| (84) |
Designated Contracting States: |
|
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
| (30) |
Priority: |
28.10.1997 US 63685
|
| (43) |
Date of publication of application: |
|
04.10.2000 Bulletin 2000/40 |
| (60) |
Divisional application: |
|
08104631.0 / 2034031 |
| (73) |
Proprietor: Los Alamos National Security, LLC |
|
Los Alamos, NM 87545 (US) |
|
| (72) |
Inventors: |
|
- NOLAN, John, P.
Santa Fe, NM 87501 (US)
- WHITE, P., Scott
Los Alamos, NM 87544 (US)
- CAI, Hong
Los Alamos, NM 87544 (US)
|
| (74) |
Representative: Capasso, Olga et al |
|
de Simone & Partners
Via Vincenzo Bellini, 20 00198 Roma 00198 Roma (IT) |
| (56) |
References cited: :
WO-A-96/06950 US-A- 4 770 992 US-A- 5 512 439 US-A- 5 629 158 US-A- 5 736 330
|
WO-A-97/14028 US-A- 4 962 037 US-A- 5 512 439 US-A- 5 670 325
|
|
| |
|
|
- FULTON R J ET AL: "Advanced multiplexd analysis with the FlowMetrix(TM) system" CLINICAL
CHEMISTRY, AMERICAN ASSOCIATION FOR CLINICAL CHEMISTRY. WINSTON, US, vol. 43, no.
9, September 1997 (1997-09), pages 1749-1756, XP002142645 ISSN: 0009-9147
- ROBERTS CHRISTOPHER ET AL: "Synthesis of oligonucleotides bearing the non-standard
bases iso-C and iso-G. Comparison of iso-C-iso-G, C-G and U-A base-pair stabilities
in RNA/DNA duplexes" TETRAHEDRON LETTERS, vol. 36, no. 21, 1995, pages 3601-3604,
XP002285148 ISSN: 0040-4039
- EGGERDING F A ET AL: "FLUORESCENCE-BASED OLIGONUCLEOTIDE LIGATION ASSAY FOR ANALYSIS
OF CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR GENE MUTATIONS" HUMAN MUTATION,
WILEY-LISS, NEW YORK, NY, US, vol. 5, no. 2, 1995, pages 153-165, XP001095324 ISSN:
1059-7794
- BARON H ET AL: "OLIGONUCLEOTIDE LIGATON ASSAY (OLA) FOR THE DIAGNOSIS OF FAMILIAL
HYPERCHOLESTEROLEMIA" BIO/TECHNOLOGY, NATURE PUBLISHING CO. NEW YORK, US, vol. 14,
no. 10, October 1996 (1996-10), pages 1279-1282, XP001153081 ISSN: 0733-222X
- PASTINEN T ET AL: "Multiplex, fluorescent, solid-phase minisequencing for efficient
screening of DNA sequence variation" CLINICAL CHEMISTRY. PRINCIPLES AND TECHNICS,
NEW YORK, HARPER & ROW, US, 1974, pages 1391-1397, XP002116875
- LANDEGREN et al., "A Ligase-Mediated Gene Detection Technique", SCIENCE, 26 August
1988, Vol. 241, pages 1077-1080, XP002916197
- UGOZZOLI et al., "Detection of Specific Alleles by Using Allele-Specific Primer Extension
Followed by Capture on Solid Support", GATA, 1992, Vol. 9, No. 4, pages 107-112, XP002916198
- BAINS et al., "Flow Cytometric Quantitation of Sequence-Specific mRNA in Hemopoietic
Cell Suspensions by Primer-Induced in Situ (PRINS) Fluorescent Nucleotide Labeling",
EXPERIMENTAL CELL RESEARCH, 1993, Vol. 208, No. 1, pages 321-326, XP002916199
- VLIEGER et al., "Quantitation of Polymerase Chain Reaction Products by Hybridization-Based
Assays with Fluorescent, Colorimetric, or Chemiluminescent Detection¹", ANALYTICAL
BIOCHEMISTRY, 15 August 1992, Vol. 205, No. 1, pages 1-7, XP002916200
- NOLAN et al., "Microsphere-Based Assays for Genome Analysis Using Flow Cytometry",
AMERICAN JOURNAL OF HUMAN GENETICS, 28 October 1997 - 01 November 1997, Vol. 61, No.
4, Supplemental, page A241, XP002916301
|
|
| |
|
FIELD OF THE INVENTION
[0001] The present invention relates generally to the use of flow cytometry for the determination
of DNA nucleotide base composition and, more particularly, to the use flow cytometry
to determine the base identification of single nucleotide polymorphisms, including
nucleotide polymorphisms, insertions, and deletions. This invention was made with
government support under Contract No. W-7405-ENG-36 awarded by the US Department of
Energy to The Regents of The University of California. The government has certain
rights in this invention.
BACKGROUND OF THE INVENTION
[0002] The determination of the DNA base sequence of the human genome will have a major
impact on biomedical science in the next century. The completion of the first complete
human DNA will enhance a range of applications from genetic mapping of disease-associated
genes to diagnostic tests for disease susceptibility and drug response. The determination
of base composition at specific, variable DNA sites known as single nucleotide polymorphisms
(SNPs) is especially important. The current generation of sequence determination methods
are too slow and costly to meet large-scale SNP analysis requirements. Thus, there
is a need for faster, more efficient methods for analyzing genetic sequences for SNPs.
[0003] SNPs have a number of uses in mapping, disease gene identification, and diagnostic
assays. All of these applications involve the determination of base composition at
the SNP site. Conventional sequencing can provide this information, but is impractical
for screening a large number of sites in a large number of individuals. Several alternative
methods have been developed to increase throughput.
[0004] Two techniques have been developed to determine base composition at a single site,
minisequencing (See, e.g., "
Minisequencing: A Specific Tool For DNA Analysis And Diagnostics On Oligonucleotide
Arrays," by Tomi Pastinen et al., Genome Research 7, 606 (1997)), and oligo-ligation (See, e.g., "
Single-Well Genotyping Of Diallelic Sequence Variations By A Two-Color ELISA-Based
Oligonucleotide Ligation Assay," by Vincent O. Tobe et al., Nuclear Acids Res. 24,
3728 (1996)). In minisequencing, a primer is designed to interrogate a specific site on a sample
template, and polymerase is used to extend the primer with a labeled dideoxynucleotide.
In oligo-ligation, a similar primer is designed, and ligase is used to covalently
attach a downstream oligo that is variable at the site of interest. In each case,
the preference of an enzyme for correctly base-paired substrates is used to discriminate
the base identity that is revealed by the covalent attachment of a label to the primer.
In most applications these assays are configured with the primer immobilized on a
solid substrate, including microplates, magnetic beads and recently, oligonucleotides
microarrayed on microscope slides. Detection strategies include direct labeling with
fluorescence detection or indirect labeling using biotin and a labeled streptavidin
with fluorescent, chemiluminescent, or absorbance detection.
[0005] Oligonucleotide microarrays or "DNA chips" have generated much attention for their
potential for massively parallel analysis. The prospect of sequencing tens of thousands
of bases of a small sample in just a few minutes is exciting. At present, this technology
has limited availability in that arrays to sequence only a handful of genes are currently
available, with substantial hardware and consumable costs. In addition, the general
approach of sequencing by hybridization is not particularly robust, with the requirement
of significant sequence-dependent optimization of hybridization conditions. Nonetheless,
the parallelism of an "array" technology is very powerful, and multiplexed sequence
determination is an important element of the new flow cytometry method.
[0006] US-A-5,670,325 discloses methods for detecting the presence of mutant sequences in a subpopulation
of gene sequences in a biological sample. These methods are particularly useful for
identifying individuals with gene mutations indicative of early colorectal cancer.
More specifically, method for detecting the presence of a clonal subpopulation of
transformed cells in a biological sample obtained from an organism, comprising the
steps of: a) determining from the biological sample a number X of a first wild-type
polynucleotide characteristic of a genomic region of said organism that is not mutated
in said subpopulation of transformed cells; b) determining from the biological sample
a number Y of a second wild-type polynucleotide in a genomic region of said organism
suspected of being mutated in said subpopulation of transformed cells; and c) determining
whether a difference exists between number X and number Y, the presence of a statistically-significant
difference being indicative of a clonal subpopulation of transformed cells in said
biological sample.
[0007] Accordingly, it is an object of the present invention to provide a method for determining
the base composition at specific sites in a strand of DNA using determining the base
composition at specific sites in a strand of DNA using microspheres and flow cytometry,
wherein the specificity of enzymes for discriminating base composition is combined
with the parallel analysis of a fluorescent microsphere array.
[0008] Additional objects, advantages, and novel features of the invention will be set forth
in part in the description which follows, and in part will become apparent to those
skilled in the art upon examinations of the following or may be learned by practice
of the invention. The objects and advantages of the invention may be realized and
attained by means of the instrumentalities and combinations particularly pointed out
in the appended claims.
SUMMARY OF THE INVENTION
[0009] To achieve the forgoing and other objects, and in accordance with the purposes of
the present invention as embodied and broadly described herein, the method for determining
the base composition at specific sites on a DNA strand hereof includes the steps of:
preparing an oligonucleotide primer bearing an immobilization or capture tag, fluorescently
labeled dideoxynucleotides; extending the oligonucleotide primer using DNA polymerase
with the fluorescent dideoxynucleotide; specifically binding the tagged primers to
microspheres; and measuring microsphere fluorescence by flow cytometry.
[0010] Preferably, the oligonucleotide primers are designed to anneal to the DNA sample
under investigation immediately adjacent to the site of interest so as to interrogate
the next nucleotide base on the DNA sample.
[0011] It is also preferred that the primers have on their 5' terminus one of: (a) an amino
or other functional group suitable for covalent coupling to a microsphere; (b) a biotin
group suitable for binding to avidin or streptavidin immobilized on a microsphere;
or (c) an oligonucleotide tag that is complementary to an oligonucleotide capture
probe immobilized on a microsphere surface.
[0012] Benefits and advantages of the present invention include a sensitive, homogenous,
and flexible method for determining DNA base composition at specific sites.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] The accompanying drawings, which are incorporated in and form part of the specification,
illustrate an embodiment of the present invention and, together with the description,
serve to explain the principles of the invention. In the drawings:
FIGURE 1 a is a schematic representation of microsphere-based minisequencing for flow
cytometry, where a primer immobilized on a microsphere is used for hybridizing with
the DNA sequence under investigation in the presence of dideoxynucleotides, at least
one of which is fluorescently labeled, and polymerase, whereby the primer is extended
by one base, while FIG. 1b is a schematic representation of the resulting primer having
a single, fluorescent dideoxynucleotide bound to the end thereof which can be detected
using flow cytometry, and represents the complementary base to the SNP on the DNA.
FIGURE 2a is a schematic representation of microsphere-based minisequencing for flow
cytometry similar to that described in FIGS. 1a and 1b hereof, except that soluble
biotinylated primers and avidin-coated capture microspheres are used instead of primers
which have already been immobilized on the microspheres, FIGURE 2b shows the hybridization
of the biotinylated primer to the DNA strand to be investigated and the extension
of this primer by a fluorescent A dideoxynucleotide (assuming that the SNP is a T
base) as a result of the DNA polymerase present in the solution, and FIGURE 2c shows
the capture of the extended biotinylated primer onto an avidin-coated microsphere
after the hybridized DNA strand is melted, with the subsequent fluorescence analysis
using flow cytometry.
FIGURE 3a is a schematic representation of a multiplexed microsphere-based minisequencing
procedure using soluble sequence-tagged primers and capture probe-bearing microspheres
in a similar manner to the minisequencing illustrated in FIGS. 2a and 2b hereof, except
that four SNPs have been assumed to be present on the DNA strand, while FIGURE 3b
illustrates the microspheres and the captured extended primers to be analyzed using
flow cytometry.
FIGURE 4a is a schematic representation of microsphere-based oligonucleotide ligation
assay using flow cytometry, where a primer immobilized on a microsphere along with
fluorescent complementary primers for ligating to the primer which has hybridized
to the DNA strand to be investigated in the region of the SNP, while FIGURE 4b is
a schematic representation of the microsphere-attached primer to which the proper
fluorescent complement has been ligated after the DNA has been melted away, the flow
cytometric determined fluorescence of the microsphere indicating which fluorescent
complement has been attached to the DNA strand.
FIGURES 5a and 5b are schematic representations of oligonucleotide ligation on unamplified
DNA, followed by PCR amplification, capture on microspheres, and analysis of microsphere
fluorescence by flow cytometry, for the case where the complementary base is found
on the DNA strand and where the complementary base does not exist on the DNA strand,
respectively.
DETAILED DESCRIPTION
[0014] Briefly, the present invention includes the use of oligonucleotide primers, fluorescent
dideoxynucleotides, DNA polymerase, microspheres, and flow cytometry to determine
DNA base composition at specific sites in a DNA strand. Tagged oligonucleotide primers
are incubated with a DNA sample and allowed to anneal immediately adjacent to the
site of interest. Fluorescent dideoxynucleotides and DNA polymerase are added and
allowed to extend the primer by one base unit, such that upon enzymatic incorporation
of the single fluorescent dideoxynucleotide into the DNA strand, the DNA strand can
be detected by a flow cytometer. DNA polymerase may be Sequenase, Thermosequenase,
or any other conventional or thermostable DNA polymerase.
[0015] Another embodiment of the invention uses oligonucleotide primers, oligonucleotide
reporters and DNA ligase along with microspheres and flow cytometry to make this determination.
A fluorescent reporter oligonucleotide and DNA ligase are added and allowed to ligate
the primer to the reporter. The fluorescent reporter oligonucleotides are designed
to bind the sample DNA immediately 3' to the annealed oligonucleotide primer. That
is, the sequence reporter oligonucleotide is complementary to that of the sample DNA
strand except at its 5' terminus, where the reporter is variable so as to interrogate
the site of interest on the sample DNA, which can then be investigated by its fluorescent
signature using flow cytometry. The DNA ligase may be any conventional or thermostable
ligase. Primer extension or ligation may be enhanced through the use of thermal cycling
using heat-stable DNA polymerase or ligase.
[0016] Oligonucleotide primers are bound to microspheres either before or after enzymatic
extension or ligation. Amino-labeled primers can be covalently attached to carboxylated
microspheres using EDAC. Biotinylated primers can be attached to avidin or streptavidin-coated
microspheres. Primers bearing an oligonucleotide sequence tag may be annealed to complementary
oligonucleotide capture sequences immobilized on microspheres covalently or by the
biotin-avidin interaction. Microspheres may be composed of polystyrene, cellulose,
or other appropriate material. Microspheres having different sizes, or stained with
different amounts of fluorescent dyes, may be used to perform multiplexed sequence
analysis.
[0017] Having generally described the invention, the following EXAMPLES are intended to
provide more specific details thereof.
EXAMPLE 1
Flow Cytometric Minisequencing Using Immobilized Primers:
[0018] Reference will now be made in detail to the preferred embodiments of the present
invention as illustrated in the accompanying drawings. Turning now to the Figures,
Fig. 1 a is a schematic representation of microsphere-based minisequencing for flow
cytometry, where a primer immobilized on a microsphere is used for hybridizing with
the DNA sequence under investigation in the presence of dideoxynucleotides, at least
one of which is fluorescently labeled, and polymerase. The primer is extended by one
base by the action of the polymerase. Figure 1b is a schematic representation of the
resulting primer having a single, fluorescent dideoxynucleotide bound to the end thereof
which can be detected using flow cytometry, and represents the complementary base
to the SNP on the DNA. The sample DNA template is first amplified using the polymerase
chain reaction (PCR), and the resulting product treated with shrimp alkaline phosphatase
(SAP) and exonuclease I (Exo I) to remove unconsumed deoxynucleotide triphosphates
and PCR primers, respectively. The minisequencing primer, designed to interrogate
a specific site on the DNA strand under investigation, is immobilized by means of
a 5'-amino group on a carboxylated polystyrene microsphere using a crosslinking reagent
(e.g., carbodiimide). The primer-bearing microspheres (5 µl) are added to the amplified
DNA (1 µl, 1 nM) DNA polymerase (one unit, Thermosequenase, Amersham Life Sciences,
Cleveland, OH), one fluorescein-labeled ddNTP (5µM), 5 µM each of the other three
non-fluorescent ddNTPs, and buffer (Thermosequenase buffer, Amersham) in a total volume
of 10 µl. This process was repeated three times using each of the four fluorescent
ddNTPs. The reaction mixtures are cycled 99 times at 94 °C for 10 s and at 60 °C for
10 s in a thermal cycler. Two microliters of each reaction mixture were diluted into
500 µl of TEB buffer (50 mM Tris-HCl, pH, 8.0, 0.5 mM EDTA, 0.5% (w/v) bovine serum
albumin, BSA), and the microsphere-associated fluorescence was measured using flow
cytometry. Using this procedure, the correct nucleotide base identity was determined
for a specific position on an oligonucleotide template with a signal-to-background
ratio of greater than one hundred.
EXAMPLE 2
Flow Cytometric Minisequencing Using Biotinylated Primers:
[0019] Figure 2a is a schematic representation of microsphere-based minisequencing for flow
cytometry similar to that described in Figs. 1a and 1b hereof, except that soluble
biotinylated primers and avidin-coated capture microspheres are used instead of primers
which have already been immobilized on the microspheres. Figure 2b shows the hybridization
of the biotinylated primer to the DNA strand to be investigated and the extension
of this primer by a single, fluorescent A dideoxynucleotide (assuming that the SNP
is a T base) as a result of the DNA polymerase present in the solution. Figure 2c
shows the capture of the extended biotinylated primer onto an avidin-coated microsphere
after the hybridized DNA strand is melted, with the subsequent fluorescence analysis
using flow cytometry. The sample DNA template is amplified by PCR, and the resulting
product treated with shrimp alkaline phosphatase (SAP) and exonuclease I (Exo I) to
remove unconsumed deoxynucleotide triphosphates and PCR primers, respectively. The
minisequencing primer, designed to interrogate a specific site on the template DNA,
and bearing a 5'-biotin group, is prepared. The biotinylated primer is added to the
template DNA (1 µl, 1 nM), DNA polymerase (one unit, Thermosequenase, Amersham), one
fluorescein-labeled ddNTP (5 µM), 5 µM each of the other three non-fluorescent ddNTPs,
and buffer (Thermosequenase buffer, Amersham) in a total volume of 10 µl. This process
is repeated three times using a different fluorescent ddNTP. The reaction mixtures
are cycled 99 times at 94 °C for 10 s and 60 °C for 10 s in a thermal cycler. Five
µl of avidin-coated microspheres are added to the reaction mixture to capture the
biotinylated primers. Two microliters of each reaction mixture is diluted into 500
µl of TEB buffer (50 mM Tris-HCl, pH, 8.0, 0.5 mM EDTA, 0.5% (w/v) bovine serum albumin,
BSA), and the microsphere-associated fluorescence is measured using flow cytometry.
Using this procedure, the correct nucleotide base identity was determined in thirty
out of thirty PCR amplified samples as was confirmed by conventional DNA sequencing
techniques.
EXAMPLE 3
Flow Cytometric Minisequencing Using Tagged Primers:
[0020] Figure 3a is a schematic representation of a multiplexed microsphere-based minisequencing
procedure using soluble sequence-tagged primers and capture probe-bearing microspheres
in a similar manner to the minisequencing illustrated in Figs. 2a and 2b hereof, except
that four SNPs have been assumed to be present on the DNA strand. Figure 3b illustrates
the microspheres and the captured extended primers to be analyzed using flow cytometry.
The sample DNA template is amplified by PCR, and the resulting product treated with
shrimp alkaline phosphatase (SAP) and exonuclease I (Exo I) to remove unconsumed deoxynucleotide
triphosphates and PCR primers, respectively. The minisequencing primer, designed to
interrogate a specific site on the template DNA, and bearing a 5'-sequence tag is
prepared. A capture probe is designed to bind to the 5'-sequence tag of the primer,
and is immobilized on microspheres. The capture tag-bearing primer is added to the
template DNA (1 µl, 1 nM), DNA polymerase (one unit, Thermosequenase, Amersham), one
fluorescein-labeled ddNTP (5 µM), 5 µM of each of the other three non-fluorescent
ddNTPs, and buffer (Thermosequenase buffer, Amersham) in a total volume of 10 µl.
This process is repeated three times using a different fluorescent ddNTP. The reaction
mixtures are cycled 99 times at 94°C for 10 s and 60 °C for 10 s in a thermal cycler.
Five microliters of avidin-coated microspheres are added to the reaction mixture to
capture the biotinylated primers. Two microliters of each reaction mixture is diluted
into 500 µl of TEB buffer (50 mM Tris-HCl, pH, 8.0, 0.5 mM EDTA, 0.5% (w/v) bovine
serum albumin, BSA), and the microsphere-associated fluorescence is measured using
flow cytometry.
EXAMPLE 4
Flow Cytometric Oligonucleotide Ligation Using immobilized Primers:
[0021] Figure 4a is a schematic representation of microsphere-based oligonucleotide ligation
assay using flow cytometry, where a primer immobilized on a microsphere along with
fluorescent complementary primers for ligating to the primer which has hybridized
to the DNA strand to be investigated in the region of the SNP. Figure 4b is a schematic
representation of the microsphere-attached primer to which the proper fluorescent
complement has been ligated after the DNA has been melted away, the flow cytometric
determined fluorescence of the microsphere indicating which fluorescent complement
has been attached to the DNA strand. The sample DNA template is amplified by PCR,
and the resulting product treated with shrimp alkaline phosphatase (SAP) and exonuclease
l (Exo I) to remove unconsumed deoxynucleotide triphosphates and PCR primers, respectively.
The oligonucleotide ligation primer, designed to interrogate a specific site on the
template DNA, is immobilized via a 5'-amino group on a carboxylated polystyrene microsphere
using carbodiimide. Four fluorescent reporter oligonucleotides designed to bind immediately
adjacent to the site of interest, but varying at the 5'-terminus are prepared. The
primer-bearing microspheres (5 µl) are added to the template DNA (1 µl, 1 nM), DNA
ligase (one unit, Thermoligase, Epicentre Technologies, Madison, WI), one fluorescein-labeled
reporter oligonucleotide (5 µM), and buffer (Thermoligase buffer, Epicentre) in a
total volume of 10 µl. This process is repeated three times using each of the four
fluorescent reporter oligonucleotides (5 µM). The reaction mixtures are cycled 99
times at 94 °C for 10 s and 60 °C for 10 s in a thermal cycler. Two microliters of
each reaction mixture are diluted into 500 µl of TEB buffer (50 mM Tris-HCl, pH, 8.0,
0.5 mM EDTA, 0.5% (w/v) bovine serum albumin, BSA), and the microsphere-associated
fluorescence is measured using flow cytometry. Using this procedure, the correct nucleotide
base identity was determined in thirty out of thirty PCR amplified samples as was
confirmed by conventional DNA sequencing techniques.
EXAMPLE 5
Multiplexed Oligonucleotide Ligation On Unamplified DNA, Followed By PCR Amplification:
[0022] Figures 5a and 5b are schematic representations of oligonucleotide ligation on unamplified
DNA, followed by PCR amplification, capture on microspheres, and analysis of microsphere
fluorescence by flow cytometry, for the case where the complementary base is found
on the DNA strand and where the complementary base does not exist on the DNA strand,
respectively.
[0023] A set of oligonucleotide primers is designed including one oligonucleotide (oligonucleotide
1) that is complementary to the sequence of the template DNA immediately adjacent
to a site of interest, and four oligonucleotides (oligonucleotides 1A, 1C, 1G, and
1T) that are complementary to the sequence of the template DNA immediately adjacent
to oligonucleotide 1, and containing the site of interest. Each of the four oligonucleotides
(1A, 1C, 1G, and 1T) differs in the nucleotide base adjacent to the other oligonucleotide
(oligonucleotide 1), corresponding to each of the four possible bases, A, C, G, and
T. Oligonucleotide 1 is intended to ligate to one of the other oligonucleotides (1A,
1C, 1G, or 1T), depending which one contains the complementary base for the site of
interest. In addition, each of the two oligonucleotides in a potential pair (five
oligonucleotides total) contain additional nucleotides that form a "tail" consisting
of a PCR priming site. This site is different for oligonucleotide 1 than for oligonucleotides
1A, 1C, 1G, and 1T, which have the same primer-binding site within this group, but
different from that of oligonucleotide 1. Four parallel ligation reactions are performed,
each with oligonucleotide 1, one each of the other oligonucleotides (1A, 1C, 1G, or
1T) and a DNA ligase enzyme. All oligonucleotides are expected to hybridize to the
template, but only the oligonucleotide with a perfect match will be ligated to oligonucleotide
1. The resulting ligation product will serve as the template for a PCR reaction that
follows using one primer (primer 1) complementary to the tail introduced into oligonucleotide
1, and the other primer (primer 2) having the same sequence as that of the tail of
oligonucleotides 1A, 1C, 1G, and 1T. Unligated oligonucleotides cannot be amplified
with the PCR technique (Fig. 5b) because there is no priming site for oligonucleotide
2 unless PCR amplification from primer 1 extends across a ligated fragment, creating
sequence complementary to primer 2. In addition to unlabeled dNTPs used during the
PCR step, fluorescently labeled dNTPs are added to label the PCR fragments during
amplification. Alternatively, primer 2 is labeled with a fluorescent dye, producing
dye-labeled PCR amplification products where amplification occurs.
[0024] The final step involves adding to the PCR mixture microspheres with an oligonucleotide
immobilized on its surface that has the same sequence as oligonucleotides 1A, 1C,
1G, and 1T, except for the variable nucleotide at one end and the priming site on
the other. This microsphere is intended to capture labeled PCR products if they are
present in the PCR mixture by annealing to the newly synthesized complement of the
ligated oligonucleotide complex. Bead fluorescence due to hybridized fragments is
then analyzed by flow cytometry. Many sets of primers can simultaneously type many
SNPs in solution, each being captured onto a different bead in a multiplexed set to
be simultaneously read in a flow cytometer.
[0025] The foregoing description of the invention has been presented for purposes of illustration
and description and is not intended to be exhaustive or to limit the invention to
the precise form disclosed, and obviously many modifications and variations are possible
in light of the above teaching. For example, in order to bind the oligonucleotide
primers to the microspheres for analysis using flow cytometry, the oligonucleotide
primers may include a sequence tag which is hybridized to a capture probe that is
complementary to the sequence tag and is immobilized on the microspheres, the sequence
tags and capture probes containing at least one of the non-natural bases iso-C and
5-methyl-iso-G. The embodiments were chosen and described in order to best explain
the principles of the invention and its practical application to thereby enable others
skilled in the art to best utilize the invention in various embodiments and with various
modifications as are suited to the particular use contemplated. It is intended that
the scope of the invention be defined by the claims appended hereto.
1. A homogeneous method for determining the identity of a base on a DNA strand, which
comprises in order the steps of:
(a) annealing an oligonucleotide to the DNA strand immediately adjacent to the base
whose identity is to be determined;
(b) incubating the annealed DNA strand and oligonucleotide with four different dideoxynucleotides,
one of the dideoxynucleotides having a fluorescent reporter molecule in the presence
of DNA polymerase, thereby extending the oligonucleotide by one base unit;
(c) immobilizing the extended oligonucleotide on a microsphere; and
(d) analyzing the microsphere using flow cytometry whereby the base under investigation
is determined.
2. The method as described in claim 1, wherein the oligonucleotide is biotinylated and
the microsphere is coated with avidin or streptavidin.
3. The method as described in claim 1, wherein the oligonucleotide is covalently attached
to the microsphere.
4. The method as described in claim 1, wherein the oligonucleotide is hybridized to a
complementary capture probe immobilized on a microsphere.
5. The method as described in claim 6, wherein the oligonucleotide comprises a sequence
tag which is hybridized to the capture probe, and wherein the sequence tag and capture
probe comprises at least one non-natural base selected from the group consisting of
iso-C and 5-methyl-iso-G.
6. A homogenous method for determining the identity of a base at a site on a DNA strand,
which comprises in order the steps of:
(a) annealing a first oligonucleotide and second oligonucleotide to the DNA strand
adjacent to the first oligonucleotide and in the presence of DNA ligase, wherein the
second oligonucleotide contains both a fluorescent reporter molecule and an interrogator
base, which is variable so as to interrogate the site of interest on the sample DNA,
only the second oligonucleotide with a perfect match at the interrogator base will
be ligated to the first oligonucleotide.
(b) denaturing the DNA strand and immobilizing the ligated oligonucleotides on a microsphere;
and
(c) analyzing the microsphere using flow cytometry whereby the base under investigation
is determined.
7. A homogenous method for determining the identity of a base at a site on a DNA strand,
which comprises in order the steps of:
(a) annealing a first oligonucleotide and second oligonucleotide to the DNA strand
adjacent to the first oligonucleotide and in the presence of DNA ligase, wherein the
second oligonucleotide contains both a fluorescent reporter molecule and an interrogator
base, which is variable so as to interrogate the site of interest on the sample DNA,
only the second oligonucleotide with a perfect match at the interrogator base will
be ligated to the first oligonucleotide.
(b) amplifying the ligated oligonucleotides;
(c) capturing amplified ligated oligonucleotides on microsphere;
(d) analyzing the microsphere using flow cytometry whereby the base under investigation
is determined.
8. The method as described in claim 6, wherein the first oligonucleotide is biotinylated
and the microsphere is coated with avidin or streptavidin.
9. The method as described in claim 6, wherein the first oligonucleotide is covalently
attached to the microspheres.
10. The method as described in claim 6, wherein the first oligonucleotide is hybridized
to a complementary capture probe immobilized on a microsphere.
11. The method as described in claim 10, wherein a sequence tag is hybridized to capture
probe that is complementary thereto, and wherein the sequence tag and the capture
probe comprises a non-natural base selected from the group consisting of iso-C and
5-methyl-iso-G.
1. Homogenes Verfahren zur Bestimmung der Identität einer Base an einem DNA-Strang, welches
die folgenden Schritte in der angegebenen Reihenfolge umfasst:
(a) Anlagern eines Oligonukleotids an den DNA-Strang, und war unmittelbar neben der
Base, deren Identität bestimmt werden soll;
(b) Inkubieren des Anlagerungsprodukts aus DNA-Strang und Oligonukleotid mit vier
unterschiedlichen Didesoxynukleotiden, wobei eines der Didesoxynukleotide ein fluoreszierendes
Reportermolekül in Gegenwart von DNA-Polymerase aufweist, wodurch das Oligonukleotid
um eine Baseneinheit verlängert wird.
(c) Verankern des verlängerten Oligonukleotids auf einer Mikrokugel; und
(d) Untersuchen der Mikrokugel mittels Durchflusszytometrie, wodurch die untersuchte
Base bestimmt wird.
2. Verfahren nach der Beschreibung in Anspruch 1, wobei das Oligonukleotid biotinyliert
und die Mikrokugel mit Avidin oder Streptavidin beschichtet wird.
3. Verfahren nach der Beschreibung in Anspruch 1, wobei das Oligonukleotid kovalent an
die Mikrokugel gebunden wird.
4. Verfahren nach der Beschreibung in Anspruch 1, wobei das Oligonukleotid mit einer
komplementären Fangsonde, welche auf einer Mikrokugel verankert ist, hybridisiert
wird.
5. Verfahren nach der Beschreibung in Anspruch 6, wobei das Oligonukleotid einen Sequence
Tag umfasst, der mit der Fangsonde hybridisiert wird, und wobei der Sequence Tag und
die Fangsonde mindestens eine nicht natürlich vorkommende Base umfassen, welche aus
der Gruppe gewählt ist, die aus Iso-C und 5-Methyl-iso-G besteht.
6. Homogenes Verfahren zur Bestimmung der Identität einer Base an einer Stelle eines
DNA-Strangs, welches die folgenden Schritte in der angegebenen Reihenfolge umfasst:
(a) Anlagern eines ersten Oligonukleotids sowie eines zweiten oligonukleotids an den
DNA-Strang, und zwar neben dem ersten Oligonukleotid und in Gegenwart von DNA-Ligase,
wobei das zweite oligonukleotid sowohl ein fluoreszierendes Reportermolekül als auch
eine Abfragebase enthält und letztere derart variiert werden kann, dass sie die betreffende
Stelle auf den Proben-DNA abfragt, wobei nur dasjenige zweite Oligonukleotid, welches
im Bereich der Abfragebase vollkommen passend ist, an das erste Oligonukleotid ligiert
wird.
(b) Aufschmelzen des DNA-Strangs und Verankern der ligierten Oligonukleotide auf einer
Mikrokugel; und
(c) Untersuchen der Mikrokugel mittels Durchflusszytometrie, wodurch die untersuchte
Base bestimmt wird.
7. Homogenes Verfahren zur Bestimmung der Identität einer Base an einer Stelle eines
DNA-Strangs, welches die folgenden Schritte in der angegebenen Reihenfolge umfasst:
(a) Anlagern eines ersten Oligonukleotids sowie eines zweiten oligonukleotids an den
DNA-Strang, und zwar neben dem ersten Oligonukleotid und in Gegenwart von DNA-Ligase,
wobei das zweite Oligonukleotid sowohl ein fluoreszierendes Reportermolekül als auch
eine Abfragebase enthält und letztere derart variiert werden kann, dass sie die betreffende
Stelle auf den Proben-DNA abfragt, wobei nur dasjenige zweite Oligonukleotid, welches
im Bereich der Abfragebase vollkommen passend ist, an das erste Oligonukleotid ligiert
wird.
(b) Vervielfältigen der ligierten Oligonukleotide;
(c) Festhalten der vervielfältigen, ligierten Oligonukleotide auf einer Mikrokugel;
(d) Untersuchen der Mikrokugel mittels Durchflusszytometrie, wodurch die untersuchte
Base bestimmt wird.
8. Verfahren nach der Beschreibung in Anspruch 6, wobei das erste Oligonukleotid biotinyliert
und die Mikrokugel mit Avidin oder Streptavidin beschichtet wird.
9. Verfahren nach der Beschreibung in Anspruch 6, wobei das erste Oligonukleotid kovalent
an die Mikrokugel gebunden wird.
10. Verfahren nach der Beschreibung in Anspruch 6, wobei das erste Oligonukleotid mit
einer komplementären Fangsonde, welche auf einer Mikrokugel verankert ist, hybridisiert
wird.
11. Verfahren nach der Beschreibung in Anspruch 10, wobei ein Sequence Tag mit einer Fangsonde
hybridisiert wird, die komplementär dazu ist, und wobei der Sequence Tag und die Fangsonde
eine nicht natürlich vorkommende Base umfassen, welche aus der Gruppe gewählt ist,
die aus Iso-C und 5-Methyl-iso-G besteht.
1. Procédé homogène de détermination de l'identité d'une base sur un brin d'ADN, qui
comprend les étapes consistant à :
(a) anneler un oligonucléotide au brin d'ADN immédiatement adjacent à la base dont
l'identité doit être déterminée ;
(b) faire incuber le brin d'ADN et l'oligonucléotide annelés avec quatre didésoxynucléotides
différents, l'un des didésoxynucléotides ayant une molécule rapporteur fluorescente
en présence d'ADN polymérase, allongeant ainsi l'oligonucléotide d'une unité de base
;
(c) immobiliser l'oligonucléotide allongé sur une microsphère ; et
(d) analyser la microsphère en utilisant la cytométrie en flux, de telle manière que
la base étudiée est déterminée.
2. Procédé tel que décrit dans la revendication 1, dans lequel l'oligonucléotide est
biotinylé et la microsphère est enrobée d'avidine ou de streptavidine.
3. Procédé tel que décrit dans la revendication 1, dans lequel l'oligonucléotide est
lié de manière covalente à la microsphère.
4. Procédé tel que décrit dans la revendication 1, dans lequel l'oligonucléotide est
hybridé à une sonde de capture complémentaire immobilisée sur une microsphère.
5. Procédé tel que décrit dans la revendication 1, dans lequel l'oligonucléotide comprend
une étiquette de séquence qui est hybridée à une sonde de capture, et dans lequel
l'étiquette de séquence et la sonde de capture comprennent au moins une base non naturelle
choisie dans le groupe constitué par l'iso-C et le 5-méthyl-iso-G.
6. Procédé homogène de détermination de l'identité d'une base au niveau d'un site sur
un brin d'ADN, qui comprend, dans l'ordre, les étapes consistant à :
(a) anneler un premier oligonucléotide et un second oligonucléotide au brin d'ADN
adjacent au premier oligonucléotide et en présence d'ADN ligase, le second oligonucléotide
contenant à la fois une molécule rapporteur fluorescente et une base interrogatrice,
qui est variable pour interroger le site d'intérêt sur l'échantillon d'ADN, seul le
second oligonucléotide avec une correspondance parfaite au niveau de la base interrogatrice
sera ligaturé au premier oligonucléotide ;
(b) faire fondre le brin d'ADN et immobiliser les oligonucléotides ligaturés sur une
microsphère ; et
(c) analyser la microsphère en utilisant la cytométrie en flux, de telle manière que
la base étudiée est déterminée.
7. Procédé homogène de détermination de l'identité d'une base au niveau d'un site sur
un brin d'ADN, qui comprend, dans l'ordre, les étapes consistant à :
(a) anneler un premier oligonucléotide et un second oligonucléotide au brin d'ADN
adjacent au premier oligonucléotide et en présence d'ADN ligase, le second oligonucléotide
contenant à la fois une molécule rapporteur fluorescente et une base interrogatrice,
qui est variable pour interroger le site d'intérêt sur l'échantillon d'ADN, seul le
second oligonucléotide avec une correspondance parfaite au niveau de la base interrogatrice
sera ligaturé au premier oligonucléotide ;
(b) amplifier les oligonucléotides ligaturés ;
(c) capturer les oligonucléotides ligaturés et amplifié sur une microsphère ;
(d) analyser la microsphère en utilisant la cytométrie en flux, de telle manière que
la base étudiée est déterminée.
8. Procédé tel que décrit dans la revendication 6, dans lequel le premier oligonucléotide
est biotinylé et la microsphère est enrobée d'avidine ou de streptavidine.
9. Procédé tel que décrit dans la revendication 6, dans lequel le premier oligonucléotide
est lié de manière covalente aux microsphères.
10. Procédé tel que décrit dans la revendication 6, dans lequel le premier oligonucléotide
est hybridé à une sonde de capture complémentaire immobilisée sur une microsphère.
11. Procédé tel que décrit dans la revendication 10, dans lequel l'étiquette de séquence
est hybridée à une sonde de capture qui est complémentaire de celle-ci, et dans lequel
l'étiquette de séquence et la sonde de capture comprennent au moins une base non naturelle
choisie dans le groupe constitué par l'iso-C et le 5-méthyl-iso-G.