

Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 1 054 249 A8**

(12) **CO**

CORRECTED EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC Note: Bibliography reflects the latest situation

(15) Correction information:

Corrected version no 1 (W1 A1)

INID code(s) 71

(48) Corrigendum issued on: **30.01.2002 Bulletin 2002/05**

(43) Date of publication: **22.11.2000 Bulletin 2000/47**

(21) Application number: 99973122.7

(22) Date of filing: 12.11.1999

(51) Int CI.⁷: **G01N 13/12**, G01B 21/30, G12B 21/04

(86) International application number: **PCT/JP99/06359**

(87) International publication number: WO 00/33052 (08.06.2000 Gazette 2000/23)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

(30) Priority: **03.12.1998 JP 37664298 31.12.1998 JP 37854898 19.03.1999 JP 11693999 19.03.1999 JP 11694099**

(71) Applicants:

Daiken Chemical Co. Ltd.
 Osaka-shi, Osaka 536-0011 (JP)

 Nakayama, Yoshikazu Hirakata-shi, Osaka 573-0084 (JP) (72) Inventors:

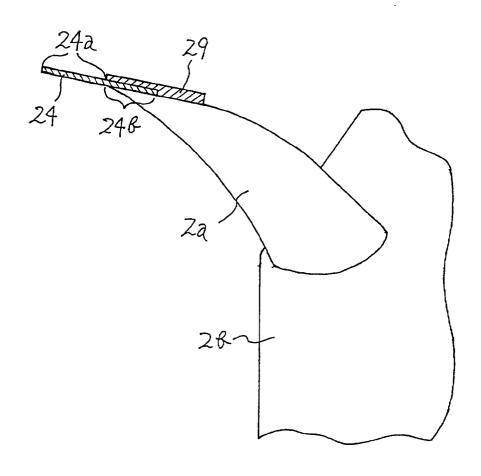
 NAKAYAMA, Yoshikazu Hirakata-shi, Osaka 573-0084 (JP)

 AKITA, Seiji Izumu-shi, Osaka 594-0032 (JP)

 HARADA, Akio, Daiken Chemical Co., Ltd Osaka-shi, Osaka 536-0011 (JP)

(74) Representative: Schickedanz, Willi, Dr. Dipl.-Ing. Langener Strasse 68 63073 Offenbach (DE)

(54) ELECTRONIC DEVICE SURFACE SIGNAL CONTROL PROBE AND METHOD OF MANUFACTURING THE PROBE


(57) The present invention realizes a probe with a high resolution, high rigidity and high bending elasticity which can be used in a scanning probe microscope and makes it possible to pick up images of surface atoms with a high resolution. Also, a high-precision input-output probe which can be used in high-density magnetic information processing devices is also realized.

In order to accomplish the object, the electronic device surface signal operating probe of the present invention is constructed from a nanotube 24, a holder 2a which holds this nanotube 24, and a fastening means which fastens the base end portion 24b of the nanotube 24 to the surface of the holder so that the tip end portion 24a of the nanotube 24 protrudes; and the tip end portion 24a of the nanotube 24 is used as a probe needle. Furthermore, as one example of the fastening means, a coating film 29 which covers the base end portion 24b of the nanotube 24 is formed. If a coating film 30 is also formed on an intermediate portion 24c on the root side of the tip end portion, the strength of the probe needle

and the resolution are further increased. As another example of the fastening means, the base end portion 24b of the nanotube 24 is fusion-welded to the holder surface. All or part of the base end portion 24b forms a fusion-welded part so that the nanotube 24 is firmly fastened to the holder.

A common nanotube such as a carbon nanotube (CNT), BCN type nanotube or BN type nanotube, etc., can be used as the above-described nanotube. Since nanotubes have a small tip end curvature radius, signals can be operated at a high resolution. Furthermore, since nanotubes have a high rigidity and bending elasticity, they are extremely resistant to damage and have a long useful life. Moreover, since the raw materials are inexpensive, high-performance probes can be inexpensively obtained. Furthermore, such probes can be used as probe needles in scanning tunnel microscopes or atomic force microscopes, or as input-output probes in place of magnetic heads in magnetic disk drives.

Fig. 14

