[0001] The present invention relates to plasma generators, and more particularly, to a method
and apparatus for generating a plasma in the fabrication of semiconductor devices.
[0002] Low pressure radio frequency (RF) generated plasmas have become convenient sources
of energetic ions and activated atoms which can be employed in a variety of semiconductor
device fabrication processes including surface treatments, depositions, and etching
processes. For example, to deposit materials onto a semiconductor wafer using a sputter
deposition process, a plasma is produced in the vicinity of a sputter target material
which is negatively biased. Ions created within the plasma impact the surface of the
target to dislodge, i.e., "sputter" material from the target. The sputtered materials
are then transported and deposited on the surface of the semiconductor wafer.
[0003] Sputtered material has a tendency to travel in straight line paths from the target
to the substrate being deposited at angles which are oblique to the surface of the
substrate. As a consequence, materials deposited in etched trenches and holes of semiconductor
devices having trenches or holes with a high depth to width aspect ratio, can bridge
over causing undesirable cavities in the deposition layer. To prevent such cavities,
the sputtered material can be "collimated" into substantially vertical paths between
the target and the substrate by negatively charging the substrate and positioning
appropriate vertically oriented collimating electric fields adjacent the substrate
if the sputtered material is sufficiently ionized by the plasma. However, material
sputtered by a low density plasma often has an ionization degree of less than 1% which
is usually insufficient to avoid the formation of an excessive number of cavities.
Accordingly, it is desirable to increase the density of the plasma to increase the
ionization rate of the sputtered material in order to decrease the formation degree
of unwanted cavities in the deposition layer. As used herein, the term "dense plasma"
is intended to refer to one that has a high electron and ion density.
[0004] There are several known techniques for exciting a plasma with RF fields including
capacitive coupling, inductive coupling and wave heating. In a standard inductively
coupled plasma (ICP) generator, RF current passing through a coil surrounding the
plasma induces electromagnetic currents in the plasma. These currents heat the conducting
plasma by ohmic heating, so that it is sustained in steady state. As shown in U.S.
Pat. No. 4,362,632, for example, current through a coil is supplied by an RF generator
coupled to the coil through an impedance matching network, such that the coil acts
as the first windings of a transformer. The plasma acts as a single turn second winding
of a transformer.
[0005] This known apparatus for forming a plasma discharge suffers from various disadvantages.
In particular, power absorption in the plasma is usually localized to a region just
a few skindepths (typically a few cm) from the outside edge of the plasma such that
the interior of the plasma generally absorbs substantially less power than the outer
edge of the plasma. As a consequence, plasma excitation is nonuniform which may result
in nonuniform etching or deposition.
[0006] It is recognized that in a conventional Inductively Coupled Plasma (ICP) generator
using a helical coil, such as that shown in U.S. Patent No. 4,362,632, the electromagnetic
energy radiating from each turn of the coil antenna is in phase. Also, fields are
coupled into the plasma in a substantially pure inductive mode. The density is usually
limited to ≤ 10
11 - 10
12 cm
-3.
[0007] In contrast, a plasma excited using wave heating (helicon and ECR discharges) can
be excited to densities as high as several 10
13cm
-3 and thus wave heating is preferred where a more dense plasma is required. Such helicon
waves are absorbed much more uniformly throughout the discharge. Helicon waves can
be excited in a weakly magnetized (typically B< 5x10-2 Tesla {500 gauss}) plasma by
means of a properly constructed antenna. In its simplest form, the helicon m=0 mode
can be excited by two coil windings where the currents in each winding are in opposite
directions.
[0008] An example of a known apparatus for utilizing helicon waves to generate plasmas of
high density is shown in U.S. Patent No. 4,990,229 to Campbell et al. U.S. Patent
No. 4,990,229 teaches that the efficient generation of plasmas depends strongly on
the antenna configuration used. In other words, to maximize helicon wave coupling,
a very specific and sometimes complex and large antenna configuration is often necessary.
Fig. 2 of U.S. Patent No. 4,990,229 depicts a two loop antenna used to excite the
m=0 helicon mode. It is believed that the distance between the two loops is adjusted
to match the m=0 helicon dispersion relation, i.e.,

where
e is the charge of an electron;
µ0 is the permittivity;
ωc is the electron cyclotron frequency (eB0/me);
ωρ is the plasma frequency

me is the mass of an electron;

is the wavenumber in axial direction;
a is the radius of the plasma;
L is the distance between the loops;
n0 is the plasma density,

is the excitation angular frequency;
B0 is the axial magnetic field; and
ε0 is the permittivity of vacuum.
[0009] It is believed that for particular conditions (ω, n
0, B
0, a) the distance L between the loops of the antenna for efficient coupling of the
helicon wave is fixed by this dispersion relation. In the approximation of k
z << 3.83/a, equation (1) can be rewritten as:

for typical conditions (B
0/n
0 = 5 x 10
-10, f = 13.6 MHz, a= 15cm) one obtains λ
z = 75 cm. This means that the distance between the two loops is restricted to about
40 cm for efficient coupling of the m=0 helicon mode. This would lead to a reactor
aspect ratio of about unity. For large size substrates like TFT glass or silicon wafers,
this would lead to an inconveniently large reactor volume. Also, the target to wafer
spacing would often result in being about the same as the chamber diameter which would
make it more difficult to efficiently produce uniform films on a wafer.
[0010] Examples of other geometrically complex antenna structures required to establish
the electromagnetic fields necessary to launch the helicon wave are illustrated in
Figs. 3 and 5 of U.S. Patent No. 4,990,229. Such complex and often large geometries
are believed necessary in such prior art systems because most other variables affecting
helicon wavelength and coupling efficiency are fixed by other constraints. Antenna
geometry is one of the few variables which may be somewhat more easily modified in
order to establish an appropriate electromagnetic field. For realizing both efficient
coupling of the wave energy to the electron gas, and flexible geometry, it would be
desirable to have independent control over k
z or λ
z.
[0011] U.S. Patent No. 5,146,137 describes various devices for the generation of a plasma
using helicon waves. These waves are generated in one device using four or more plate-like
electrodes surrounding a quartz chamber containing the plasma. The electrodes are
coupled to a voltage source through phase shifters to produce high frequency capacitively-coupled
voltages having a phase rotation of 90°. In an alternative device, four or more toroid-shaped
coils are coupled to voltage sources to inductively couple electromagnetic energy
into the chamber. The electrodes and coils of this reference also appear to be relatively
complex.
[0012] In a number of deposition chambers such as a physical vapor deposition chamber, the
chamber walls are often formed of a conductive metal such as stainless steel. Because
of the conductivity of the chamber walls, it is often necessary to place the antenna
coils or electrodes within the chamber itself because the conducting chamber walls
would block or substantially attenuate the electromagnetic energy radiating from the
antenna. As a result, the coil may be directly exposed to the deposition flux and
energetic plasma particles. This is a potential source of contamination of the film
deposited on the wafer, and is undesirable. To protect the coils, shields can be made
from nonconducting materials, such as ceramics. However, many deposition processes
involve deposition of conductive materials such as aluminum on the electronic device
being fabricated. Because the conductive material will coat the ceramic shield, it
will soon become conducting, thus again substantially attenuating penetration of electromagnetic
radiation into the plasma.
[0013] US-A-5241245 discloses an optimized helical resonator which increases the plasma
density for efficient processing of semiconductor wafers is characterized by a low
inductance and, hence, a low Q. A first embodiment uses either a distributed or lumped
capacitance to reduce the value of ωL to less than about 200 Ohms. A second embodiment
uses a flat spiral coil having a low value of ωL and resonant as a ¼ or ½ wave resonator.
A third embodiment combines features of the first two embodiments using both spiral
and solenoid coils as the helical resonator.
[0014] US-A-5404079 discloses a plasma generating apparatus. On the inner surface of the
chamber are circumferentially disposed three lateral electrodes at regular intervals.
To the lateral electrodes are applied three high-frequency electric powers of 50 MHz,
each differing in phase by approximately 120°. On the bottom of the chamber is placed
a sample stage serving as a second electrode. To the sample stage is applied high-frequency
electric power of 13.56 MHz. The distance between each of the three lateral electrodes
and the earth electrode is longer than the distance between the sample stage and the
earth electrode.
[0015] It is an object of the present invention to provide an improved method and apparatus
for generating plasmas within a chamber, obviating, for practical purposes, the above-mentioned
limitations.
[0016] This invention provides a plasma generating method and apparatus which inductively
couples electromagnetic energy into the magnetized plasma from a first antenna coil
about the circumference of a plasma generation area, and inductively couples electromagnetic
energy into the plasma from a second, separate antenna coil about the circumference
of the plasma generation area, wherein the currents through (or voltages applied to)
the first and second coils, have a predetermined phase difference, preferably between
1/4 π to 1 3/4 π. Under appropriate settings, this phase difference in the electromagnetic
fields generated by the two antenna coils can launch a helicon wave in the magnetized
plasma. Such an arrangement has a number of advantages. For example, and as described
in greater detail below, this plasma generation apparatus permits the antennae design
for the plasma generator to be substantially simplified and to have a substantially
lower aspect ratio. More specifically it has been determined that the chamber shields
themselves can be used as the antennae for the plasma generator, to thereby substantially
simplify the design of the system.
[0017] In another aspect of the invention, the phase difference between the currents in
the first and second coils can be electrically varied by, for example, a phase shifting
network. As a consequence, the chamber can be better designed to optimize factors
such as deposition efficiency, etch rate and deposition rate uniformity. The chamber
design is not limited (as is the case for many prior art designs) by the requirement
that spacing between loops in the antenna be approximately 1/2 λ
z for a particular antennae design. For example, the height of the chamber can be substantially
reduced even though such a reduction would affect the spacing between the coils. By
electrically varying the phase difference between the coils, the phase difference
necessary to launch a helicon wave of a particular wavelength is readily obtainable
despite changes to the coil spacing. Thus, it is possible to launch a wave with a
half wavelength substantially larger than the coil distance by decreasing the phase
difference substantially below π.
[0018] In yet another aspect of the present invention, an RF antenna for generating a plasma
in a chamber shield comprises a conductive shield coupled in series to a coil surrounding
the shield. Such an arrangement has been found to substantially reduce attenuation
of the RF power being coupled from the outer coil, through the conductive shield and
into the chamber interior.
[0019] The following is a description of some specific embodiments, reference being made
to the accompanying drawings in which:-
Fig. 1 is a schematic representation of a plasma generating apparatus in accordance
with one embodiment of the present invention.
Fig. 2 is a perspective, partial cross-sectional view of a PVD chamber in accordance
with an embodiment of the invention in which two coil windings are installed within
shields.
Fig. 3 is an exploded view of a PVD chamber utilizing the shields as coil windings.
Fig. 4 is a cross-sectional view of the PVD chamber of Fig. 3. shown installed in
a vacuum chamber.
Fig. 5 is a schematic representation of a plasma generating apparatus in accordance
with another embodiment of the present invention in which each antenna comprises a
coil-shield coupled in series with another coil.
Fig. 6 is a schematic electrical representation of an antennae of Fig. 5.
Fig. 7 is a perspective, partial cross-sectional view of a PVD chamber in accordance
with another embodiment of the invention in which a coil is coupled in series with
a shield.
Fig. 8 is a cross-sectional view of the slot of the shield of Fig. 7 shown schematically
with electrical connections.
[0020] Embodiments of the present invention will be described hereinafter with reference
to the drawings. Referring first to Figs. 1 and 2, a plasma generator in accordance
with a first embodiment of the invention comprises a substantially cylindrical plasma
chamber 100 in a vacuum chamber 101 in which a substantially uniform, axially oriented
magnetic field (as represented by magnetic lines of force 102) may be established
through the plasma. Such a magnetic field may be generated by, for example, Helmholtz
coils (not shown) coaxial with the chamber axis. At least two coaxial antenna coils
104 and 106 are arranged in spaced relationship around the circumference of the chamber
100. The two antenna coils 104 and 106 may be spaced apart by a distance "L" measured
along the axis of the chamber 100. Each antenna coil comprises at least one substantially
complete turn, and each antenna coil is capable of radiating electromagnetic energy.
[0021] The first antenna coil 102 is coupled to a first amplifier and matching network 108.
The second antenna coil 106 is coupled to a second amplifier and matching network
112. The first and second RF amplifiers 108 and 112 are electrically coupled to a
single RF generator 114. However, the first amplifier 108 is coupled to the generator
114 through a phase shift regulating network 116 which permits the current in the
first antenna coil 104 and the current in the second antenna coil 106 to be phase
shifted relative to one another.
[0022] The vacuum chamber 101 is evacuated by a pump 210 before the plasma precursor gas
is admitted into the chamber. A helicon wave may be launched by magnetizing the plasma,
and establishing an appropriate phase difference between the first antenna coil 104
and the second antenna coil 106 until desired conditions are met. For example, in
the embodiment shown in Fig. 2, it may be desirable to launch a helicon wave within
the chamber 100 having a wavelength λ equal to four times the distance L between the
first antenna coil 104 and the second antenna coil 106. Such a helicon wave may be
efficiently launched by establishing a phase difference of π/2 between the currents
through (or the voltage applied to) the coils.
[0023] In general, for two coils spaced a distance L apart and a desired wavelength of λ
z, the phase difference Δ ϕ is preferably assigned as follows:

[0024] It will therefore be seen that for a particular spacing L between the first antenna
coil 104 and the second antenna coil 106, a plasma generator in accordance with one
aspect of the present invention allows the phase difference to be adjusted so that
the radiation emitted from the first and second antenna coils is suitable for launching
a helicon wave of wavelength λ. In other words, the phase shift regulating network
116 of plasma generator enables the wavelength to be appropriately adjusted or "tuned"
electronically by the phase difference for any particular geometric configuration
or spacing of the antenna coils. As a result, the plasma generator provides a greater
degree of flexibility in plasma chamber hardware design, and in particular in the
geometric design and placement of the antenna coils. In accordance with these aspects
of the present invention, launching of an efficient helicon wave is not primarily
dependant upon the geometry and positioning of the antenna coils. Consequently, the
helicon wavelength and the plasma chamber hardware may be optimized for other factors
(such as, for example, frequency, plasma properties, chamber size, and magnetic field)
and the phase difference may be tuned electronically to adjust the wavelength independent
of coil distance.
[0025] As shown in Fig. 2, the chamber 100 includes a shield 118 positioned between the
coils 104 and 106 and the walls (not shown) of the chamber 100 which protect the chamber
walls from the material being sputtered from a target 150 onto a semiconductor wafer
128. However, because the coils are exposed to the deposition flux and the energetic
particles of the plasma, the coils can become a source of contamination of the film
being deposited onto the wafer 128. To protect the coils as well as the chamber walls,
a shielding structure can be positioned between the coils and the plasma instead of
between the coils and the chamber walls. The antennae shielding structure may have
two or more cylindrical metallic rings positioned within the plasma chamber. The portion
of the shield adjacent to the antennae may include one or more slots to permit the
electromagnetic energy radiated by the antennae to pass through the shield to the
interior of the chamber to energize the plasma. These shields perform the function
of protecting the antenna and walls of the plasma chamber from metal deposition during
sputtering or other deposition processes.
[0026] A plasma generator in accordance with one aspect of the present invention allows
the geometry of the antenna structure to be simplified to such an extent that the
shields may themselves be used as antenna coils, thus performing a dual function.
Furthermore, the slots previously required for energy propagation through the shield
can be largely eliminated as well, thereby substantially simplifying the design of
the shields. For example, a shield may be formed into an antenna coil in accordance
with the present invention merely by providing a single slot or discontinuity in the
circumference of the shield, thereby establishing a gap in what would otherwise be
a closed metallic ring. Such a cylindrical shield with a slot in the circumference
thereof forms an open loop with two distinct ends. Leads are then attached from the
amplifier and the ground strap to respective ends of the loop, and an antenna coil
is thereby formed.
[0027] Referring now to Figs. 3-4, a plasma chamber 100A in accordance with an alternative
embodiment of the present invention is illustrated. As shown therein, the upper coil
104A of this embodiment has a generally cylindrical shaped-wall 119 which forms a
continuous closed metallic shield ring except for a single vertical slot 120 which
is formed between two spaced ends 121, 123 of the coil-shield 104A. The output of
the RF generator 114 (Fig. 1) is coupled via the phase regulating network 116 and
the matching circuit 108 (Fig. 1) to a connection point A1 on end 121 of the slot
120 of the coil-shield 104A. A connection point B1 at the other end 123 of the slot
120 is connected by a ground strap 125 (Fig. 3) to ground (either directly or through
a capacitor). The coil-shield 104A acts as both an antenna to radiate RF energy from
the RF generator into the interior of the plasma chamber 100A and also as a shield
to protect the interior of the deposition chamber from the material being deposited.
[0028] The second, lower coil-shield 106A is generally bowl-shaped and includes a generally
cylindrically shaped, vertically oriented wall 122 and a generally annular shaped
floor wall 124 (Fig. 4) which surrounds a chuck 126 which supports an item such as
the wafer 128, for example. The coil-shield 106A also has a single slot 130 which
separates two ends 132, 134 of the lower coil-shield 106. The coil-shield 106A has
two connection points, A2, B2 at the two ends 132, 134, respectively, which are coupled
in a manner similar to that of the first coil-shield 104A to the output of the corresponding
matching circuit 112 and to ground, respectively.
[0029] Fig. 4 shows the plasma chamber 100A installed in a vacuum chamber 140 of a PVD (physical
vapor deposition) system. Although the plasma generator of the present invention is
described in connection with a PVD system for illustration purposes, it should be
appreciated that a plasma generator in accordance with the present invention is suitable
for use with all other semiconductor fabrication processes utilizing a plasma including
plasma etch, chemical vapor deposition (CVD) and various surface treatment processes.
[0030] The vacuum chamber 140 includes a chamber wall 142 which has an upper annular flange
144. The plasma chamber 100A is supported by an adapter ring 146 which engages the
vacuum chamber wall flange 144. The upper coil-shield wall 119 defines a surface 148
facing the interior of the plasma chamber 100A. Sputtered deposition material from
a target 150 is deposited on the wafer 128 as intended but is also deposited on the
interior surface 148 of the coil-shield 104A as well. The vertical wall 122 and the
floor wall 124 of the lower coil-shield 106A similarly have interior surfaces 152
which also receive deposited materials sputtered from the target 150. A clamp ring
154 clamps the wafer to the chuck and covers the gap between the lower coil-shield
106 and the chuck 126. Thus, it is apparent from Fig. 4 that the coil-shields 104A
and 106A together with the clamp ring 154 protect the interior of the vacuum chamber
140 from the deposition materials being deposited on the wafer 128 in the plasma chamber
100A.
[0031] The upper coil-shield 104A has a horizontally extending outer flange member 160 which
is fastened by a plurality of fastener screws 162 to a ceramic ring 184 resting on
the adapter ring 146. At one end 119 of the shield the coil-shield is grounded through
a short strap 161 to the adapter ring 146 (as shown in Fig. 4). The other end (121,
Fig. 2) is coupled to the RF amplifier and matching circuit 108 through a ceramic
feed through (not shown).
[0032] In the embodiment illustrated in Fig. 4, the slots 120 and 130 of the coil-shields
104A and 106A, respectively, are at approximately the same azimuthal angle. The cross-sectional
view of Fig. 4 also depicts the end 132 of the coil-shield 106A defining one side
of the slot 130. Accordingly, the end 132 of the coil-shield 106A depicted in Fig.
4 provides the connection point A2 to the coil-shield 106A. The connection point A2
includes an RF feedthrough 170 which passes through the adapter ring 146 and is coupled
to the end 132 of the coil-shield 106A at 172 as depicted in Fig. 4. The RF feedthrough
170 is electrically isolated from the adapter ring 146 by an isolation tube 174 of
insulative material such as ceramic. The connection point A1 (not shown in Fig. 4)
between the RF generator 114 (via the phase shift network 116 and the matching circuit
108, Fig. 1) to the first coil-shield 104A is likewise constructed with an RF feedthrough
similar to the RF feedthrough 170 for the connection point A2.
[0033] The lower coil-shield 106A includes an upper flange 180 which is fastened by a plurality
of fastener screws 182 to the isolator ring 184. The isolator ring 184 isolates the
lower coil-shield 106A from the upper coil-shield 104A and also the adapter ring 146.
The adapter ring 146 has a shelf 188 which supports the isolator ring 184 which in
turn supports both the upper coil-shield 104A and the lower coil-shield 106A.
[0034] A Helmholtz coil 190 around the exterior of the vacuum chamber 140 provides the magnetic
field through the plasma chamber 100A. The target 150 is supported by an isolator
ring 192 which is received within a groove formed by a shelf 194 of the adapter ring
146 and an upper surface of the flange member 160 of the upper coil-shield 104A. The
isolator ring 192 isolates the target 150 from the adapter ring 146 and the upper
coil-shield 104A. Target, adapter and ceramic ring 192 are provided with O-ring sealing
surfaces to provide a vacuum tight assembly from chamber flange 144 target 150.
[0035] As best seen in Fig. 4, the upper coil-shield 104A and the lower coil-shield 106A
are overlapping in the axial direction but are spaced to define a gap 198 through
which plasma precursor gases are admitted into the interior of the plasma chamber
100A. RF energy from the RF generator 114 (Fig. 1) is radiated from the coil-shields
104A and 106A. The RF energy radiated by the coil-shield 104A into the interior of
the plasma chamber 100A is phase shifted by a predetermined amount from the RF energy
radiated by the lower coil-shield 106A such that a helicon wave is launched and maintained
in the plasma chamber 100A. Because of the helicon wave, the energy distribution of
the plasma is more uniform and the density of the plasma is increased. As a consequence,
the plasma ion flux striking the target 150 or semiconductor wafer 128 is higher and
is more uniformly distributed such that the target material ejected from the target
150 is deposited faster and more uniformly on the wafer material 128. The higher plasma
density will be beneficial in ionizing sputtered material from the target. As a result,
the sputtered material will be more responsive to the collimating electric fields
(not shown) adjacent to the wafer 128, which causes the perpendicularity of the metal
flux to the wafer 128 to be significantly enhanced. Consequently, fine features may
be coated more uniformly, and high aspect ratio holes and trenches may be filled with
little or no void formation. Collimating electric fields may be induced by electrically
biasing the wafer and/or pedestal negatively with respect to the plasma with an RF
supply 151 (Fig. 1) to impose an HF RF signal (e.g., 13.6Hz) to the pedestal through
a matching network. These techniques are known to those skilled in the art.
[0036] In the embodiment illustrated in Fig. 3, a magnet structure 1001 is located behind
the target. This magnet serves to determine the erosion profile on the target and
can be optimized to give uniform film thickness cm the wafer 128. The magnet structure
1001 may have one of several configurations designed to provide a desired erosion
profile on the target. In each instance, the structure 1001 may include one or more
magnets which are moved across the back side of the target during sputtering. It should
be realized that if no RF power is applied to the coil-shields and only DC negative
bias to the target 150, the chamber 100A closely resembles a conventional PVD chamber
such as those currently installed on Endura PVD systems manufactured by Applied Materials,
Inc.
[0037] It is also noted that in the embodiment illustrated in Fig. 1, only a single phase
shift regulating network is illustrated in combination with a pair of antennas and
a single RF generator. In alternative embodiments of the present invention more than
one phase shifter may be used, and correspondingly more than two antenna coils and
associated amplifiers may also be used.
[0038] It is seen from the above that a plasma generator in accordance with one preferred
embodiment of the present invention can substantially simplify the design of a deposition
or other processing chamber which generates high density plasmas. By utilizing the
shields of the chamber as the antenna coils of the RF generator, the need for a separate
antenna structure and associated isolator members can be eliminated.
[0039] Still further, because the requirements for a particular size and shape for the antenna
can be substantially relaxed, the chamber can be very compact. As shown in Fig. 4,
the upper coil-shield 104 and the lower coil-shield 106 are very closely spaced and
even overlap in the axial direction. Notwithstanding this very close spacing, by properly
selecting the phase difference between the currents generated in the coil-shields
104 and 106, a helicon wave may be launched having a wavelength λ as determined by
the frequency of the RF generator 114 and the phase difference.
[0040] In the illustrated embodiment, the chamber wall 142 has a width (measured in the
radial direction) of 40.64 cms (16") but it is anticipated that good results can be
obtained with a width in the range of 15.24 to 63.5 cms (6"-25"). The wafer to target
space is preferably about 5.08 cms (2") but can range from about 3.81 to 20.32 cms
(1.5" to 8"). The frequency of the generator 114 is preferably 13.6 MHz but it is
anticipated that the range can vary from, for example, 1 MHz to 100 MHz. A variety
of precursor gases may be utilized to generate the plasma including Ar, H
2, 0
2 or reactive gases such as NF
3, CF
4 and many others. Various precursor gas pressures are suitable including pressures
of 0.1 - 50 mT. For ionized PVD, a pressure around 10-20 mT is preferred for best
ionization of sputtered material. Similarly, the strength of the magnetic field may
vary from 20 to 1000 gauss but a field strength of about 200-500 gauss is preferred.
The phase shift should be adjusted to optimize helicon wave coupling but generally
is in the range of 1/4π to 1 3/4π for optimum performance.
[0041] The coil-shields may be fabricated from a variety of conductive materials including
aluminum and stainless steel. Although the slots 120 and 130 are shown as being approximately
aligned at the same azimuthal angle in Figs. 3 and 6, the slots of the coil-shields
need not be aligned but may be at any angle relative to each other as indicated in
Fig. 3.
[0042] The coils 104, 106 and 104a and 106a of the illustrated embodiments described to
this point are each depicted as a single turn coil. However, it should be appreciated
that each coil may be implemented with multiple turn coils. Because the flux induced
by coils is proportional to the square of the number of turns of the coil, it may
be advantageous to increase the number of turns of the coil. In accordance with yet
another aspect of the present invention, a coil-shield may be coupled in series with
a helical coil such that the coil-shield is one turn of an RF antenna coil having
a plurality of turns.
[0043] Fig. 5 shows a plasma generator in accordance with another embodiment of the present
invention which is similar to the plasma generator of Fig. 1 except that the coaxial
antenna coils 204 and 206 each comprise a coil-shield electrically connected in series
to a multi-turn helical coil which surrounds the associated coil-shield. This arrangement
may be more readily understood by reference to Fig. 6 which shows a schematic representation
of the electrical connections of the coil 204 which includes a coil-shield 204a which
is connected to a multi-turn helical coil 204b. One end of the helical coil 204b is
coupled to an RF source such as the output of the first amplifier and matching network
108 (Fig. 5), the input of which is coupled to the RF generator 114 through the phase
shift regulating network 116. The coil-shield 204a, like the coil-shield 104 of Fig.
3, has a slot 220 which defines two ends 221 and 223. The helical coil 204b is connected
to the coil-shield 204a at end 223 of the coil-shield coil 204a. The other end 221
of the coil-shield 204a is coupled to ground, preferably through a capacitor. As best
seen in Fig. 5, the helical coil 204b when installed is positioned to surround the
coil-shield 204a. The turns of the helical coil 204b are wound around but insulatively
spaced from the coil-shield 204a so that the current circulating through the helical
coil 204b travels in the same circular direction as the current through the coil-shield
204a. Consequently, the magnetic fields induced by the helical coil 204b are in phase
with the magnetic fields induced by the coil-shield 204a. The second coil 206 is similarly
constructed of a coil-shield 206a coupled in series with a helical coil 206b which
surrounds the coil-shield 206b. The turns of the helical coil 206b are likewise wound
in phase with the turn of the coil-shield 206a.
[0044] Such an arrangement has been found to have a number of advantages. For example, it
has been found that the RF power emanated by the helical coils are effectively coupled
into the chamber through the associated coil-shields into the interior of the chamber.
Any attenuation caused by the coil-shields is substantially reduced. At the same time,
the coil-shields effectively protect the helical coils and other portions of the interior
of the chamber from being coated or damaged by the various semiconductor processes
including sputtering.
[0045] In addition, because each coil has a plurality of turns, the necessary power to produce
a desired flux level in the chamber interior can be substantially reduced as compared
to a single turn coil. High power levels may not be appropriate for some applications
because of, for example, the added stress to components which can necessitate using
components having a higher current carrying capacity.
[0046] An RF antenna comprising a series coupled coil-shield and coil in accordance with
one aspect of the present invention may be used in semiconductor processing apparatus
other than those requiring the launching of a helical wave in a high density plasma.
For example, Fig. 7 illustrates a chamber 400 utilizing just one such RF antenna which
has been found to generate a satisfactory high density plasma without the use of helicon
waves.
[0047] The RF antenna for generating the high density comprises a coil-shield 304a which
is electrically coupled in series with a helical coil 304b which surrounds the coil-shield
304a. The coil-shield 304a is very similar to the coil-shield 104 of Fig. 4 except
that the coil-shield 304a extends further down to a position below the top of the
wafer (not shown) because in this embodiment, the chamber has only the one coil-shield,
that is, coil-shield 304a. At the bottom of the coil-shield 304a is a horizontal annular
lip 410 which terminates short of the clamp ring 154. Instead of a second coil-shield
found in the earlier embodiments for launching helicon waves, the embodiment of Fig.
7 has a generally annular shaped grounded lower shield 420 which protects the chamber
between the clamp ring 154 and the annular lip 410 of the coil-shield 304a. The lower
shield 420 is spaced from the coil-shield 304a and is grounded to the chamber ground.
[0048] In the illustrated embodiment, the helical coil 304b is formed of a ribbon shaped
copper wire which is wound in three helical turns surrounding the coil-shield 304a.
The helical coil 304b is supported between an inner ceramic member 430 and an outer
ceramic member 432 of a ceramic assembly 434. The ceramic assembly 434 insulates the
helical coil 304b from the chamber and also from the coil-shield 304a. The lower shield
410 has a lip 440 which is received by the outer ceramic member 432 which supports
the lower shield 420.
[0049] In the embodiment of Fig. 7, the slot 450 separating the two ends of the coil-shield
304a is covered by a cover member 452 which is spaced from the coil-shield 304a by
insulative ceramic standoffs 454 as best seen in Fig. 7. The cover member 452 shields
the slot 450 from the material being sputtered. It is important to prevent sputtered
material from passing through the slot or bridging across the slot to form a conductive
path which could short the two ends of the slot together. The slots of the shields
of the earlier described embodiments preferably have a similar cover member, either
in front of or behind the associated slot. One end 461 of the coil-shield 304a is
coupled to ground by a capacitor 464. The other end 463 of the coil-shield 304a is
coupled to one end of the helical coil 304b as previously described. It is important
that the coil-shield 304a be electrically coupled to the helical coil 304b in such
a manner that current passing through the coil-shield 304a travels in the same circular
direction as the current traveling through the helical coil 304b so that the magnetic
fields of the coil-shield 304a and helical coil 304b are in phase.
[0050] The chamber 400 of the embodiment of Fig. 7 further includes a source adaptor member
470 which is coupled to chamber ground. A DC return ring 472 abuts the source adaptor
ring 470 and is also coupled to ground. The coil-shield 304a is supported by the inner
ceramic member 432 of the ceramic assembly 434 and is insulated from the DC return
shield 472 and the source adaptor 470 by an insulating ring 474. As shown in Fig.
7, the coil-shield 304a is spaced from all conductive components to prevent undesirable
arcing since the coil-shield is a part of the RF antenna emanating high RF energy
to generate a high density plasma.
[0051] In another advantage of utilizing a coil-shield as part or all of the RF antenna
for generating a plasma, it is believed that the RF potential applied to the coil-shield
is capacitively coupled to the precursor gas to assist in initiating the generation
of the plasma. However, it is recognized that the RF potential can also cause the
coil-shield itself to be sputtered in addition to the target of the chamber. Accordingly,
in order to prevent contamination of the wafer from material being sputtered from
the coil-shield, it is preferred that the chamber be preconditioned by initiating
sputtering of the target without the application of RF energy to the coil-shield and
before the wafer is brought into the chamber for processing. In this manner, the target
material can be sputtered and deposited onto the coil-shield to a sufficient thickness
to prevent the underlying material of the coil-shield from being sputtered when the
wafer is in the chamber. Alternatively, if a target material is made of a conductive
material and only one type of material is to be sputtered, the coil-shield may be
manufactured from the same material as the sputtered target.
[0052] In another aspect of the present invention, it has been recognized that sputtering
of the coil-shield can also be reduced by choosing the circuit components such that
a series resonance point is created at or near the center line 480 of the vertical
wall of the coil-shield 304a. This resonance condition is preferably achieved by adjusting
the capacitance of the capacitor 464 (Fig. 8) coupling one end 461 of the coil-shield
304a to ground. In a preferred embodiment, the capacitance of the capacitor 464 is
empirically determined by measuring the voltages at the top and bottom of the wall
of the coil-shield 304a while the capacitance of capacitor 464 is adjusted. Once the
voltages at the top and bottom of the coil-shield 304a are substantially equal in
magnitude but 180° out of phase, a resonance point, i.e., a point of minimum voltage
potential will be created at the center 180 of the wall of the coil-shield 304a such
that the center 480 will be maintainable at an RF ground. Such an arrangement minimizes
the magnitudes of the voltages applied to the coil-shield 304a which is believed to
correspondingly reduce sputtering of the coil-shield. For example, for an antennae
having an inductance of approximate 4-5 micro henries at an RF frequency of approximately
4 Megahertz, a capacitance of approximately .025 micro farads is believed to be suitable.
These values would of course vary, depending upon the particular geometries of the
various components.
[0053] The coil-shield is preferably made of a highly conductive material such as stainless
steel unless made of the same material as the sputtered target material as noted above.
Other materials may also be used. The coil-shield material should however be a highly
conductive material and one having a coefficient of thermal expansion which closely
matches that of the material being sputtered to reduce flaking of sputtered material
from the coil-shield onto the wafer.
[0054] In addition, for purposes of simplicity, the coil-shield 304a has been illustrated
as a wall member having a generally flat annular shape except at the top and bottom
sides of the shield wall. However, because of the relatively low aspect ratio of the
coil-shield 304a and the helical coil 304b, it is anticipated that the magnetic field
lines adjacent to the coil-shield 304a may have a curvature. Accordingly, it is anticipated
that loss producing eddy currents in the coil-shield may be reduced and the performance
of the system thereby improved by curving the wall of the coil-shield 304a to have
a generally concave (i.e. inward curving) cross-section to more closely match the
curvature of the field lines.
[0055] More specifically, the magnetic field is created by the current passing through the
turns of the coil including the coil-shield. The total magnetic field at a particular
point in the interior of the chamber is a function of the coil geometry including
the aspect ratio (height to width) of the coil and the spacings of the coil turns.
For a perfect solenoid, the magnetic field would be parallel to the center axis of
the coil. However, because of the low aspect ratio of the coil of the illustrated
embodiments, it is anticipated that the magnetic field lines may be somewhat curved
adjacent to the shield-coil. Magnet field lines which intersect the conductive shield
will produce eddy surface currents which in turn induce magnetic fields opposing to
the intersecting field to in effect cancel at least a portion of the magnetic field
intersecting the shield. Because the conductive shield has a resistance, the eddy
currents consume power which produces losses.
[0056] This RF magnetic field induced in the chamber containing the precursor gas excites
free electrons which collide with the atoms of the precursor gas to ionize the precursor
gas. Electrons freed from the ionized precursor gas continue to collide with other
atoms of the precursor gas setting up an avalanche condition which rapidly ionizes
the precursor to create a dense plasma of free electrons and ionized gas.
[0057] The neutral atoms of the sputtered material which subsequently pass through the plasma
are struck by the excited free electrons which ionize the sputtered material. As discussed
above, it is desired to ionize as much of the sputtered material as possible to facilitate
collimating the sputtered material. To efficiently generate the magnetic fields, losses
due to eddy currents should be minimized. Hence, it is preferred to curve the coil-shields
as appropriate to match the curvature if any of the magnetic field lines to reduce
undesirable eddy current losses.
[0058] The chamber 400 may be fabricated of materials and dimensions similar to those described
above in connection with other embodiments, modified as appropriate for the particular
application. The coil 304b of the illustrated embodiment is made of 0.95 to 0.31 cms
(3/8 by 1/8 inch) heavy duty copper ribbon formed into a three turn helical coil.
However, other highly conductive materials and shapes may be utilized. For example,
hollow copper tubing may be utilized, particularly if water cooling is desired. The
RF generators 114, matching circuits 108 and 112, phase regulating network 116 and
adjustable capacitor 464 are components well known to those skilled in the art. For
example, an RF generator such as the ENI Genesis series which has the capability to
"frequency hunt" for the best frequency match with the matching circuit and antenna
is suitable.
[0059] It will, of course, be understood that modifications of the present invention, in
its various aspects, will be apparent to those skilled in the art, some being apparent
only after study others being matters of routine mechanical and electronic design.
Other embodiments are also possible, their specific designs depending upon the particular
application. As such, the scope of the invention should not be limited by the particular
embodiments herein described but should be defined only by the appended claims.
1. A semiconductor processing chamber, comprising:
a wall;
an RF signal source:
a first conductive shield positioned within the chamber to protect at least a portion
of the chamber wall from deposition materials, said shield having a slot which defines
first and second shield ends; wherein one of said shield ends is electrically coupled
to one of said RF signal source and ground; and
a coil is electrically coupled in series with the other end of said shield and the
other of said RF signal source and ground.
2. A semiconductor processing chamber as claimed in claim 1, wherein the coil surrounds
the conductive shield.
3. A semiconductor processing chamber as claimed in claim 1, wherein the coil is a helical
coil having a plurality of turns.
4. A semiconductor processing chamber as claimed in claim 1, wherein the coil and the
shield each define a direction of current flow and the coil is coupled in series with
the shield so that their respective directions of current flow are the same.
5. A plasma generator for a semiconductor processing chamber having a wall, comprising:
an RF source; and
a conductive shield wall positioned within the chamber to protect at least a portion
of the chamber wall from deposition materials, said shield having a first terminal
electrically coupled to one of said RF source and ground, and a second shield terminal
electrically coupled to the other of said RF signal source and ground.
6. A plasma generator as claimed in claim 5, further comprising a coil coupled in series
with the RF source and the shield wall and surrounding the shield wall.
7. A plasma generator for a semiconductor processing chamber having a wall, comprising:
a conductive shield wall positioned within the chamber to protect at least a portion
of the chamber wall from deposition materials;
an RF source coupled to the shield wall; and
a coil coupled in series with the RF source and the shield wall and surrounding the
shield wall;
wherein the coil produces magnet field lines and the shield wall has a curvature to
match the curvature of the field lines.
8. A plasma generator as claimed in claim 5, further comprising a capacitor coupled in
series with the shield wall and having a predetermined capacitance to series resonate
with the inductance of the shield wall to produce an RF ground at the center of the
shield wall.
9. A plasma generator for a semiconductor processing chamber having a wall, an RF signal
source and electrical ground, comprising:
a first conductive shield positioned within the chamber to protect at least a portion
of the chamber wall from deposition materials, said shield having first and second
terminals wherein one of said shield terminals is electrically coupled to one of said
RF signal source and ground; and
a coil electrically coupled in series with the other terminal of said shield and the
other of said RF signal source and ground.
10. A plasma generator as claimed in claim 9, wherein the coil surrounds the conductive
shield.
11. A plasma generator as claimed in claim 10, wherein the coil and the shield each define
a direction of current flow and the coil is coupled in series with the shield so that
their respective directions of current flow are the same.
12. A plasma generator as claimed in claim 9 wherein the coil is a helical coil having
a plurality of turns.
13. A plasma generator for a semiconductor processing chamber having a wall, an RF signal
source and electrical ground, comprising:
a conductive first shield wall positioned within the chamber to protect at least a
portion of the chamber wall from deposition materials, said shield having first and
second terminals and a slot which electrically insulates said first and second terminals
from each other wherein one of said terminals is electrically coupled to said RF signal
source and the other terminal is electrically coupled to said ground; and
a second shield wall electrically insulated from said first shield wall and positioned
adjacent said slot to protect the portion of the chamber wall adjacent said slot.
14. A method of generating a plasma in a semiconductor processing chamber having a wall
comprising:
radiating RF energy into said chamber from a coil; and
radiating RF energy into said chamber from a conductive shield having first and second
terminals wherein one of said shield terminals is electrically coupled to one of an
RF signal source and ground and the other terminal of said shield is coupled to the
other of said RF signal source and ground, and wherein said shield is positioned within
said chamber to protect at least a portion of said chamber wall from deposition materials.
15. A method as claimed in claim 14, wherein said coil surrounds said conductive shield.
16. A method as claimed in claim 14, wherein said coil is a helical coil having a plurality
of turns.
17. A method as claimed in claim 14, wherein said conductive shield and said coil are
coupled to an RF source to provide a current in said shield and a current in said
coil, said two currents having the same direction of flow.
18. A method of assembling an RF antenna for semiconductor processing chamber having a
wall, comprising:
providing a conductive shield within said chamber to protect at least a portion of
said chamber wall from deposition materials, said shield having first and second terminals;
providing a coil within said chamber positioned exterior to said shield; and
electrically coupling one of said shield terminals to one of an RF signal source and
ground and the other terminal of said shield to said coil; and
electrically coupling the coil to the other of said RF signal source and ground.
19. A method of assembling a plasma generator in a semiconductor processing chamber having
a wall, comprising:
providing a conductive shield wall within said chamber to protect at least a portion
of said chamber wall from deposition materials, said shield having first and second
terminals; and
electrically coupling one of said shield terminals to one of an RF signal source and
ground and the other terminal of said shield to the other of said RF signal source
and ground.
20. A method as claimed in claim 9 further comprising providing a coil surrounding said
shield wall and coupled in series with said RF source and said shield wall.
21. A method as claimed in claim 9 further comprising coupling a capacitor in series with
said shield wall, said capacitor having a predetermined capacitance to series resonate
with the inductance of said shield wall to produce an RF ground at the center of said
shield wall.
22. A method of assembling a plasma generator in a semiconductor processing chamber having
a wall, comprising:
providing a conductive shield wall within said chamber to protect at least a portion
of said chamber wall from deposition materials;
coupling an RF source to aid shield wall; and
providing a coil surrounding said shield wall and coupled in series with said RF source
and said shield wall;
wherein said shield wall has a curvature in said shield wall matching the curvature
of magnetic field lines produced by said coil.
23. A method of generating a plasma in a semiconductor processing chamber having a wall,
comprising:
radiating RF energy into said chamber from a conductive shield positioned within said
chamber to protect at least a portion of said chamber wall from deposition materials;
and
radiating RF energy into said chamber from a coil coupled in series with the RF source
and the shield wall and surrounding the shield wall, wherein the coil produces magnet
field lines and the shield wall has a curvature to match the curvature of the field
lines.