) und von der Trenneinheit (3) zum Reaktor (2) für die Harnstoffsynthese
durch die mindestens eine Kondensationseinheit (4);
wobei das Modernisierungsverfahren
dadurch gekennzeichnet ist, dass es die folgenden Schritte umfasst:
- Bereitstellen von Mitteln (35) zum direkten Zuführen eines kleinen Teils des Ammoniak
und Kohlendioxid in der Dampfphase umfassenden Stroms zusammen mit einem kleinen Teil
des gasförmigen, ein oder mehr Passivierungsmittel umfassenden Stroms, der die Trenneinheit
(3) verlässt, zu dem Reaktor (2) für die Harnstoffsynthese;
- Bereitstellen von Mitteln (36) zum Zuführen eines Hauptteils des Ammoniak und Kohlendioxid
in der Dampfphase umfassenden Stroms zusammen mit einem Hauptteil des gasförmigen,
ein oder mehr Passivierungsmittel umfassenden Stroms, der die Trenneinheit (3) verlässt,
zu der mindestens einen Kondensationseinheit (4) ;
- Bereitstellen von Mitteln (37) in der mindestens einen Kondensationseinheit (4)
zum Unterwerfen des Hauptteils des Ammoniak und Kohlendioxid in der Dampfphase umfassenden
Stroms einer im Wesentlichen vollständigen Kondensation, wobei ein Strom erhalten
wird, der Harnstoff und Carbamat in flüssiger Lösung umfasst.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es Mittel (17) zum Umwandeln der mindestens einen vertikalen Kondensationseinheit
(4) vom Dünnschichttyp in eine vertikale Kondensationseinheit vom "Tauch"-Typ zur
Verfügung stellt.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass es Mittel (36, 37) zum Zuführen des Hauptteils des Ammoniak und Kohlendioxid in der
Dampfphase umfassenden Stroms an einem unteren Ende (26) des Rohrbündels (23) der
mindestens einen Kondensationseinheit (4) und Mittel (37a) zum Zirkulieren eines flüssigen,
Carbamat in wässriger Lösung und Ammoniak umfassenden Kondensationsstroms in der Kondensationseinheit
mit einer thermosiphonartigen Bewegung umfasst.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass es unmittelbar anschließend an das untere Ende (26) des Rohrbündels (23) einen Gasverteiler
(37, 37a) in Fluidverbindung mit den Mitteln (36) zum Zuführen des Hauptteils des
Ammoniak und Kohlendioxid in der Dampfphase umfassenden Stroms zur Verfügung stellt,
um Ammoniak und Kohlendioxid in der Dampfphase in einen vorzugsweise zentralen, vorbestimmten
Teil (38) des Rohrbündels (23) zu leiten.
5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass es in der mindestens einen Kondensationseinheit (4) Mittel (41, 42) zum Sammeln und
Zuführen des Harnstoff und Carbamat in wässriger Lösung umfassenden Stroms von einem
Bereich (29), der sich über dem Rohrbündel (23) befindet, zu einem unteren Ende der
mindestens einen Kondensationseinheit (4) zur Verfügung stellt, die mit den Mitteln
(15) zum Zuführen der Flüssigphase zu dem Reaktor (2) für die Harnstoffsynthese in
Fluidverbindung stehen.
6. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass es weiter den folgenden Schritt umfasst:
- Bereitstellen von Mitteln (44) zum Extrahieren und Zuführen eines Hauptteils des
gasförmigen, ein oder mehr Passivierungsmittel umfassenden Stroms zusammen mit möglichen
Spuren von Ammoniak und Kohlendioxid in der Dampfphase von der mindestens einen Kondensationseinheit
(4) zu einer Wascheinheit (5), die dem Reaktor (2) für die Harnstoffsynthese nachgeschaltet
ist.
7. Verfahren nach Anspruch 6,
dadurch gekennzeichnet, dass es weiter den folgenden Schritt umfasst:
- Bereitstellen von geeigneten Mitteln (45) zum Steuern des Hauptteils und kleinen
Teils des Ammoniak und Kohlendioxid in der Dampfphase umfassenden Stroms bzw. des
gasförmigen, ein oder mehr Passivierungsmittel umfassenden Stroms in den Mitteln (44)
zum Extrahieren und Zuführen des Hauptteils des gasförmigen, ein oder mehr Passivierungsmittel
umfassenden Stroms zusammen mit möglichen Spuren von Ammoniak und Kohlendioxid in
der Dampfphase von der mindestens einen Kondensationseinheit (4) zur Wascheinheit
(5).
8. Verfahren zum Modernisieren nach Anspruch 1,
dadurch gekennzeichnet, dass es weiter den folgenden Schritt umfasst:
- Bereitstellen von Mitteln zum Erhöhen der Strömungsgeschwindigkeit eines Kühlwasser
umfassenden Stroms, der der mindestens einen Kondensationseinheit (4) zugeführt wird.
9. Verfahren zum Herstellen von Harnstoff von der Art, die die folgenden Schritte umfasst:
- Reagieren von Ammoniak und Kohlendioxid in einem Reaktionsraum (2), Gewinnen eines
Harnstoff, Carbamat und freies Ammoniak in wässriger Lösung umfassenden Reaktionsgemischs;
- Zuführen des Reaktionsgemischs zu einer Trenneinheit (3) mit Kohlendioxid und Unterwerfen
des Gemischs einer Behandlung zur teilweisen Zersetzung von Carbamat und teilweisen
Abtrennung von freiem Ammoniak, Gewinnen eines Ammoniak und Kohlendioxid in der Dampfphase
umfassenden Stroms und eines Harnstoff und Restcarbamat in wässriger Lösung umfassenden
Stroms;
- Zuführen des Harnstoff und Restcarbamat in wässriger Lösung umfassenden Stroms zu
einer Harnstoff-Rückgewinnungszone;
dadurch gekennzeichnet, dass es weiter die folgenden Schritte umfasst:
- direktes Zuführen eines kleinen Teils des Ammoniak und Kohlendioxid in der Dampfphase
umfassenden Stroms zu dem Reaktionsraum (2) über die Mittel (35);
- Zuführen eines Hauptteils des Ammoniak und Kohlendioxid in der Dampfphase umfassenden
Stroms zu der mindestens einen Kondensationseinheit (4) über die Mittel (36) und Unterwerfen
dieses Hauptteils einer im Wesentlichen vollständigen Kondensation, um so einen Strom
zu erhalten, der Harnstoff und Carbamat in wässriger Lösung umfasst;
- Zuführen des Harnstoff und Carbamat in wässriger Lösung umfassenden Stroms zu dem
Reaktionsraum (2).
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Hauptteil des Ammoniak und Kohlendioxid in der Dampfphase umfassenden Stroms
in der mindestens einen Kondensationseinheit (4) durch einen flüssigen, Carbamat in
wässriger Lösung und Ammoniak umfassenden Strom, der in der mindestens einen Kondensationseinheit
(4) zirkuliert, mit einer thermosiphonartigen Bewegung strömen gelassen wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass der Hauptteil des Ammoniak und Kohlendioxid in der Dampfphase umfassenden Stroms
nach oben in einen vorzugsweise zentralen, vorbestimmten Teil (38) eines vertikalen
Rohrbündels (23) der mindestens einen Kondensationseinheit (4) zusammen mit dem flüssigen,
Carbamat in wässriger Lösung und Ammoniak umfassenden Strom strömen gelassen wird.
12. Verfahren nach Anspruch 9,
dadurch gekennzeichnet, dass es weiter die folgenden Schritte umfasst:
- Zuführen eines gasförmigen, ein oder mehr Passivierungsmittel umfassenden Stroms,
die für die Synthesereaktion für Harnstoff inert sind, zum Trennabschnitt (3);
- Zuführen eines kleinen Teils des gasförmigen, ein oder mehr Passivierungsmittel
umfassenden Stroms vom Trennabschnitt (3) direkt zu dem Reaktionsraum (2);
- Zuführen eines Hauptteils des gasförmigen, ein oder mehr Passivierungsmittel umfassenden
Stroms von dem Trennabschnitt (3) zu der mindestens einen Kondensationseinheit (4);
- Extrahieren und Zuführen des Hauptteil des gasförmigen, ein oder mehr Passivierungsmittel
umfassenden Stroms zusammen mit möglichen Spuren von Ammoniak und Kohlendioxid in
der Dampfphase von der mindestens einen Kondensationseinheit (4) zu einer Wascheinheit
(5), die dem Reaktionsraum (2) nachgeschaltet ist.
13. Verfahren nach Anspruch 9,
dadurch gekennzeichnet, dass es weiter den folgenden Schritt umfasst:
- Zuführen eines Kühlwasser umfassenden Stroms zu der mindestens einen Kondensationseinheit
(4) mit einer solchen Strömungsgeschwindigkeit, dass die Bildung von Dampf in der
Kondensationseinheit (4) zumindest teilweise begrenzt wird.
14. Anlage zur Harnstoffproduktion, umfassend:
- einen Reaktor (2) für die Harnstoffsynthese;
- Mittel (7, 8) zum Zuführen von Ammoniak und Kohlendioxid zum Reaktor (2) für die
Harnstoffsynthese;
- eine Trenneinheit (3) mit Kohlendioxid zum Unterwerfen eines Harnstoff, Carbamat
und freies Ammoniak in wässriger Lösung umfassenden Reaktionsgemischs, das den Reaktor
(2) verlässt, einer Behandlung zur teilweisen Zersetzung von Carbamat und teilweisen
Abtrennung von freiem Ammoniak, um so einen Ammoniak und Kohlendioxid in der Dampfphase
umfassenden Strom und einen Harnstoff und Restcarbamat in wässriger Lösung umfassenden
Strom zu erhalten;
- eine Rückgewinnungszone des Harnstoff und Restcarbamat in wässriger Lösung umfassenden
Stroms, der die Trenneinheit (3) verlässt, zum Abtrennen von Harnstoff aus dem Restcarbmat
in wässriger Lösung;
dadurch gekennzeichnet, dass es weiter folgendes umfasst:
- mindestens eine Kondensationseinheit (4) vom "Tauch"-Typ zum Unterwerfen von mindestens
einem Teil des Ammoniak und Kohlendioxid in der Dampfphase umfassenden Stroms, der
die Trenneinheit (3) verlässt, einer im Wesentlichen vollständigen Kondensation, um
so einen Strom zu erhalten, der Harnstoff und Carbamat in wässriger Lösung umfasst;
- Mittel (35) zum Zuführen eines kleinen Teils des Ammoniak und Kohlendioxid in der
Dampfphase umfassenden Stroms, der die Trenneinheit (3) verlässt, direkt zu dem Reaktor
(2) für die Harnstoffsynthese;
- Mittel (36)- zum Zuführen eines Hauptteils des Ammoniak und Kohlendioxid in der
Dampfphase umfassenden Stroms, der die Trenneinheit (3) verlässt, zu der mindestens
einen Kondensationseinheit (4);
- Mittel (15) zum Zuführen des Harnstoff und Carbamat in wässriger Lösung umfassenden
Stroms, der die mindestens eine Kondensationseinheit (4) verlässt, zu dem Reaktor
(2) für die Harnstoffsynthese.
15. Anlage nach Anspruch 14, dadurch gekennzeichnet, dass die mindestens eine Kondensationseinheit (4) vertikal ist und Einlassdüsen (33, 34)
zum Zuführen des Hauptteils des Ammoniak und Kohlendioxid in der Dampfphase umfassenden
Stroms bzw. zum Zuführen eines flüssigen, Carbamat in wässriger Lösung und Ammoniak
umfassenden Kondensationsstroms, die an einem unteren Ende derselben angeordnet sind,
und eine Auslassdüse (48) für den Harnstoff und Carbamat in wässriger Lösung umfassenden
Strom umfasst, die unmittelbar anschließend an ein oberes Ende davon angeordnet ist.
16. Anlage nach Anspruch 15, dadurch gekennzeichnet, dass die mindestens eine Kondensationseinheit (4) ein Rohrbündel (23) und einen Gasverteiler
(37, 37a) unmittelbar anschlieβend an ein unteres Ende (26) des Rohrbündels (23) in
Fluidverbindung mit den Mitteln (33) zum Zuführen des Hauptteils des Ammoniak und
Kohlendioxid in der Dampfphase umfassenden Stroms umfasst, um das Ammoniak und Kohlendioxid
in der Dampfphase in einen vorzugsweise zentralen, vorbestimmten Teil (38) des Rohrbündels
(23) zu leiten.
17. Anlage nach Anspruch 16,
dadurch gekennzeichnet, dass es weiter folgendes umfasst:
- Mittel (7) zum Zuführen eines gasförmigen, ein oder mehr Passivierungsmittel umfassenden
Stroms, die bezüglich der Harnstoffsynthesereaktion inert sind, zur Trenneinheit (3);
- Mittel (35) zum Zuführen eines kleinen Teils des gasförmigen, ein oder mehr Passivierungsmittel
umfassenden Stroms von der Trenneinheit (3) direkt zu dem Reaktor (2) für die Harnstoffsynthese;
- Mittel (36) zum Zuführen eines Hauptteils des gasförmigen, ein oder mehr Passivierungsmittel
umfassenden Stroms von der Trenneinheit (3) zu der mindestens einen Kondensationseinheit
(4);
- Mittel (44) zum Extrahieren und Zuführen des Hauptteils des gasförmigen, ein oder
mehr Passivierungsmittel umfassenden Stroms zusammen mit möglichen Spuren von Ammoniak
und Kohlendioxid in der Dampfhase von der mindestens einen Kondensationseinheit (4)
zu einer Wascheinheit (5), die dem Reaktor (2) für die Harnstoffsynthese nachgeschaltet
ist.
18. Anlage nach Anspruch 17, dadurch gekennzeichnet, dass sie weiter geeignete Mittel (45) zum Regulieren des Hauptteils und kleinen Teils
des Ammoniak und Kohlendioxid in der Dampfphase umfassenden Stroms bzw. des gasförmigen,
ein oder mehr Passivierungsmittel umfassenden Stroms, die in den Mitteln (44) angeordnet
sind, umfassen, um die gasförmigen, auf diese Weise extrahierten Ströme der Wascheinheit
(5) zuzuführen.
19. Anlage nach Anspruch 17, dadurch gekennzeichnet, dass die mindestens eine Kondensationseinheit (4) eine Düse (31) zum Extrahieren des Hauptteils
des gasförmigen, ein oder mehr Passivierungsmittel umfassenden Stroms zusammen mit
möglichen Spuren von Ammoniak und Kohlendioxid in der Dampfphase umfasst, die an deren
oberen Ende angeordnet ist.
1. Procédé pour la modernisation d'une usine de production d'urée du type comprenant
:
- un réacteur (2) pour la synthèse d'urée;
- des moyens (7, 8) pour la fourniture d'ammoniac et de dioxyde de carbone audit réacteur
(2) pour la synthèse de l'urée;
- une unité d'extraction (3) avec du dioxyde de carbone pour soumettre un mélange
de réaction comprenant de l'urée, du carbamate, et de l'ammoniac libre en solution
aqueuse quittant ledit réacteur (2) pour un traitement de décomposition partielle
de carbamate et de séparation partielle d'ammoniac libre, obtenant ainsi un flux comprenant
de l'ammoniac et du dioxyde de carbone en phase vapeur et un débit comprenant l'urée
et le carbamate résiduel en solution aqueuse, respectivement;
- une section de récupération pour ledit flux comprenant l'urée et le carbamate résiduel
en solution aqueuse quittant ladite unité d'extraction (3) pour séparer l'urée dudit
carbamate résiduel en solution aqueuse;
- au moins une unité verticale de condensation en film (4), comprenant un faisceau
de tubes (23) pour soumettre à la condensation partielle ledit flux comprenant l'ammoniac
et le dioxyde de carbone en phase vapeur quittant ladite unité d'extraction (3), obtenant
ainsi un flux liquide comprenant le carbamate en solution aqueuse et un flux gazeux
comprenant l'ammoniac et le dioxyde de carbone en phase vapeur;
- des moyens (15, 14) pour fournir respectivement le flux comprenant le carbamate
en solution aqueuse et le flux gazeux comprenant l'ammoniac et le dioxyde de carbone
en phase vapeur audit réacteur (2) pour la synthèse de l'urée;
- des moyens (7, 11, 14) pour fournir un flux gazeux comprenant un ou plusieurs agents
de passivation, inertes par rapport à la réaction de synthèse de l'urée, à ladite
unité d'extraction (3) et audit réacteur (2) pour la synthèse de l'urée à partir de
l'unité d'extraction (3) par l'intermédiaire de ladite au moins une unité de condensation
(4);
ledit procédé de modernisation étant caractérisé en ce qu'il comprend les étapes :
- de prévoir des moyens (35) pour la fourniture d'une portion mineure dudit flux comprenant
l'ammoniac et le dioxyde de carbone en phase vapeur avec une portion mineure dudit
débit gazeux comprenant un ou plusieurs agents de passivation quittant l'unité d'extraction
(3) directement audit réacteur (2) pour la synthèse de l'urée;
- de prévoir des moyens (36) pour la fourniture d'une portion majeure dudit débit
comprenant l'ammoniac et le dioxyde de carbone en phase vapeur avec une portion majeure
dudit débit gazeux comprenant un ou plusieurs agents de passivation quittant l'unité
d'extraction (3) à ladite au moins une unité de condensation (4);
- de prévoir, dans ladite au moins une unité de condensation (4), des moyens (37)
pour soumettre à une condensation sensiblement intégrale ladite portion majeure du
flux comprenant l'ammoniac et le dioxyde de carbone en phase vapeur, obtenant un flux
comprenant l'urée et le carbamate en solution aqueuse.
2. Procédé selon la revendication 1, caractérisé en ce qu'il prévoit un moyen (17) pour transformer ladite au moins une unité de condensation
verticale (4) en film en une unité de condensation verticale du type "submergé".
3. Procédé selon la revendication 2, caractérisé en ce qu'il prévoit des moyens (36, 37) pour amener la portion majeure dudit flux comprenant
l'ammoniac et le dioxyde de carbone en phase vapeur à une extrémité inférieure (26)
du faisceau de tubes (23) de ladite au moins une unité de condensation (4) et des
moyens (37a) pour la circulation d'un flux de liquide de condensation comprenant le
carbamate en solution aqueuse et l'ammoniac, à l'intérieur de l'unité de condensation
avec un entraînement du type thermosiphon.
4. Procédé selon la revendication 3, caractérisé en ce qu'il prévoit un distributeur de gaz (37, 37a) à proximité de ladite extrémité inférieure
(26) dudit faisceau de tubes (23) en communication de fluide avec ledit moyen (36)
pour amener la portion majeure du flux comprenant l'ammoniac et le dioxyde de carbone
en phase vapeur, pour distribuer l'ammoniac et le dioxyde de carbone en phase vapeur
dans une portion prédéterminée (38) de préférence centrale du faisceau de tubes (23).
5. Procédé selon la revendication 2, caractérisé en ce qu'il prévoit dans ladite au moins une unité de condensation (4), des moyens (41, 42)
pour la collecte et amenée dudit flux comprenant l'urée et le carbamate en solution
aqueuse depuis une zone (29) située au-dessus dudit faisceau de tubes (23) à une extrémité
inférieure de ladite au moins une dite unité de condensation (4) en communication
de fluide avec ledit moyen (15) pour fournir la phase liquide au réacteur (2) pour
la synthèse de l'urée.
6. Procédé selon la revendication 1,
caractérisé en ce qu'il comprend en outre l'étape de
- prévoir des moyens (44) pour l'extraction et la fourniture de ladite portion majeure
du flux gazeux comprenant un ou plusieurs agents de passivation avec des traces possibles
d'ammoniac et de dioxyde de carbone en phase vapeur à partir de ladite d'au moins
une unité de condensation (4) à une unité de lavage (5) disposée en aval dudit réacteur
(2) pour la synthèse de l'urée.
7. Procédé selon la revendication 6,
caractérisé en ce qu'il comprend en outre l'étape de :
- prévoir des moyens appropriés (45) pour contrôler les portions majeure et mineure
dudit flux Comprenant l'ammoniac et le dioxyde de carbone en phase gazeuse et dudit
flux gazeux comprenant un ou plusieurs agents de passivation respectivement, dans
ledit moyen (44) pour l'extraction et la fourniture de ladite portion majeure du flux
gazeux comprenant un ou plusieurs agents de passivation avec des traces possibles
d'ammoniac et de dioxyde de carbone en phase vapeur depuis ladite au moins une unité
de condensation (4) à ladite unité de lavage (5).
8. Procédé de modernisation selon la revendication 1,
caractérisé en ce qu'il comprend en outre l'étape de :
- prévoir un moyen pour augmenter le débit d'un flux comprenant l'eau de refroidissement
fournie à ladite au moins une unité de condensation (4).
9. Procédé pour la production d'urée comprenant les étapes de :
- réaction d'ammoniac et de dioxyde de carbone dans un espace de réaction (2), obtenant
un mélange de réaction comprenant de l'urée, du carbamate et de l'ammoniac libre en
solution aqueuse;
- fourniture dudit mélange de réaction à une unité d'extraction (3) avec le dioxyde
de carbone et la soumission dudit mélange à un traitement de décomposition partielle
du carbamate et de séparation partielle de l'ammoniac libre, obtenant un flux comprenant
l'ammoniac et le dioxyde de carbone en phase vapeur et un flux comprenant l'urée et
le carbamate résiduel en solution aqueuse;
fourniture dudit flux comprenant l'urée et le carbamate . résiduel en solution
aqueuse à une section de récupération de l'urée;
caractérisé en ce qu'il comprend en outre les étapes de:
- fourniture d'une portion mineure dudit flux comprenant l'ammoniac et le dioxyde
de carbone en phase vapeur directement audit espace de réaction (2) par des moyens
(35);
- fourniture d'une portion majeure dudit flux comprenant l'ammoniac et le dioxyde
de carbone en phase vapeur à au moins une unité de condensation (4) par des moyens
(36) et la soumission d'une telle portion majeure à une condensation sensiblement
intégrale, obtenant un flux comprenant l'urée et le carbamate en solution aqueuse;
- fourniture dudit flux comprenant l'urée et le carbamate en solution aqueuse audit
espace de réaction (2).
10. Procédé selon la revendication 9, caractérisé en ce que ladite portion majeure du flux comprenant l'ammoniac et le dioxyde de carbone en
phase vapeur est prévue pour s'écouler dans ladite au moins une unité de condensation
(4) à travers un flux liquide comprenant le carbamate en solution aqueuse et l'ammoniac
circulant à l'intérieur de ladite au moins une unité de condensation (4) avec entraînement
du type thermosiphon.
11. Procédé selon la revendication 10, caractérisé en ce que ladite portion majeure du flux comprenant l'ammoniac et le dioxyde de carbone en
phase vapeur s'écoule vers le haut à l'intérieur d'une portion prédéterminée de préférence
centrale (38) d'un faisceau vertical de tubes (23) de ladite au moins une unité de
condensation (4) avec le flux liquide comprenant le carbamate en solution aqueuse
et l'ammoniac.
12. Procédé selon la revendication 9,
caractérisé en ce qu'il comprend en outre les étapes de
- fourniture d'un flux gazeux comprenant un ou plusieurs agents de passivation, inertes
à la réaction de synthèse pour l'urée, à ladite section d'extraction (3);
- fourniture d'une portion mineure dudit flux de gaz comprenant un ou plusieurs agents
de passivation depuis ladite section d'extraction (3) directement audit espace de
réaction (2);
- fourniture d'une partie majeure dudit flux gazeux comprenant un ou plusieurs agents
de passivation depuis la dite section d'extraction (3) à ladite au moins une unité
de condensation (4);
- extraction et fourniture de ladite portion majeure du flux gazeux comprenant un
ou plusieurs agents de passivation avec des traces possibles d'ammoniac et de dioxyde
de carbone en phase vapeur depuis ladite au moins une unité de condensation (4) à
une unité de lavage (5) disposée en aval dudit espace de réaction (2).
13. Procédé selon la revendication 9,
caractérisé en ce qu'il comprend en outre l'étape de :
- fourniture d'un flux comprenant de l'eau de refroidissement à ladite au moins une
unité de condensation (4) à un débit tel que l'on limite au moins partiellement la
formation de vapeur à l'intérieur de ladite unité de condensation (4).
14. usine pour la production d'urée comprenant :
- un réacteur (2) pour la synthèse de l'urée ;
- des moyens (7, 8) pour fourniture d'ammoniac et de dioxyde de carbone audit réacteur
(2) pour la synthèse de l'urée;
- une unité d'extraction (3) avec du dioxyde de carbone pour soumettre un mélange
de réaction comprenant l'urée, du carbamate et de l'ammoniac libre en solution aqueuse
quittant ledit réacteur (2) à un traitement de décomposition partielle du carbamate
et de séparation partielle de l'ammoniac libre, obtenant un flux comprenant l'ammoniac
et le dioxyde de carbone en phase vapeur et un flux comprenant l'urée et le carbamate
résiduel en solution aqueuse;
- une section de récupération dudit flux comprenant l'urée et le carbamate résiduel
en solution aqueuse quittant ladite unité d'extraction (3) pour séparer l'urée du
carbamate résiduel en solution aqueuse;
caractérisée en ce qu'elle comprend en outre :
- au moins une unité de condensation,44) du type "submergé" pour soumettre à une condensation
sensiblement intégrale au moins une partie dudit flux comprenant l'ammoniac et le
dioxyde de carbone en phase vapeur quittant ladite unité d'extraction (3), obtenant
un flux comprenant l'urée et le carbamate en solution aqueuse;
- un moyen (35) pour fournir une portion mineure dudit flux comprenant l'ammoniac
et le dioxyde de carbone en phase vapeur quittant ladite unité d'extraction (3) directement
audit réacteur (2) pour la synthèse de l'urée ;
- un moyen (36) pour fournir une portion majeure dudit flux comprenant l'ammoniac
et le dioxyde de carbone en phase vapeur quittant ladite unité d'extraction (3) à
ladite au moins une unité de condensation (4);
- un moyen (15) pour alimenter ledit flux comprenant l'urée et le carbamate en solution
aqueuse quittant ladite au moins une unité de condensation (4) audit réacteur (2)
pour la synthèse de l'urée.
15. Usine selon la revendication 14, caractérisée en ce que ladite au moins une unité de condensation (4) est verticale et comprend des buses
d'entrée (33, 34) pour l'introduction de ladite portion majeure du flux comprenant
l'ammoniac et le dioxyde de carbone en phase vapeur et pour l'introduction du flux
liquide de condensation comprenant le carbamate en solution aqueuse et l'ammoniac
respectivement, les buses étant disposées dans une extrémité inférieure de l'unité
de condensation, et une buse de sortie (48) dudit flux comprenant l'urée et le carbamate
en solution aqueuse disposée à proximité d'une extrémité supérieure de l'unité de
condensation.
16. Usine selon la revendication 15, caractérisée en ce que ladite au moins une unité de condensation (4) comprend un faisceau de tubes (23)
et un distributeur de gaz (37, 37a) à proximité d'une extremité inférieure (26) du
faisceau de tubes (23) en communication de fluide avec ledit moyen (33) pour l'introduction
de la portion majeure du flux comprenant l'ammoniac et le dioxyde de carbone en phase
vapeur, afin de distribuer l'ammoniac et le dioxyde de carbone en phase vapeur dans
une portion prédéterminée, de préférence centrale, (38) du faisceau de tubes (23).
17. Usine selon la revendication 16,
caractérisée en ce qu'elle comprend en outre :
- un moyen (7) pour fournir un flux gazeux comprenant un ou plusieurs agents de passivation,
inertes à la réaction de synthèse de l'urée, à ladite unité d'extraction (3);
- un moyen (35) pour fournir une portion mineure dudit flux gazeux comprenant un ou
plusieurs agents de passivation depuis ladite unité d'extraction (3) directement audit
réacteur (2) pour la synthèse de l'urée ;
- un moyen (36) pour fournir une portion majeure dudit flux gazeux comprenant un ou
plusieurs agents de passivation depuis ladite unité d'extraction (3) à ladite au moins
une unité de condensation (4);
- un moyen (44) pour l'extraction et la fourniture de ladite portion majeure du flux
gazeux comprenant un ou plusieurs agents de passivation avec des traces possibles
d'ammoniac et de dioxyde de carbone en phase vapeur depuis ladite au moins une unité
de condensation (4) à une unité de lavage (5) disposée en aval dudit réacteur (2)
pour la synthèse de l'urée.
18. Usine selon la revendication 17, caractérisée en ce qu'elle comprend en outre un moyen approprié (45) pour réguler les parties majeure et
mineure dudit flux comprenant l'ammoniac et le dioxyde de carbone en phase vapeur
et ledit flux de gaz comprenant un ou plusieurs agents de passivation respectivement,
le moyen étant disposé dans ledit moyen (44) pour fournir les flux gazeux ainsi extraits
à ladite unité de lavage (5).
19. Usine selon la revendication 17, caractérisée en ce que ladite au moins une unité de condensation (4) comprend une buse (31) disposée à son
extrémité supérieure, pour extraire ladite portion majeure du flux gazeux comprenant
un ou plusieurs agents de passivation avec des traces possibles d'ammoniac et de dioxyde
de carbone en phase vapeur.