

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) **EP 1 050 400 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:08.11.2000 Patentblatt 2000/45

(21) Anmeldenummer: **00107283.4**

(22) Anmeldetag: 04.04.2000

(51) Int. Cl.⁷: **B30B 11/08**, B30B 11/00

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

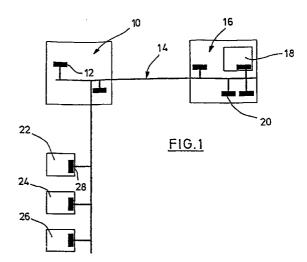
(30) Priorität: 04.05.1999 DE 19920377

(71) Anmelder: Wilhelm Fette GmbH 21493 Schwarzenbek (DE)

(72) Erfinder:

 Hinzpeter, Jürgen 21493 Schwarzenbek (DE)

 Schmidt, Ingo 21493 Schwarzenbek (DE)


- Greve, Joachim
 23911 Pogeez (DE)
- Reitberger, Jörg 21077 Hamburg (DE)
- Gathmann, Ulrich
 22147 Hamburg (DE)
- Preuss, Klaus Peter 23879 Mölln (DE)

(74) Vertreter:

Patentanwälte Hauck, Graalfs, Wehnert, Döring, Siemons Neuer Wall 41 20354 Hamburg (DE)

(54) Steuer- und Überwachungsvorrichtung für eine Rundläufer-Tablettenpresse

(57) Steuer- und Überwachungsvorrichtung für eine Rundläufer-Tablettenpresse, der ein Schaltschrank, ein Bedienpult sowie Peripheriegeräte zum Entstauben, Abfüllen, Prüfen der Tablette usw. zugeordnet sind, wobei im Schaltschrank ein Prozeßrechner angeordnet ist, der mit den Aktoren und Sensoren der Tablettenpresse und der Peripheriegeräte verbunden ist, wobei die Aktoren und/oder Sensoren busfähige Module (12,28,34,36,38) aufweisen, die über eine Zweidrahtleitung (14,32) mit dem Schaltschrank bzw. Prozeßrechner verbunden sind und der Prozeßrechner die von den Sensoren kommenden bzw. zu den Aktoren hinführenden Signale digitalisiert seriell empfängt bzw. sendet.

25

35

40

45

Beschreibung

[0001] Die Erfindung bezieht sich auf eine Steuerund Überwachungsvorrichtung für eine Rundläufer-Tablettenpresse nach dem Oberbegriff des Patentanspruchs 1.

[0002] Eine Tablettenpresse oder Tablettiermaschine, wie sie etwa aus EP 0 288 798 bekannt geworden ist, besteht im wesentlichen aus der eigentlichen Rundläufer-Tablettenpresse, einem Schaltschrank, einem Bedienpult sowie einigen Peripheriegeräten, etwa zum Entstauben, Abfüllen und Prüfen der Tabletten usw. Die einzelnen Komponenten müssen mit Steuersignalen versorgt werden bzw. liefern Meßsignale. Im Schaltschrank befindet sich ein Prozeßrecbner, der die Signale verarbeitet und entsprechende Steuersignale erzeugt ggf. nach Maßgabe der ankommenden Meßsignale. Die einzelnen Komponenten, die Meßsignale erzeugen, weisen üblicherweise Sensoren auf, die verschiedene physikalische Parameter bestimmen oder entsprechende Signale erzeugen, beispielsweise für den Druck, Temperatur, Geschwindigkeit usw. Die Sensoren kann man auch als Signalsender bezeichnen. Umgekehrt existiert eine große Reihe von Signalempfängern, die aufgrund ankommender Signale Funktionen ausführen, beispielsweise bestimmte mechanische Betätigung, Beleuchtung usw. Bei der herkömmlichen Steuerstruktur einer Rundläufer-Tablettenpresse sind die einzelnen Aktoren und Sensoren mit dem zentralen Steuerungsrechner über eine Einzeladerverdrahtung verbunden. Diese ist zuständig für den Transport analoger und digitaler Signale zwischen den Aktoren und Sensoren und dem Steuerungsrechner. Nachteilig ist der hohe Verbrauch von Kabelmaterial und auch eine zeitaufwendige Montage.

[0003] Der Erfindung liegt die Aufgabe zugrunde, eine Steuer- und Überwachungsvorrichtung für Rundläufer-Tablettenpressen zu schaffen, die den Aufwand an Kabelmaterial und an Montageschritten deutlich reduziert.

[0004] Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst.

[0005] Bei der erfindungsgemäßen Vorrichtung weisen die Aktoren und/oder Sensoren busfähige Module auf, die über eine Zweidrahtleitung (Busleitung) mit dem Prozeßrechner verbunden sind. Im Prozeßrechner werden die von den Sensoren kommenden digitalen Signale seriell empfangen und verarbeitet, und vom Prozeßrechner werden die Aktoren mit den nötigen Steuerbefehlen seriell versorgt.

[0006] Im Prozeßrechner werden nach Aufgaben sinnvoll geordnete Busmodule gebildet, die mit den busfühigen Modulen der Aktoren und Sensoren über eine Zweidrahtleitung in Verbindung stehen. Vorzugsweise können gleichartige Aktoren und Sensoren einem gemeinsamen busfähigen Modul zugeordnet sein, beispielsweise Relais, Schalter, Leuchten usw. Somit wird eine große Anzahl von Einzeladern für den Signal- und

Informationsaustausch durch ein Netzwerk aus einem einfachen Zweileitersystem ersetzt. Die Signale können digitaler oder analoger Art sein, wobei die busfähigen Module der Aktoren und/oder Sensoren ihrerseits Prozessoren aufweisen können zur Verarbeitung der ankommenden bzw. Erzeugung der abgehenden Signale. Beispielsweise kann in einem Temperatursensor bereits ein Soll/Ist-Wert-Vergleich vorgenommen werden, wobei dann nur die Regelabweichung über die Busleitung auf den Prozeßrechner gegeben wird. Es ist außerdem denkbar, die dezentralen Systeme, beispielsweise für Aktoren und/oder Sensoren, untereinander in Verbindung zu setzen, beispielsweise zur Regelung einer Komponente in Abhängigkeit von einer Temperaturmessung, ohne daß eine Prozeßverarbeitung im zentralen Steuerrechner erfolgen muß.

[0007] Die Erfindung wird nachfolgend anhand eines in den Zeichnungen dargestellten Systems näher beschrieben.

Fig. 1 zeigt schematisch eine Busstruktur in einer Rundläufer-Tablettenpresse nach der Erfindung.

Fig. 2 zeigt eine Einzelheit der Busstruktur nach Fig. 1.

[8000] In Fig. 1 ist eine Rundläufer-Tablettiermaschine bei 10 angedeutet. Mit 12 sind busfähige Module angedeutet, welche den Aktoren und Sensoren der Tablettenpresse 10 zugeordnet sind. Die Module 12 sind über eine Busleitung 14 mit einem Schaltschrank 16 in Verbindung, in dem sich ein Steuerrechner 18 befindet. Im Schaltschrank ist eine Anzahl von Busmodulen 20 vorgesehen. Mit der Zweidraht-Busleitung 14 sind ein Bedienpult 22 und Peripheriegeräte 24, 26 verbunden. Diese Komponenten erhalten ihrerseits jeweils ein Busmodul 28. Die Kommunikation der Presse 10 und der außerhalb der Presse 10 angeordneten Komponenten mit dem Rechner bzw. weiteren Teilen des Schaltschranks 16 erfolgt über eine einzige zwei Adern enthaltende Leitung 24 (Busleitung), wobei die zu übertragenen Signale digitalen oder analogen Ursprungs sein können. Diese werden in den Busmodulen in eine serielle digitale Information gewandelt.

[0009] In Fig. 2 ist der Schaltschrank durch eine Anzahl von Einschüben oder Karten 30 angedeutet, von denen die rechte Karte mit einer Busleitung 32 verbunden ist, mit der ihrerseits Module 34, 36 bzw. 38 verbunden sind. Die ersteren beiden fassen den Betrieb einer Anzahl von Aktoren zusammen, nämlich Schalter 40 bzw. Relais 42. Das Modul 38 dient zur Steuerung bzw. Regelung eines Motors 44. Die Informationen aller Busteilnehmer werden über ein serielles digitales Datenprotokoll ausgetauscht. Jeder Busteilnehmer kann somit Informationen senden und empfangen.

[0010] Handelt es sich um mehrere digitale oder analoger Signale in unmittelbarer Umgebung zueinan-

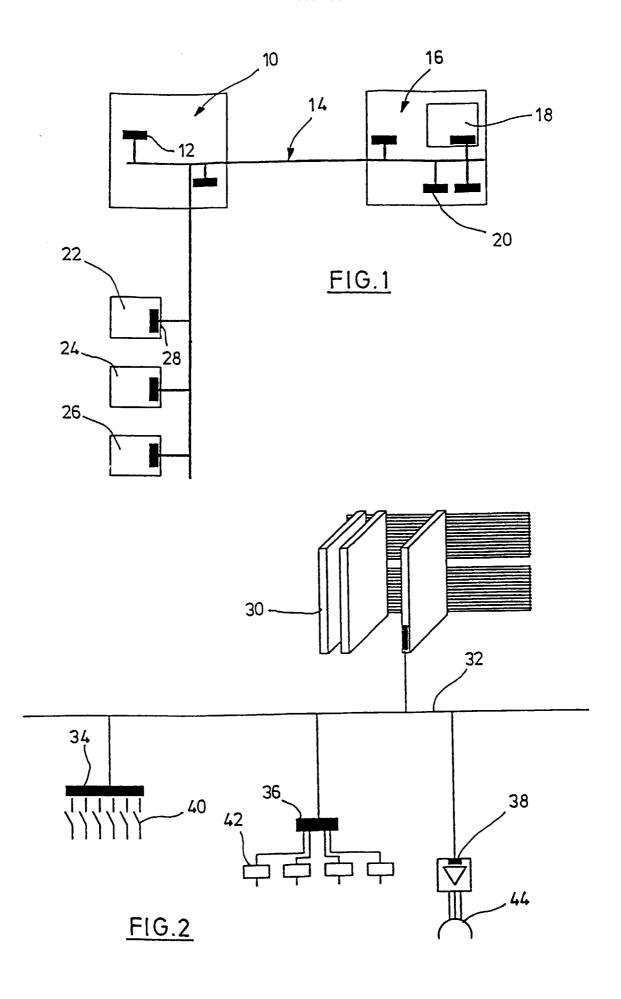
55

5

der, so werden sie, wie anhand von Fig. 2 gezeigt, an einem Busmodul zusammengefaßt und von dort seriell übertragen.

Patentansprüche

1. Steuer- und Überwachungsvorrichtung für eine Rundläufer-Tablettenpresse, der ein Schaltschrank, ein Bedienpult sowie Peripheriegeräte zum Entstauben, Abfüllen, Prüfen der Tablette usw. zugeordnet sind, wobei im Schaltschrank ein Prozeßrechner angeordnet ist, der mit den Aktoren und Sensoren der Tablettenpresse und der Peripheriegeräte verbunden ist, dadurch gekennzeichnet, daß die Aktoren und/oder Sensoren busfähige Module (12, 28, 34, 36, 38) aufweisen, die über eine Zweidrahtleitung (14, 32) mit dem Schaltschrank bzw. Prozeßrechner verbunden sind und der Prozeßrechner die von den Sensoren kommenden bzw. zu den Aktoren hinführenden Signale 20 digitalisiert seriell empfängt bzw. sendet.


- 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß im Prozeßrechner nach Aufgabe geordnete Busmodule (20) zur seriellen Kommunikation mit den Busmodulen (12, 28) der Aktoren und Sensoren vorgesehen sind.
- 3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß Aktoren und/oder Sensoren vergleichbarer Funktion über ein gemeinsames Modul (34, 36, 38) an die Busleitung (32) angeschlossen sind.
- 4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß busfähige Module der Aktoren und/oder Sensoren ihrerseits einen Prozessor aufweisen zur Verarbeitung und/oder Erzeugung von Signalen.

40

45

50

55

