

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) **EP 1 043 751 A1**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

11.10.2000 Patentblatt 2000/41

(21) Anmeldenummer: 00201149.2

(22) Anmeldetag: 28.03.2000

(51) Int. Cl.7: H01J 61/06

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

(30) Priorität: 07.04.1999 DE 19915616

(71) Anmelder:

 Philips Corporate Intellectual Property GmbH 52064 Aachen (DE)

Benannte Vertragsstaaten:

DE

Koninklijke Philips Electronics N.V.
 5621 BA Eindhoven (NL)
 Benannte Vertragsstaaten:
 FR GB

(72) Erfinder:

- Hennings, Detlev 52064 Aachen (DE)
- Steigelmann, Oliver 52064 Aachen (DE)
- (74) Vertreter:

Volmer, Georg, Dipl.-Ing. et al Philips Corporate Intellectual Property GmbH, Habsburgerallee 11 52064 Aachen (DE)

(54) Gasentladungslampe

(57) Die Erfindung beschreibt eine Gasentladungslampe mit Einkoppelstrukturen (4) aus $Ba(Ti_{l-x}Zr_x)O_3$ mit Donator/Akzeptor-Dotierungen.

Durch bestimmte Donator/Akzeptor-Kombinationen, einem optimierten Gehalt an Zirkon und einem optimierten atomaren Verhältnis der Kationen wird eine ferroelektrische Keramik erhalten, welche hohe Werte für die remanente Polarisation P_r und die Dielektrizitätskonstante ϵ_r , eine rechteckige Hystereseschleife und niedrige Koerzitivfeldstärken E_c aufweist. Bei Anlegen einer Wechselspannung an die ferroelektrischen Einkoppelstrukturen wird infolge der nichtlinearen Eigenschaften der Einkoppelstrukturen (4) die Zündung sowie der anschließende Dauerbetrieb der Lampe bewirkt.

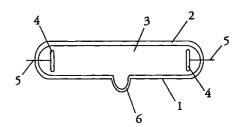


FIG. 1

Beschreibung

15

[0001] Die Erfindung betrifft eine Gasentladungslampe mit Einkoppelstrukturen aus Keramik.

[0002] Eine Gasentladungslampe enthält ein strahlungsdurchlässiges Entladungsgefäß, welches eine Entladungszone mir einer gasförmigen, jonisierbaren Füllung umschließt. In dieser Entladungszone befinden sich in geeignetem Abstand Elektroden.

[0003] Aus US 5 654 606 ist eine solche Gasentladungslampe bekannt. Anstelle der sonst üblichen Metallelektroden wurde eine gesinterte Mischung aus Metall und keramischem Material als Einkoppelstruktur verwendet. Durch Erzeugung einer hohen kapazitiven Spannung zwischen den Einkoppelstrukturen erfolgt in solchen Gasentladungslampen die Erzeugung der Ladungsträger direkt im Gasvolumen. Die Zugabe von geringen Mengen Metall war bei den verwendeten keramischen Materialien notwendig, um eine ausreichende Stabilität der Einkoppelstrukturen bei Temperaturschwankungen, wie sie beim Einschalten einer solchen Gasentladungslampe auftreten können, zu gewährleisten.

[0004] Der Erfindung liegt die Aufgabe zugrunde, eine Gasentladungslampe mit keramischen Einkoppelstrukturen, die verbesserte Eigenschaften haben, zur Verfügung zu stellen.

[0005] Die Aufgabe wird gelöst durch eine Gasentladungslampe mit Einkoppelstrukturen aus Keramik, dadurch gekennzeichnet, daß die Einkoppelstrukturen aus einer ferroelektrischen Keramik sind.

[0006] Ein keramische Material für solche Einkoppelstrukturen muß folgende Voraussetzungen erfüllen: eine möglichst rechteckige Hystereseschleife, eine hohe Dielektrizitätskonstante ε_r und eine hohe remanente Polarisation P_r .

[0007] Die meisten Dielektrika weisen eine geringe Höhe der Dielektrizitätskonstanten ε_r und eine niedrige Feldabhängigkeit $\varepsilon_r(E)$ auf. Eine Ausnahme bilden einige ferroelektrische Materialien, bei denen sich ε_r bei einer kritischen Feldstärke E_c sprunghaft sehr stark ändert.

[0008] Scheiben aus ferroelektrischen Materialien, welche ein sogenanntes nichtlineares Verhalten aufweisen, können als Einkoppelstrukturen in Gasentladungslampen verwendet werden. Diese Scheiben wirken als keramische Plattenkondensatoren und beim Anlegen einer Wechselspannung laden sich die Innenflächen auf. Durch den hohen, nichtlinearen Anstieg der Kondensatorladung wird die Zündung sowie der anschließenden Dauerbetrieb der Lampe bewirkt.

[0009] Es ist bevorzugt, daß die ferroelektrische Keramik $Ba(Ti_{l-x}Zr_x)O_3$ mit Dotierungen aus Donator/Akzeptor-Kombinationen enthält.

[0010] Ba $(Ti_{l-x}Zr_x)O_3$ mit Dotierungen aus Donator/Akzeptor-Kombinationen ist ein ferroelektrisches Material mit den geforderten nichtlinearen Eigenschaften. In Ba $(Ti_{l-x}Zr_x)O_3$ -Mischkristallkeramiken bewirken kleine Zusätze von Donator/Akzeptor-Kombinationen hohe Werte für die remanente Polarisation P_r und die Dielektrizitätskonstante ϵ_r -Außerdem besitzen diese Donator/Akzeptor-dotierten Ba $(Ti_{l-x}Zr_x)O_3$ -Keramiken rechteckige Hystereseschleifen.

[0011] Es ist bevorzugt, daß die Donator/Akzeptor-Kombinationen Mn^{3+} und W^{6+} oder Yb^{3+} und Nb^{5+} oder Yb^{3+} und Mo^{6+} oder Mg^{2+} und W^{6+} oder Mn^{3+} und Nb^{5+} oder Mn^{3+} und Nb^{5+} oder Mn^{3+} und Mn^{3+} und

[0012] Diese Donator/Akzeptor-Kombinationen bewirken eine besonders starke Steigerung für die Werte der Dielektrizitätskonstanten ε_r und der remanenten Polarisation P_r .

[0013] Es ist auch bevorzugt, daß der Gehalt an Zirkon in der ferroelektrischen Keramik x = 0.09 beträgt.

[0014] Durch den Zusatz von BaZrO $_3$ zu BaTiO $_3$ erniedrigen sich in Mischkristallen der Zusammensetzung Ba(Ti_L $_X$ Zr_X)O $_3$ die Koerzitivfeldstärken auf E $_c$ < 100 V/mm. Dies ist vorteilhaft, um bei einer Betriebsspannung von 220 V Einkoppelstrukturen in einer Dicke verwenden zu können, die eine ausreichende Durchschlagsfestigkeit aufweisen. Bei einem Zirkon-Gehalt von x = 0.09 beträgt die Koerzitivfeldstärke E $_c$ \cong 70 V/mm und die Curietemperatur T $_c$ ist mit 90 $^{\circ}$ C in einem Bereich, die noch über der Betriebstemperatur von Gasentladungslampen liegt.

[0015] Es ist weiterhin bevorzugt, daß das Verhältnis Ba/(Ti,Zr,Dotierungen) zwischen 0.997 und 0.998 liegt.

45 [0016] In Perowskiten übt das atomare Verhältnis der Kationen einen großen Einfluß auf die Eigenschaften der Keramik aus. In der Mischkristallreihe Ba(Ti_{I-x}Zr_x)O₃ ist die Erhöhung der Dielektrizitätskonstanten ε_r in Abhängigkeit von E_c bzw. T_c am größten, wenn das atomare Verhältnis Ba/(Ti,Zr,Dotierungen) geringfügig kleiner 1 ist.

[0017] Im folgenden soll die Erfindung anhand einer Figur und eines Ausführungsbeispieles erläutert werden. Dabei zeigt Fig. 1 eine longitudinale Seitenansicht einer beispielhaften Gasentladungslampe.

[0018] Gemäß Fig. 1 weist eine Gasentladungslampe ein röhrenförmiges Entladungsgefäß 1 beispielsweise aus Kalkglas auf, das eine Entladungszone 3 mit gasförmiger, ionisierbarer Füllung umschließt. Auf der inneren Oberfläche des Entladungsgefäßes 1 ist eine lumineszierende Schicht 2 aufgebracht. Die gasförmige, ionisierbare Füllung kann zum Beispiel Quecksilber und Argon enthalten. Einkoppelstrukturen 4 aus Ba(Ti_{l-x}Zr_x)O₃ mit Dotierungen aus Donator/Akzeptor-Kombinationen sind in geeignetem Abstand an gegenüberliegenden Seiten des Entladungsgefäßes 1 in der Entladungszone 3 angebracht. Die Einkoppelstrukturen 4 sind jeweils mit einer Stromzuführung 5, beispielsweise einem Metallstift, verbunden. Über eine integrierte Ausströmöffnung 6 wird das Entladungsgefäß 1 evakuiert und befüllt. Beim Anlegen einer Wechselspannung an die beiden Einkoppelstrukturen 4, die zusammen wie ein keramischer Plattenkondensator wirken, werden die in der Lampe liegenden Innenflächen aufgeladen. Der hohe, nichtlineare

Anstieg der Kondensatorladung bewirkt die Zündung sowie den anschließenden Dauerbetrieb der Lampe.

[0019] Das ferroelektrische Material für die Einkoppelstrukturen 4 muß folgende Voraussetzungen erfüllen: hohe Werte für die remanente Polarisation P_r und die Dielektrizitätskonstante ϵ_p eine rechteckige Hystereseschleife, eine über der Betriebstemperatur der Lampe liegenden Curietemperatur T_c und eine unterhalb der Betriebsspannung von 220 V liegende Koerzitivfeldstärke E_c .

[0020] Ba(${\rm Ti}_{l-x}{\rm Zr}_x$)O $_3$ mit Dotierungen aus Donator/Akzeptor-Kombinationen ist ein Material mit den geforderten nichtlinearen Eigenschaften. Typische Akzeptor-Dotierungen stellen dabei Mn $^{3+}$, Fe $^{3+}$, Cr $^{3+}$, Mg $^{2+}$ und Lu $^{3+}$ dar, die auf den Ti $^{4+}$ - und Zr $^{4+}$ -Plätzen des Perowskitgitters eingebaut werden. Als Donatoren eignen sich Nb $^{5+}$, W $^{6+}$, Mo $^{6+}$, Mo $^{5+}$ auf den Ti $^{4+}$ - und Zr $^{4+}$ -Plätzen und Y $^{3+}$, Dy $^{3+}$, Er $^{3+}$, Nd $^{3+}$ und Gd $^{3+}$ auf den Ba $^{2+}$ -Plätzen. Besonders vorteilhaft erwiesen sich die Kombinationen Mn $^{3+}$ und W $^{6+}$ (3:1 bis 2:1) oder Yb $^{3+}$ und Nb $^{5+}$ (1.5:1) oder Yb $^{3+}$ und W $^{6+}$ (2.5:1) oder Mg $^{2+}$ und Nb $^{5+}$ (1.5:1) oder Mg $^{2+}$ und Nb $^{5+}$ (1.5:1) oder Mn $^{3+}$ und Dy $^{3+}$, Ho $^{3+}$, Er $^{3+}$, Gd $^{3+}$, Nd $^{3+}$, Y $^{3+}$ (1.5:1 bis 1:1).

Tabelle 1

Einfluß der Dotierungen in Ba $(Ti_{0.91}Zr_{0.09})O_3$ (Σ Verunreinigungen \cong 750 ppm, T_{sinter} = 1450 °C, Ba $/$ (Ti,Zr,Dotierungen) = 0.9975)				
Dotierung [mol%]	ε _r (T _c)	$\varepsilon_{\rm r}({\sf E}_{\rm c})$	P _r [μC/cm ²]	E _c [V/mm]
-	61000	760000	13	70
0.15 Mn ³⁺ / 0.10 Nb ⁵⁺	85000	1300000	14	60
0.10 Mn ³⁺ / 0.05 W ⁶⁺	90000	1500000	15	60
0.15 Mn ³⁺ / 0.1 Y ³⁺	90000	1400000	15	60
0.15 Yb ³⁺ / 0.1 Mo ⁶⁺	900000	1300000	15	60
0.15 Yb ³⁺ / 0.005 W ⁶⁺	1100000	2000000	16	60
0.15 Mn ³⁺ / 0.1 Mo ³⁺	95000	1500000	15	60
0.15 Mg ²⁺ / 0.1 Nb ⁵⁺	120000	3000000	17	65
0.15 Mg ²⁺ / 0.05 W ⁶⁺	120000	2800000	17	60

[0021] Auch der Gehalt an Zirkon, das Verhältnis der Kationen sowie die Sintertemperaturen der Herstellung, die Reinheit der Rohstoffe und die chemische Homogenität des ferroelektrischen Materials beeinflussen die Eigenschaften der Keramik.

[0022] Keramiken aus reinem $BaTiO_3$ weisen Koerzitivfeldstärken von $E_c > 100$ V/mm auf. In Mischkristallen der Zusammensetzung $Ba(Ti_{l-x}Zr_x)O_3$ erniedrigen sich die Koerzitivfeldstärken auf $E_c < 100$ V/mm.

[0023] Die ferroelektrische Curietemperatur erniedrigt sich von T_c = 130 °C im reinen BaTiO₃ bei Zugabe von BaZrO₃ um 4 °C pro at.% Zr. Bei einem Zirkon-Gehalt von x = 0.09 beträgt die Koerzitivfeldstärke $E_c \cong 70$ V/mm und die Curietemperatur T_c liegt bei ungefähr 90 °C.

[0024] In Perowskiten kann das Verhältnis der Kationen einen großen Einfluß auf die Eigenschaften nehmen. In BaTiO $_3$ übt das atomare Verhältnis von Ba/Ti einen großen Einfluß auf die Sinterbarkeit und die dielektrischen Eigenschaften der Keramik aus. So entstehen bei Ba/Ti \cong 1 feinkörnige Keramiken mit hoher Dielektrizitätskonstante ϵ_r . In Mischkristallen der Zusammensetzung Ba(Ti $_{0.91}$ Zr $_{0.09}$)O $_3$ tritt eine Erhöhung der Dielektrizitätskonstanten ϵ_r in Abhängigkeit von E $_c$ bzw. T $_c$ auf, wenn das atomare Verhältnis geringfügig kleiner 1 ist.

Tabelle 2

Einfluß des atomaren Verhältnisses Ba/(Ti,Zr) in			
Ba($Ti_{0.91}Zr_{0.09}$)O ₃ (Σ Verunreinigungen \cong 750			
ppm, T _{sinter} = 1450 °C)			
Ba/(Ti,Zr)	$\epsilon_{\rm r}({\rm T_c})$	$\epsilon_{\rm r}({\rm E_{\rm c}})$	
0.999	28000	150000	
0.998	53000	470000	

50

15

20

25

30

35

55

EP 1 043 751 A1

Tabelle 2 (fortgesetzt)

Ba(Ti _{0.91} Zr _{0.09}	Einfluß des atomaren Verhältnisses Ba/(Ti,Zr) in Ba(Ti _{0.91} Zr _{0.09})O ₃ (Σ Verunreinigungen \cong 750 ppm, T _{sinter} = 1450 °C)			
Ba/(Ti,Zr)	Zr) $\epsilon_r(T_c)$			
0.997	61000	650000		
0.995	45000	380000		
0.990	38000	260000		

[0025] Die Sintertemperaturen bei der Herstellung sowie die Reinheit der Rohstoffe und die chemische Homogenität des Mischkristalls Ba $(Ti_{I-X}Zr_X)O_3$ haben entscheidenden Einfluß auf die Höhe der Dielektrizitätskonstanten ϵ_r sowie der remanenten Polarisation P_r und auf die Form der Hystereseschleife. Schon kleine Verunreinigungen oder unvollkommene Vermischung der Rohstoffe führen zu einer starken Erniedrigung der remanenten Polarisation P_r und zu schrägen Hystereseschleifen.

Tabelle 3

Einfluß der Rohstoffreinheit und der Sintertemperatur auf die Dielektrizitätskonstante ϵ_r bei der Curietemperatur T_c und bei der Koerzitivfeldstärke E_c in Ba $(Ti_{0.91}Zr_{0.09})O_3$			
Σ Verunreinigungen [ppm]	T _{sinter} [°C]	$\varepsilon_{\rm r}({\rm T_c})$	$\varepsilon_{r}(E_{\scriptscriptstyle{C}})$
5000	1325	16000	50000
5000	1450	22000	110000
750	1325	18000	70000
750	1450	36000	210000

Patentansprüche

5

10

20

25

30

35

1. Gasentladungslampe mit Einkoppelstrukturen (4) aus Keramik,

dadurch gekennzeichnet,

daß die Einkoppelstrukturen (4) aus einer ferroelektrischen Keramik sind.

40 **2.** Gasentladungslampe nach Anspruch 1,

dadurch gekennzeichnet,

daß die ferroelektrische Keramik Ba(Ti_{I-x}Zr_x)O₃ mit Dotierungen aus Donator/Akzeptor-Kombinationen enthält.

3. Gasentladungslampe nach Anspruch 1 und 2,

45 dadurch gekennzeichnet,

daß die Donator/Akzeptor-Kombinationen Mn³⁺ und W⁶⁺ oder Yb³⁺ und Nb⁵⁺ oder Yb³⁺ und Mo⁶⁺ oder Mg²⁺ und W⁶⁺ oder Mn³⁺ und Nb⁵⁺ oder Yb³⁺ und W⁶⁺ oder Mg²⁺ und Nb⁵⁺ oder Mn³⁺ und Dy³⁺, Ho³⁺, Er³⁺, Gd³⁺, Nd³⁺, Y³⁺ enthalten.

50 **4.** Gasentladungslampe nach Anspruch 1 und 2,

dadurch gekennzeichnet,

daß der Gehalt an Zirkon in der ferroelektrischen Keramik x = 0.09 beträgt.

5. Gasentladungslampe nach Anspruch 1 und 2,

55 <u>dadurch gekennzeichnet,</u>

daß das Verhältnis Ba/(Ti,Zr,Dotierungen) zwischen 0.997 und 0.998 liegt.

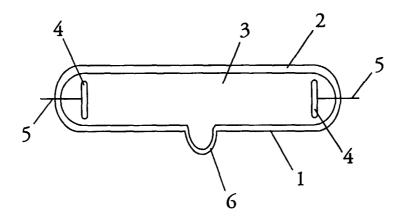


FIG. 1

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 00 20 1149

	EINSCHLÄGIGE	DOKUMENTE		
Kategorie	Kennzeichnung des Dokum der maßgeblich	nents mit Angabe, soweit erforderlich, en Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CI.7)
X A	EP 0 254 147 A (TDK ELECTRIC CORP (JP)) 27. Januar 1988 (19 * Zusammenfassung; * Seite 3, Zeile 22 * Seite 3, Zeile 57 * Seite 4, Zeile 19	CORP ;MITSUBISHI 88-01-27) Abbildung 1 * - Zeile 36 *	1-3 4,5	H01J61/06
X	US 4 808 883 A (IWA 28. Februar 1989 (1 * Spalte 3, Zeile 1		1-3	
X	EP 0 643 416 A (TDK 15. März 1995 (1995 * Zusammenfassung; * Seite 5, Zeile 5	-03-15) Abbildung 4A *	1-3	
D,X A	ET AL) 5. August 19	6 - Spalte 2, Zeile 12 1 - Zeile 58 *	1,2	RECHERCHIERTE SACHGEBIETE (Int.Cl.7)
А	PATENT ABSTRACTS OF vol. 1996, no. 05, 31. Mai 1996 (1996- & JP 08 022804 A (T TECHNOL CORP), 23. Januar 1996 (19 * Zusammenfassung *	05-31) OSHIBA LIGHTING & 96-01-23)		
Der vo	orliegende Recherchenbericht wu	rde für alle Patentansprüche erstellt		
	Recherchenort DEN HAAG	Abschlußdatum der Recherche 14. Juli 2000	Max	Profer Tin Vicente, M
X : von Y : von and A : tech O : nick	ATEGORIE DER GENANNTEN DOK besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindung eren Veröffentlichung derselben Kater nnologischer Hintergrund htschriftliche Offenbarung schenliteratur	UMENTE T: der Erfindung z E: älteres Patento nach dem Anm nit einer D: in der Anmeldt gorie L: aus anderen G	tugrunde liegende lokument, das jed eldedatum veröffe ing angeführtes D ründen angeführte	Theorien oder Grundsätze ontlicht worden ist okument

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 00 20 1149

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

14-07-2000

	Recherchenberic Ihrtes Patentdoku		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichur
EP	0254147	Α	27-01-1988	CN	1006343 B	03-01-199
				KR	9201845 B	05-03-199
US	4808883	Α	28-02-1989	JP	1983926 C	25-10-199
				JP	6103627 B	14-12-199
				JP	62291854 A	18-12-198
				DE	3752218 D	22-10-199
				DE	3752218 T	22-04-199
				EP	0249196 A	16-12-198
				CN	1006748 B	07-02-199
				JP	6132008 A	13-05-199
				JP	6132009 A	13-05-199
				JP	2620827 B	18-06-199
				JP	6132010 A	13-05-199
EP	0643416	A	15-03-1995	JP	6267404 A	22-09-199
				JP	6302297 A	28-10-199
				JP	6302298 A	28-10-199
				CN	1105804 A	26-07-199
				WO	9422164 A	29-09-199
US	5654606	A	05-08-1997	CN	1142281 A	05-02-19
				DE	69507283 D	25-02-199
				DE	69507283 T	01-07-199
				EP	0738423 A	23-10-19
				WO	9614654 A	17-05-199
				JP	9507956 T	12-08-19
JP	08022804	-	23-01-1996	KEI	 NE	

EPO FORM P0461

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82