| (19) |
 |
|
(11) |
EP 1 063 316 B9 |
| (12) |
CORRECTED EUROPEAN PATENT SPECIFICATION |
|
Note: Bibliography reflects the latest situation |
| (15) |
Correction information: |
|
Corrected version no 1 (W1 B1) |
|
Corrections, see Claims |
| (48) |
Corrigendum issued on: |
|
28.06.2006 Bulletin 2006/26 |
| (45) |
Mention of the grant of the patent: |
|
30.11.2005 Bulletin 2005/48 |
| (22) |
Date of filing: 21.06.2000 |
|
| (51) |
International Patent Classification (IPC):
|
|
| (54) |
Thermal spray powder of dicalcium silicate and coating thereof and manufacture thereof
Thermisches Sprühpulver aus Dikalziumsilikat, Überzugsmittel sowie Herstellung desselben
Poudre pour pulvérisation thermique à base de silicate de calcium, revêtement obtenu
et procédé de préparation
|
| (84) |
Designated Contracting States: |
|
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
| (30) |
Priority: |
23.06.1999 US 338615
|
| (43) |
Date of publication of application: |
|
27.12.2000 Bulletin 2000/52 |
| (73) |
Proprietor: Sulzer Metco (US) Inc. |
|
Westbury, NY 11590-0201 (US) |
|
| (72) |
Inventors: |
|
- Wei, Xiaohan
Lake Grove
NY 11755 (US)
- Dorfman, Mitchell R.
Smithtown
NY 11787 (US)
- Correa, Louis F.
Hicksville
NY 11801 (US)
- Jansen, Franz
Winterthur 8400 (CH)
- Peters, John
Oberwinterthur 8404 (CH)
|
| (74) |
Representative: Sulzer Management AG |
|
Patentabteilung 0067,
Zürcherstrasse 14 8401 Winterthur 8401 Winterthur (CH) |
| (56) |
References cited: :
US-A- 4 255 495
|
US-A- 5 082 741
|
|
| |
|
|
- PATENT ABSTRACTS OF JAPAN vol. 013, no. 283 (C-612), 28 June 1989 (1989-06-28) & JP
01 075657 A (ONODA CEMENT CO LTD), 22 March 1989 (1989-03-22)
- PATENT ABSTRACTS OF JAPAN vol. 011, no. 193 (C-430), 20 June 1987 (1987-06-20) & JP
62 017013 A (ONODA CEMENT CO LTD), 26 January 1987 (1987-01-26)
- DATABASE WPI Section Ch, Week 197831 Derwent Publications Ltd., London, GB; Class
L02, AN 1978-55994A XP002225667 & JP 53 073219 A (NIPPON CHEM IND CO LTD), 29 June
1978 (1978-06-29)
- DATABASE WPI Section Ch, Week 197508 Derwent Publications Ltd., London, GB; Class
L02, AN 1975-13842W XP002225668 & SU 422 689 A (LENINGRAD LENSOVET TECHN), 19 September
1974 (1974-09-19)
- DATABASE WPI Section Ch, Week 198011 Derwent Publications Ltd., London, GB; Class
L02, AN 1980-19383C XP002225669 & JP 55 015948 A (KUROSAKI REFRACTORIES CO), 4 February
1980 (1980-02-04)
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] This invention relates to thermal spray powders of dicalcium silicate, thermal spray
coatings thereof, and a process for manufacturing such powders.
BACKGROUND
[0002] Thermal spraying involves the melting or at least heat softening of a heat fusible
material such as a metal or ceramic, and propelling the softened material in particulate
form against a surface which is to be coated. The heated particles strike the surface
where they are quenched and bonded thereto. In a plasma type of thermal spray gun,
a high temperature stream of plasma gas heated by an arc is used to melt and propel
powder particles. Other types of thermal spray guns include a combustion spray gun
in which powder is entrained and heated in a combustion flame, such as a high velocity,
oxygen-fuel (HVOF) gun. Thermal spray coatings of oxide ceramics are well distinguished
from other forms such as sintered or melt casted by a characteristic microstructure
of flattened spray particles visible in metallographically prepared cross sections
of coatings.
[0003] In one group of thermal spray materials, powders are formed of oxides for spraying
coatings that are used for thermal insulation at high temperature such as on burner
can surfaces in gas turbine engines. Coatings are also needed for erosion and wear
protection at high temperatures, and require resistance against thermal cycle fatigue
and hot corrosion in a combustion environment. Zirconium dioxide (zirconia) typically
is used in such applications. Because of phase transitions, the zirconia is partially
or fully stabilized with about 5% (by weight) 15% calcium oxide (calcia) or 6% to
20% yttrium oxide (yttria)
[0004] However, these coatings have limitations particularly in resistance to hot corrosion
as they allow attack of the substrate or a bond coating
[0005] Dicalcium silicate (Ca
2SiO
4) is a ceramic conventionally used for cement and refractory applications. Excellent
hot corrosion and heat resistance of dicalcium silicate based coatings also has been
demonstrated in a high temperature combustion environment. However, it is polymorphic
with at least five phases including three high temperature α modifications, an intermediate
temperature monoclinic β phase (larnite) and an ambient temperature γ phase. The transformation
from the β phase to the γ phase exhibits a volume increase of 12% leading to degradation
in both the thermal spray process and the coatings in thermal cycling. The β phase
may be retained by quenching or the use of a stabilizer such as sodium or phosphorous.
Other suggested stabilizers include oxides (or ions) of sulphur, boron, chromium,
arsenic, vanadium, manganese, aluminum, iron, strontium, barium and potassium. At
least some of these have also been reported as unsuccessful, and therefore still questionable
in stabilizing, including chromium, aluminum, iron, strontium and barium.
[0006] U.S. patent No. 4,255,495 (Levine et al.) discloses plasma sprayed coatings of thermal
barrier oxides containing at least one alkaline earth silicate such as calcium silicate.
U.S. patent No. 5,082,741 (Tiara et al.) and an article "Advanced Thermal Barrier
Coatings Involving Efficient Vertical MicroCracks" by N.Nakahira, Y.Harada, N.Mifune,
T.Yogoro and H.Yamane, Proceedings of International Thermal Spray Conference, Orlando
FL, 28 May - 5 June 1992, disclose thermal spray coatings of dicalcium silicate combined
with calcium zirconate (CaZrO
3) in a range of proportions.
[0007] A commercial powder of β phase dicalcium silicate for thermal spraying is sold by
Montreal Carbide Co. Ltd., Boucherville CQ, Canada, indicated in their "Technical
Bulletin MC-C
2S" (undated).
[0008] In a chemical analysis the present inventors measured less than 1% by weight of potential
stabilizers such as phosphorous in Montreal Carbide powder.
[0009] A commercial powder of dicalcium silicate for thermal spraying also is sold by Cerac
Inc., Milwaukee, Wisconsin. In a Certificate of Analysis for calcium silicate (October
20, 1997), Cerac reports major β phase and low levels of aluminum (0.12%), iron (0.1%)
and magnesium (0.25%), and 0.02% or less of other elements.
[0010] An object of the present invention is to provide an improved powder of dicalcium
silicate for thermal sprayed coatings for thermal barriers having resistance to hot
corrosion and sulfidation in a combustion environment. A further object is to provide
a novel process of manufacturing such a powder. Another object is to provide an improved
thermal sprayed coating of dicalcium silicate for thermal barriers having resistance
to hot corrosion and sulfidation in a combustion environment.
SUMMARY
[0011] The foregoing and other objects are achieved by a thermal spray powder comprising
a substantially uniform powder composition consisting of dicalcium silicate, sodium,
a further ingredient selected from the group consisting of phosphorous and zirconium,
and incidental ingredients, such that the dicalcium silicate is stabilized in a larnite
phase that is majority by volume. Acording to the invention the further ingredient
comprises phosphorous, in which case, preferably, the sodium recited as disodium monoxide
is present in an amount of 0.2% to 0.8%, and the phosphorous recited as phosphorous
pentoxide is present in an amount of 2.5% to 4%. In a prefered embodiment the further
ingredient comprises zirconium, in which case, preferably, the sodium recited as disodium
monoxide is present in an amount of about 0.2% to 0.8%, and the zirconium recited
as zirconium dioxide is present in an amount of 10% to 50%. These percentages are
by weight of oxide based on the total composition. The zirconium, if present, should
be at least partially in the form of zirconium dioxide containing calcium oxide as
stabilizer of the zirconium dioxide, or yttrium oxide its stabilizer.
[0012] Objectives also are achieved by a process of manufacturing a thermal spray powder
of dicalcium silicate having a stabilized crystal structure. An aqueous mixture is
formed of calcium carbonate powder, silicon dioxide powder, and an organic binder
containing as an integral constituent a stabilizing element in an amount sufficient
to stabilize the dicalcium silicate in a larnite phase that is majority by volume.
The aqueous mixture is spray dried to form a powder. The spray dried powder is heated,
such as by sintering or plasma melting, such that the dicalcium silicate is formed
with larnite phase that is majority by volume.
[0013] Preferably the stabilizing element is sodium, advantageously contained in an organic
binder sodium carboxymethylcellulose. Further advantageously, the aqueous mixture
further comprises a compound of phosphorous, preferably as hydrous aluminum phosphate
in aqueous solution. Alternatively or in addition to phosphorous, the aqueous mixture
further comprises stabilized zirconium dioxide powder with calcia or yttria stabilizer.
[0014] Objectives are further achieved by a thermal spray coating of a composition as described
above for the powder. The coating has a web of interconnected, randomly oriented microcracks
substantially perpendicular to the coating surface. The coating may include a bonding
layer of a thermal sprayed nickel or cobalt alloy on a metallic substrate, and an
intermediate layer of a thermal sprayed partially or fully stabilized zirconium oxide.
The layer of dicalcium silicate composition is thermal sprayed onto the intermediate
layer. The intermediate layer blocks reaction between the bonding layer and the layer
of dicalcium silicate composition.
DETAILED DESCRIPTION
[0015] Dicalcium silicate compositions can be manufactured by agglomeration procedures such
as spray drying as taught in U.S. patent No. 3,617,358 (Dittrich), incorporated herein
in its entirety by reference, followed by sintering (calcination) or melting. Sodium
is added as a stabilizing ingredient. A second added ingredient is phosphorous as
a stabilizer. Alternatively to the phosphorous, the second additive is stabilized
zirconia or, as another alternative, both phosphorous and zirconia may be added. In
spray drying a water soluble organic or inorganic binder is used in an aqueous mixture
or slurry containing the other ingredients. In a preferred embodiment, the sodium
is added by way of containment in the binder formulation, advantageously sodium carboxymethylcellulose
(sodium CMC) containing about 2% by weight sodium. Other ingredients and calculated
formulae are listed in Table 1 for seven formulations.
Table 1
Spray Dry Menu
(Quantities in units of weight) |
| Run # |
CaCO3 |
SiO2 |
AP |
CZ |
YZ |
| 1 |
154 |
46 |
|
|
|
| 2 |
150 |
50 |
25 |
|
|
| 3 |
150 |
50 |
10 |
|
|
| 4 |
154 |
46 |
25 |
|
|
| 5 |
154 |
46 |
10 |
|
|
| 6 |
154 |
46 |
|
|
33 |
| 7 |
154 |
46 |
|
33 |
|
AP- Al(H2PO4)3, 50% solution.
CZ - ZrO2-5CaO-0.5Al2O3-0.4SiO2, in weight percents.
YZ - ZrO2-7Y2O3, in weight percent. |
[0016] Raw materials were precipitated calcium carbonate (CaCO
3, purity 98%, size 1-10 µm), ground silica (SiO
2, purity 99%, 2-15 µm), hydrous aluminum phosphate (AP), calcia stabilized zirconia
(CZ, 98% purity, 0.4-20 µm) and yttria stabilized zirconia (YZ, 99% purity, 0.4-15
µm). The amounts of each ingredient are in units of weight, each formulation being
in 60 liters of distilled water per unit of weight of the raw materials. The binder
is present in an amount of 4% by weight of the raw materials. The Na
2O content was nearly constant around 0.45% as the binder remained constant. A surfactant
such as sodium polyacrylate is added in an amount of 2% by weight. The mixture is
atomized conventionally with compressed air upwardly through a nozzle into a heated
oven region, as described in the aforementioned Dittrich patent, and the resulting
agglomerated powder is collected.
[0017] Table 2 lists powders by lot numbers formulated (some in two sizes) from these compositions.
All were subsequently sintered at 1200°C for 3 hours, except Lot 709 which was treated
by feeding through a plasma gun as described in U.S. patent Nos. 4,450,184 (Longo
et al.), the portions describing such process being incorporated herein by reference.
Table 3 gives chemical compositions (from chemical analyses) and phases (from x-ray
diffraction) for eight of the lots.
Table 2
| Powders |
| Lot # |
Run # |
Size |
Additives |
Heat Treat |
| 307 |
1 |
Std |
Na |
Sinter |
| 309 |
1 |
Fine |
Na |
Sinter |
| 403 |
2 |
Std |
Na, P |
Sinter |
| 414 |
3 |
Std |
Na, P |
Sinter |
| 429 |
4 |
Std |
Na, P |
Sinter |
| 506 |
5 |
Std |
Na, P |
Sinter |
| 513 |
6 |
Std |
Na, CZ |
Sinter |
| 515 |
6 |
Fine |
Na, CZ |
Sinter |
| 520 |
7 |
Std |
Na, YZ |
Sinter |
| 709 |
1 |
Std |
Na |
Plasma |
| 821 |
Blend of Run 1 & CZ 75/25 Wt% |
|
Std = Standard - predominantly 30 to 125 µm
Fine - predominantly 22 to 88 µm.
Na - sodium; P - phosphorous |
Table 3
Powder compositions
(Volume Percents) |
| Lot# |
CaO |
SiO2 |
MgO |
Al2O3 |
P2O5 |
Na2O |
Y2O3 |
ZrO2 |
Phases |
| 307 |
62.23 |
36.28 |
0.42 |
0.29 |
0.03 |
0.49 |
|
|
100% β |
| 309 |
64.48 |
43.03 |
0.40 |
0.29 |
0.09 |
0.41 |
|
|
100% β |
| 403 |
56.92 |
33.62 |
0.35 |
1.80 |
6.67 |
0.39 |
|
|
75% β, CA |
| 414 |
58.83 |
36.66 |
0.37 |
0.89 |
2.73 |
0.42 |
|
|
75% β, CA |
| 429 |
57.67 |
33.30 |
0.38 |
1.72 |
6.17 |
0.45 |
|
|
75% β, CA |
| 506 |
61.96 |
32.58 |
0.40 |
0.95 |
3.09 |
0.49 |
|
|
75% β, CA |
| 513 |
49.19 |
29.09 |
0.33 |
0.47 |
0.01 |
0.40 |
0.04 |
19.71 |
75% β, CZ |
| 515 |
51.04 |
27.63 |
0.33 |
0.47 |
0.01 |
0.41 |
0.03 |
19.25 |
75% β, CZ |
| 520 |
47.37 |
28.84 |
0.28 |
0.42 |
0.02 |
0.40 |
1.53 |
20.62 |
75% β, YZ |
CA is calcium aluminate, Ca3Al2O6.
β - larnite |
[0018] The powders were thermal sprayed with a Sulzer Metco model F4 plasma gun with a model
Twin 10 (TM) powder feeder, using an 8 mm nozzle, argon primary gas at 30 standard
liters/minute (slpm) flow, hydrogen secondary gas at 12 slpm, argon powder carrier
gas at 3 slpm, 550 amperes, 63 volts, 12 cm spray distance and 3 kg/hr powder feed
rate. Several types of substrates included cold rolled steel, Fe-13Cr-44Mo alloy and
a Ni alloy of 1.5Co-18Fe-22Cr-9Mo-0.6W-0.1C-max1Mn-max1Si. The substrates were prepared
conventionally by grit blasting. Coatings having a thickness of 650 to 730 µm were
effected. The finer powders were sprayed with the same gun and parameters except at
a spray rate 1.2 kg/hr. Table 4 shows detected phases in the coatings.
Table 4
| Plasma Sprayed Coating Phases |
| Lot/Coating # |
Detected Phases |
| 307 |
β |
| 309 |
β |
| 403 |
α ortho |
| 414 |
β (+), α ortho |
| 429 |
α ortho |
| 506 |
β (+) |
| 513 |
α ortho, cubic zirconia |
| 515 |
α hex, cubic zirconia |
| 520 |
α hex, cubic zirconia |
| 709 |
β |
| 821 |
β, cubic zirconia |
| (+) after β designates disordered lattice. |
[0019] A more important feature of the preferred coatings is a web of interconnected, randomly
oriented microcracks substantially perpendicular to the coating surface. Such cracks
relieve stresses in thermal cycling. These microcracks were observed particularly
in a coating from lot 506 which is stabilized at 75% β phase (larnite) with disodium
monoxide and phosphorous pentoxide, and contains aluminum oxide bound with the calcia
as Ca
3Al
2O
6. However, the x-ray diffraction pattern indicated a disordered lattice. Similar microcracking
was observed in a coating from lot 515 containing sodium and calcia stabilized zirconia
(CZ). Compositional inhomogeneity was visible in coatings with high amounts of silica
or phosphorous (lots 403, 429), and inhomogeneity for lot 414. Lot 429, low in phosphorous,
was most uniform. The microcracking is considered to be important for stress relief
in thermal cycling. In the coatings, there should be between about 1 and 5 microcracks
per cm
2 of coating surface.
[0020] After a heat treatment at 1200°C for 48 hours, only three coatings appeared stable
against dusting, 506 (low phosphorous) and 515 (CZ), and 414 which completely detached.
The only coating to retain the β phase was 506. Coating 515 exhibited a mechanical
stable appearance. It is concluded that the coatings that dusted would not be stable
in hot environments. Coating 414 was "superstabilized" in a high temperature α phase
formed in the heat treatment. A significant amount of calcium zirconate (CaZrO
3) was formed in the heat treated coating 515. After a second heat treatment of coatings
506 and 515 at 1300°C for 48 hours, only the β phase was detected in the coatings.
These coatings remained stable.
[0021] Further long term cyclic corrosion testing was performed with coatings 414, 506 (both
low phosphorous) and 515 up to 900°C, with V
2O
5, (85 wt%) / Na
2SO
4 (15 wt%) ash as a corrosive agent. These coatings efficiently protected the underlying
bond coat and substrate from attack from the agent which did not penetrate the coatings.
Reference yttria stabilized zirconia coatings were damaged and partly spalled, and
the corrosive agent penetrated the coating.
[0022] More broadly, the disodium monoxide should be present in an amount of 0.2% to 0.8%.
If phosphorous pentoxide is the second stabilizer, it should be present in an amount
of 2.5% to 4%. Alternatively, if zirconium dioxide (zirconia) is the second additive,
it should be present in an amount of 10% to 50% by weight. The powder should have
a size distribution generally within a range between about 10 and 100 µm. Alternatives
to the aluminum phosphate as a raw material are sodium phosphate and zirconium phosphate.
[0023] As indicated above for, a preferred aspect of the invention, the organic binder for
the spray dry process contains the stabilizing element sodium as an integral constituent
of the binder compound. More broadly, other stabilizing elements such as potassium
or any of the other stabilizing elements set forth above for dicalcium silicate may
be used. The stabilizing element is in an amount sufficient to stabilize the dicalcium
silicate in a larnite phase that is at least majority or, preferably, substantially
fully stabilized larnite.
[0024] The powder size distribution generally should be in a range of 10 µm to 200 µm, for
example predominantly 30 to 125 µm for thicker coatings or 22 to 88 µm for thinner
coatings. The zirconia, when used, should be partially or fully stabilized with 5%
to 15% by weight of calcia or 6% to 20% by weight of yttria. At least some stabilization
of the zirconia is desired because some zirconia phase is in the powder particles.
Stabilized zirconia is distinguished from calcium zirconate which contains substantially
more calcia. Other known or desired stabilizers for the zirconia such as magnesium
oxide may be used. In an alternative embodiment, phosphorous is used along with the
sodium in powder and coatings containing the stabilized zirconia.
[0025] Proportions should be the same as for the individual cases.
[0026] Plasma gun melting of spray dried powder in place of sintering, is an alternative.
Also, lot 821 tested a blend of lot 307 dicalcium silicate with a partially stabilized
zirconia powder. Although lot 307 was stabilized only with sodium which was less effective,
the testing suggested that powders of the present invention may be blended with other
compatible high temperature powders for tailored results. Advantageously, the zirconium
oxide is blended in an amount of 10% to 50% by weight of the total powder, preferably
15% to 25%, for example 20%.
[0027] Preferably the dicalcium silicate is applied over a conventional bonding layer of
alloy, such as Ni-22Cr-10Al-1.0Y (by weight)., or Ni-20Cr or Ni-50Cr, thermal sprayed
on an alloy substrate. However, at high temperature the dicalcium silicate may react
with the bonding alloy. Zirconia is less prone to such a reaction. Therefore, an advantageous
coating is formed of a bonding layer of a thermal sprayed nickel or cobalt alloy on
a metallic substrate, and an intermediate layer of a thermal sprayed partially or
fully stabilized zirconium oxide. The layer of dicalcium silicate composition is thermal
sprayed onto the intermediate layer, the bonding layer being between about 100 µm
and 200 µm thick, and the intermediate layer preferably being between about 50 and
200 µm thick. The intermediate layer thereby blocks reaction between the bonding layer
and the layer of dicalcium silicate composition.
[0028] Applications for the coatings include burner cans, heat shields, blades, vanes and
seals in gas turbine engines, rocket nozzles, piston crowns and valve faces in diesel
engines, and contast rolls and tundish outlets in steel mills.
[0029] While the invention has been described above in detail with reference to specific
embodiments, various changes and modifications which fall within the spirit of the
invention and scope of the appended claims will become apparent to those skilled in
this art. Therefore, the invention is intended only to be limited by the appended
claims or their equivalents.
1. A thermal spray powder comprising a substantially uniform powder composition consisting
of dicalcium silicate, sodium, a further ingredient selected from the group consisting
of phosphorous and zirconium, wherein the further ingredient comprises phosphorous,
and incidental ingredients, such that the dicalcium silicate is stabilized in a larnite
phase that is majority by volume, wherein the sodium recited as disodium monoxid is
present in an amount of about 0.2% to 0.8%, and the phosphorous recited as phosphorous
pentoxide is present in an amount of about 2.5% to 4%, the percentage being by weight
of oxide based on the total composition.
2. The powder of claim 1 wherein the incidental ingredients comprise aluminum recited
as aluminum oxide up to 2%.
3. The powder of claim 1 wherein the incidental ingredients comprise magnesium recited
as magnesium oxide up to 0.5%.
4. The powder of claim 1 wherein the further ingredient comprises zirconium.
5. The powder of claim 4 wherein the sodium recited as disodium monoxide is present in
an amount of about 0.2% to 0.8%, and the zirconium recited as zirconium dioxide is
present in an amount of 10% to 50%, the percentages being by weight of oxide based
on the total composition.
6. The powder of claim 4 wherein the zirconium is at least partially in the form of zirconium
dioxide containing calcium oxide as stabilizer of the zirconium dioxide.
7. The powder of claim 4 wherein the zirconium is at least partially in the form of zirconium
dioxide containing yttrium oxide as stabilizer of the zirconium dioxide.
8. The powder of claim 1 having a size distribution within a range between 10 and 100
µm.
9. The powder of claim 1 further comprising a powder of stabilized zirconium oxide in
an amount of 10% to 50% blended with the powder composition of dicalcium silicate,
based on the total weight of the powder.
10. A process of manufacturing a thermal spray powder of dicalcium silicate having a stabilized
crystal structure, comprising steps of:
forming an aqueous mixture comprising calcium carbonate powder, silicon dioxide powder,
and an organic binder containing as an integral constituent a stabilizing ingredient
in an amount sufficient to stabilize the dicalcium silicate in a larnite phase that
is majority by volume; wherein the stabilizing ingredients comprises sodium and a
further ingredient selected from the group consisting of phosphorous and zirconium,
wherein the further ingredient comprises phosphorous and incidental ingredients, wherein
the sodium recited as disodium monoxid is present in a amount of 0.2% to 0.8%, and
the phosporous recited as phosphorous pentoxide is present in an amount of 2.5% to
4%, the percentage being by weight of dried oxide, spray drying the aqueous mixture
to form a spray dried powder; and
heating the spray dried powder such that the dicalcium silicate is formed with larnite
phase that is majority by volume.
11. The process of claim 10 wherein the organic binder is sodium carboxymethylcellulose.
12. The process of claim 11 wherein the compound of phosphorous is hydrous aluminum phosphate
in aqueous solution.
13. The process of claim 11 wherein the compound of phosphorous is hydrous aluminum phosphate
in aqueous solution.
14. The process of claim 10 wherein the aqueous mixture further comprises stabilized zirconium
dioxide.
15. The process of claim 14 wherein the zirconium dioxide contains calcium oxide as stabilizer.
16. The process of claim 14 wherein the zirconium dioxide contains yttrium oxide as stabilizer.
17. The process of claim 10 wherein each powder in the aqueous mixture has a size less
than 20 µm.
18. The process of claim 10 wherein the step of heating comprises sintering the powder.
19. The process of claim 10 wherein the step of heating comprises feeding the powder through
a plasma gun.
20. A thermal spray coating comprising a layer of a substantially uniform coating composition
consisting of dicalcium silicate, sodium, a further ingredient selected from the group
consisting of phosphorous and zirconium, and incidental ingredients, the coating having
a coating surface and a web of interconnected, randomly oriented microcracks substantially
perpendicular to the coating surface.
21. The coating of claim 20 wherein the further ingredient comprises phosphorous, and
the dicalcium silicate is stabilized in a larnite phase that is majority by volume.
22. The coating of claim 21 wherein the sodium recited as disodium monoxide is present
in an amount of about 0.2% to 0.8%, and the phosphorous recited as phosphorous pentoxide
is present in an amount of about 2.5% to 4%, the percentages being by weight of oxide
based on the total composition.
23. The coating of claim 21 wherein the incidental ingredients comprise aluminum recited
as aluminum oxide up to 2%.
24. The coating of claim 20 wherein the incidental ingredients comprise magnesium recited
as magnesium oxide up to 0.5%.
25. The coating of claim 20 wherein the further ingredient comprises zirconium.
26. The coating of claim 25 wherein the sodium recited as disodium monoxide is present
in an amount of 2% to 0.8%, and the zirconium recited as zirconium dioxide is present
in an amount of about 10% to 50%, the percentages being by weight of oxide based on
the total composition.
27. The coating of claim 25 wherein the zirconium is at least partially in the form of
zirconium dioxide containing calcium oxide as stabilizer of the zirconium dioxide.
28. The coating of claim 25 wherein the zirconium is at least partially in the form of
zirconium dioxide containing yttrium oxide as stabilizer of the zirconium dioxide.
29. The coating of claim 20 wherein the coating contains between one and five microcracks
per cm of coating surface.
30. The coating of claim 20 wherein the layer of dicalcium silicate composition is between
50 µm and 200 µm thick.
31. The coating of claim 20 further comprising a bonding layer of a thermal sprayed nickel
or cobalt alloy on a metallic substrate, and an intermediate layer of a thermal sprayed
partially or fully stabilized zirconium oxide, the layer of dicalcium silicate composition
being thermal sprayed onto the intermediate layer, the bonding layer being between
about 100 µm and 200 µm thick, and the intermediate layer being between about 50 µm
and 200 µm thick, whereby the intermediate layer blocks reaction between the bonding
layer and the layer of dicalcium silicate composition.
1. Ein thermisches Spritzpulver umfassend eine im wesentlichen gleichmässige Pulverzusammensetzung
bestehend aus Dikalziumsilikat, Natrium, einem weiteren Bestandteil aus der Gruppe
bestehend aus Phosphor und Zirkon, wobei der weitere Bestandteil Phosphor umfasst
und weitere Bestandteilen, so dass das Dikalziumsilikat in einer larniten Phase stabilisiert
wird, die den Grossteil des Volumens einnimmt, wobei das erwähnte Natrium als Dinatrium
Monoxid vorliegt in einer Menge von ungefähr 0.2% bis 0.8% und der Phosphor erwähnt
als Phosphorpentoxid in einer Menge von 2.5% bis 4% vorliegt, wobei die Prozentangaben
Gewichtsprozent in Bezug auf die gesamte Zusammensetzung sind.
2. Das Pulver gemäss Anspruch 1, wobei die weiteren Bestandteile Aluminium, erwähnt als
Aluminiumoxid, bis zu 2% umfassen.
3. Das Pulver gemäss Anspruch 1, wobei die weiteren Bestandteile Magnesium, erwähnt als
Magnesiumoxid, bis zu 0.5% umfassend.
4. Das Pulver nach Anspruch 1, wobei die weiteren Bestandteile Zirkon umfassen.
5. Das Pulver nach Anspruch 4, wobei das als Dinatriummomoxid erwähnte Natrium in einer
Menge von ungefähr 0.2% bis 0.8% vorliegt, und das erwähnte Zirkon, erwähnt als Zirkondioxid,
in einer Menge von ungefähr 10% bis 50% vorliegt, wobei die Prozentangaben Gewichtsprozent
des Oxids in Bezug auf die gesamte Zusammensetzung sind.
6. Das Pulver nach Anspruch 4, wobei das Zirkon mindestens teilweise in Form von Zirkondioxid,enthaltend
Kalziumoxid als Stabilisierer des Zirkondioxids, vorliegt.
7. Das Pulver nach Anspruch 4, wobei das Zirkon zumindest teilweise in Form von Zirkondioxid
enthaltend Yttriumoxid als Stabilisierer des Zirkondioxids,vorliegt.
8. Das Pulver nach Anspruch 1, mit einer Grössenverteilung innerhalb eines Bereichs zwischen
10 und 100µm.
9. Das Pulver nach Anspruch 1, umfassend weiterhin ein Pulver aus stabilisiertem Zirkonoxid
in einer Menge von 10% bis 50% vermischt mit der Pulverzusammensetzung aus Dikalziumsilikat,
bezogen auf das gesamte Gewicht des Pulvers.
10. Ein Verfahren zur Herstellung eines thermischen Spritzpulvers aus Dikalziumsilikat
mit einer stabilisierten Kristallstruktur, umfassend die Schritte:
Herstellung einer wässrigen Lösung umfassend Kalziumkarbonatpulver, Siliziumdioxidpulver
und einen organischen Binder enthaltend als einen integralen Bestandteil ein stabilisierendes
Element in einer Menge, die ausreichend ist, das Dikalziumsilikat in einer larniten
Phase zu stabilisieren, die den grössten Teil des Volumens einnimmt; wobei die stabilisierenden
Elemente Natrium und Phosphor und Zirkonium umfassen, und wobei die weiteren Elemente
Phospor und zufällige Beimischungen umfassen, wobei das als Dinatriummonoxid erwähnte
Natrium in einer Menge von 0.2% bis 0.8% und er als Phosphorpentoxid erwähnte Phosphor
in einer Menge von 2.5% bis 4% vorhanden ist, wobei die Prozentangaben Gewichtsprozent
des getrockneten Oxids sind;
Sprühtrocknen der wässrigen Lösung um ein sprühgetrocknetes Pulver herzustellen;
und Aufheizung des sprühgetrockneten Pulvers so dass das Dikalziumsilikat in einer
larniten Phase ausgebildet wird, die den Grossteil des Volumens einnimmt.
11. Das Verfahren nach Anspruch 10, wobei der organische Binder Natrium carboxymethylcellulose
ist.
12. Das Verfahren nach Anspruch 11, wobei der Phosphorbestandteil wasserhaltiges Aluminiumphosphat
in wässriger Lösung ist.
13. Das Verfahren nach Anspruch 11, wobei der Phosphorbestandteil wasserhaltiges Aluminiumphosphat
in wässriger Lösung ist.
14. Das Verfahren nach Anspruch 10, wobei die wässrige Lösung weiterhin stabilsiertes
Zirkondioxid enthält.
15. Das Verfahren nach Anspruch 14, wobei das Zirkondioxid Kalziumoxid als Stabilisierer
enthält.
16. Das Verfahren nach Anspruch 14, wobei das Zirkondioxid Yttriumoxid als Stabilisierer
enthält.
17. Das Verfahren nach Anspruch 10, wobei jedes Pulver eine Grösse von weniger als 20µm
hat.
18. Das Verfahren nach Anspruch 10,wobei der Schritt des Aufheizens ein Sintern des Pulvers
umfasst.
19. Das Verfahren nach Anspruch 10, wobei der Schritt des Aufheizens das Durchführen des
Pulvers durch eine Plasmapistole umfasst.
20. Eine thermische Spritzschicht umfassend eine Schicht einer im wesentlichen gleichförmigen
Schichtzusammensetzung bestehend aus Dikalziumsilikat, Natrium, einer weiteren Beimischung
aus der Gruppe bestehend aus Phosphor und Zirkon, und eines weiteren Bestandteils,
wobei die Beschichtung eine Beschichtungsoberfläche und ein Netz aus miteinander verbundenen,
zufällig orientierten Mikrorissen umfasst, die im wesentlichen senkrecht zur Beschichtungsoberfläche
orientiert sind.
21. Die Beschichtung nach Anspruch 20, wobei die weiteren Bestandteile Phosphor umfassen,
und das Dikalziumsilikat in einer larniten Phase stabilisiert ist, die den grössten
Teil des Volumens einnimmt.
22. Die Beschichtung nach Anspruch 21, wobei Natrium erwähnt als Dinatriummonoxid in einer
Menge von 0.2% bis 0.8% und der Phosphor erwähnt als Phosphorpentoxid in einer Menge
von 2.5% bis 4% vorliegt,wobei die Prozentangaben Gewichtsprozent des Oxids in Bezug
auf die gesamte Zusammensetzung sind.
23. Die Beschichtung nach Anspruch 21, wobei die weiteren Bestandteile Aluminium, erwähnt
als Aluminiumoxid, bis zu 2% umfassen.
24. Die Beschichtung nach Anspruch 20, wobei die weiteren Bestandteile Magnesium, erwähnt
als Magnesiumoxid bis zu ca. 0.5% umfasst.
25. Die Beschichtung nach Anspruch 20, wobei die weiteren Bestandteile Zirkon umfassen.
26. Die Beschichtung nach Anspruch 25, wobei das als Dinatriummonoxid erwähnte Natrium
in einer Menge von ungefähr 0.2% bis 0.8% enthalten ist und das als Zirkondioxid erwähnte
Zirkon in einer Menge von 10% bis 50% enthalten ist, wobei die Prozentangaben Gewichtsprozent
des Oxids in Bezug auf die gesamte Zusammensetzung sind.
27. Die Beschichtung nach Anspruch 25, wobei das Zirkon zumindest teilweise in Form von
Zirkondioxid, enthaltend Kalziumoxid als Stabilisierer für das Zirkondioxid, vorliegt.
28. Die Beschichtung nach Anspruch 25, wobei das Zirkon zumindest teilweise in Form von
Zirkondioxid, enthaltend Yttriumoxid als Stabilisierer für das Zirkondioxid, vorliegt.
29. Die Beschichtung nach Anspruch 20, wobei die Beschichtung zwischen einem und fünf
Mikrorissen pro cm der Beschichtungsoberfläche enthält.
30. Die Beschichtung nach Anspruch 20 wobei die Schicht der Dikalziumsilikat Zusammensetzung
zwischen 50µm und 200µm dick ist.
31. Die Beschichtung nach Anspruch 20, weiter enthaltend eine auf ein metallisches Substrat
thermisch gespritzte Verbindungsschicht aus einer Nickel oder Kobalt Legierung und
einer thermisch gespritzten, teilweise oder vollständig stabilisierten Zirkonoxid
Zwischenschicht, wobei die Schicht aus der Dikalziumsilikat Zusammensetzung thermisch
auf die Zwischenschicht gespritzt ist, Die Verbindungsschicht ungefähr zwischen 100µm
und 200µm dick ist und die Zwischenschicht ungefähr zwischen 50µm und 200µm dick ist,
wobei die Zwischenschicht Reaktionen zwischen der Verbindungsschicht und der Schicht
aus der Dikalziumsilikat Zusammensetzung blockiert.
1. Poudre pour pulvérisation thermique comprenant une composition de poudre substantiellement
uniforme consistant en silicate dicalcique, sodium, un autre ingrédient sélectionné
parmi le groupe consistant en phosphore et zirconium, où l'ingrédient supplémentaire
comprend le phosphore, et des ingrédients éventuels, de manière à ce que le silicate
dicalcique soit stabilisé en une phase larnite qui est majoritaire en volume, où le
sodium sous forme de monoxyde disodique est présent à une teneur de 0,2% à 0,8%, et
le phosphore sous forme de pentoxyde phosphoreux est présent à une teneur de 2,5%
à 4%, le pourcentage étant en poids d'oxyde basé sur la composition totale.
2. Poudre selon la revendication 1, dans laquelle les ingrédients éventuels comprennent
l'aluminium sous forme d'oxyde d'aluminium jusqu'à 2%.
3. Poudre selon la revendication 1, dans laquelle les ingrédients éventuels comprennent
le magnésium sous forme d'oxyde de magnésium jusqu'à 0,5%.
4. Poudre selon la revendication 1, dans laquelle l'ingrédient supplémentaire comprend
le zirconium.
5. Poudre selon la revendication 4, dans laquelle le sodium sous forme de monoxyde disodique
est présent à une teneur d'environ 0,2% à 0,8%, et le zirconium sous forme de dioxyde
de zirconium est présent à une teneur de 10% à 50%, le pourcentage étant indiqué en
poids d'oxyde par rapport à la composition totale.
6. Poudre selon la revendication 4, dans laquelle le zirconium est au moins partiellement
sous la forme de dioxyde de zirconium contenant de l'oxyde de calcium comme agent
stabilisant du dioxyde de zirconium.
7. Poudre selon la revendication 4, dans laquelle le zirconium est au moins partiellement
sous la forme de dioxyde de zirconium contenant de l'oxyde d'yttrium comme agent stabilisant
du dioxyde de zirconium.
8. Poudre selon la revendication 1 ayant une distribution de taille dans une plage entre
10 et 100 µm.
9. Poudre selon la revendication 1 comprenant en outre une poudre d'oxyde de zirconium
stabilisé à une teneur de 10% à 50% mélangée avec la composition de poudre de silicate
dicalcique, par rapport au poids total de la poudre.
10. Procédé de fabrication d'une poudre pour pulvérisation thermique de silicate dicalcique
ayant une structure de cristal stabilisé comprenant les étapes de:
formation d'un mélange aqueux comprenant de la poudre de carbonate de calcium,
de la poudre de dioxyde de silicone, et un liant organique contenant comme constituant
intégral un ingrédient stabilisant à une teneur suffisante pour stabiliser le silicate
dicalcique en une phase larnite qui est majoritaire en volume; où les ingrédients
de stabilisation comprennent du sodium et un autre ingrédient sélectionné dans le
groupe constitué de phosphore et de zirconium, où l'autre ingrédient comprend du phosphore
et des ingrédients éventuels, où le sodium sous forme de monoxyde disodique est présent
à une teneur de 0,2% à 0,8%, et le phosphore sous forme de pentoxyde phosphoreux est
présent à une teneur de 2,5% à 4%, le pourcentage étant en poids d'oxyde sec ;
séchage par pulvérisation du mélange aqueux pour former une poudre pulvérisée à sec;
et
chauffage de la poudre séchée par pulvérisation de façon à ce que le silicate dicalcique
soit formé avec une phase larnite qui est majoritaire en volume.
11. Procédé selon la revendication 10, dans lequel le liant organique est la carboxyméthylcellulose
sodium.
12. Procédé selon la revendication 11, dans lequel le composé de phosphore est du phosphate
d'aluminium hydraté en solution aqueuse.
13. Procédé selon la revendication 11, dans lequel le composé de phosphore est du phosphate
d'aluminium hydraté en solution aqueuse.
14. Procédé selon la revendication 10, dans lequel le mélange aqueux contient en outre
de l'oxyde de zirconium stabilisé.
15. Procédé selon la revendication 14, dans lequel l'oxyde de zirconium contient de l'oxyde
de calcium comme agent stabilisant.
16. Procédé selon la revendication 14, dans lequel l'oxyde de zirconium contient de l'oxyde
d'yttrium comme agent stabilisant.
17. Procédé selon la revendication 10, dans lequel chaque poudre dans le mélange aqueux
a une taille inférieure à 20 µm.
18. Procédé selon la revendication 10, dans lequel l'étape de chauffage comprend le frittage
de la poudre.
19. Procédé selon la revendication 10, dans lequel l'étape de chauffage comprend l'alimentation
de la poudre à travers un canon à plasma.
20. Revêtement par pulvérisation thermique comprenant une couche d'une composition de
revêtement substantiellement uniforme constitué de silicate dicalcique, de sodium,
d'un autre ingrédient sélectionné parmi le groupe consistant en phosphore et zirconium,
et d'ingrédients éventuels, le revêtement ayant une surface de revêtement et un réseau
de microfissures interconnectées, orientées aléatoirement substantiellement perpendiculaires
à la surface de revêtement.
21. Revêtement selon la revendication 20, dans lequel l'ingrédient additionnel comprend
le phosphore, et le silicate dicalcique est stabilisé en une phase larnite qui est
majoritaire en volume.
22. Revêtement selon la revendication 21, dans lequel le sodium sous forme de monoxyde
disodique est présent à une teneur d'environ 0,2% à 0,8%, et le phosphore sous forme
de pentoxyde phosphoreux est présent à une teneur d'environ 2,5% à 4%, le pourcentage
étant en poids d'oxyde par rapport à la composition totale.
23. Revêtement selon la revendication 21, dans lequel les ingrédients éventuels comprennent
l'aluminium sous forme d'oxyde d'aluminium jusqu'à 2%.
24. Revêtement selon la revendication 20, dans lequel les ingrédients éventuels comprennent
le magnésium sous forme d'oxyde de magnésium jusqu'à 0,5%.
25. Revêtement selon la revendication 20, dans lequel l'ingrédient additionnel comprend
du zirconium.
26. Revêtement selon la revendication 25, dans lequel le sodium sous forme de monoxyde
disodique est présent à une teneur de 0,2% à 0,8%, et le zirconium sous forme de dioxyde
de zirconium est présent à une teneur d'environ 10% à 50%, le pourcentage étant en
poids d'oxyde par rapport à la composition totale.
27. Revêtement selon la revendication 25, dans lequel le zirconium est au moins partiellement
sous forme de dioxyde de zirconium contenant de l'oxyde de calcium comme agent stabilisant
du dioxyde de zirconium.
28. Revêtement selon la revendication 25, dans lequel le zirconium est au moins partiellement
sous forme de dioxyde de zirconium contenant de l'oxyde d'yttrium comme agent stabilisant
du dioxyde de zirconium.
29. Revêtement selon la revendication 20, dans lequel le revêtement contient entre un
et cinq microfissures par cm de surface de revêtement.
30. Revêtement selon la revendication 20, dans lequel la couche de composition de silicate
dicalcique est comprise entre 50µm et 200µm d'épaisseur.
31. Revêtement selon la revendication 20, comprenant en outre une couche de liaison d'un
alliage de nickel ou de cobalt pulvérisé thermiquement sur un substrat métallique,
et une couche intermédiaire d'un oxyde de zirconium partiellement ou totalement stabilisé
pulvérisé thermiquement, la couche de composition de silicate dicalcique étant thermiquement
pulvérisée sur la couche intermédiaire, la couche de liaison étant entre environ 100µm
et 200µm d'épaisseur, et la couche intermédiaire étant entre environ 50 µm et 200
µm d'épaisseur, par quoi la couche intermédiaire bloque la réaction entre la couche
de liaison et la couche de composition de silicate dicalcique.