(19)
(11) EP 1 079 090 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
28.02.2001  Patentblatt  2001/09

(21) Anmeldenummer: 00116857.4

(22) Anmeldetag:  04.08.2000
(51) Internationale Patentklassifikation (IPC)7F02D 41/14, G01N 27/417
(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 20.08.1999 DE 19939555

(71) Anmelder: Volkswagen Aktiengesellschaft
38436 Wolfsburg (DE)

(72) Erfinder:
  • Bizenberger, Thomas
    38116 Braunschweig (DE)
  • Daetz, Michael, Dipl.-Ing.
    38473 Tiddische (DE)
  • Jelden, Hanno, Dipl.-Ing.
    38165 Lehre (DE)
  • Kielmann, Christoph
    38531 Röttgesbüttel (DE)

   


(54) Verfahren zur Kalibrierung einer in Verbrennungskraftmaschinen eingesetzten Breitband-Lambdasonde


(57) Die Erfindung betrifft ein Verfahren zur Ermittlung eines Lambdawertes eines Abgases einer Verbrennungskraftmaschine mit einer Lambdasonde, insbesondere einer Breitband-Lambdasonde, wobei die Lambdasonde in einem Abgaskanal der Verbrennungskraftmaschine angeordnet ist und ein Meßsignal der Lambdasonde in Abhängigkeit von einem vorgebbaren Korrekturwert kw den Lambdawert liefert (Kalibrierung) sowie der Verbrennungskraftmaschine Mittel zugeordnet sind, die eine Erfassung eines Luftmassenstroms und einer zugeführten Kraftstoffmasse ermöglichen.
Es ist vorgesehen, daß zur Festlegung des Korrekturwertes (kw)

(a) in einem ersten Betriebspunkt (p1) der Verbrennungskraftmaschine mit λ = 1 (stöchiometrischer Betrieb) eine Kraftstoffmasse (mK1) und ein Luftmassenstrom (mL1) erfaßt wird,

(b) nachfolgend in einem zweiten Betriebspunkt (p2) der Verbrennungskraftmaschine mit λ ≠ 1 (Mager- oder Fettbetrieb) eine Kraftstoffmasse (mK2) und ein Luftmassenstrom (mL2) erfaßt wird,

(c) in Abhängigkeit von den Luftmassenströmen (mL1, mL2) und den Kraftstoffmassen (mK1, mK2) der Betriebspunkte (p1,p2) der Korrekturwert (kw) für den Lambdawert des Betriebspunktes (p2) gebildet wird.




Beschreibung


[0001] Die Erfindung betrifft ein Verfahren zur Ermittlung eines Lambdawertes mit den im Oberbegriff des Anspruchs 1 genannten Merkmalen.

[0002] Zur Erfassung eines Verhältnisses eines Sauerstoffanteils und eines Kraftstoffanteils in einem Luft-Kraftstoff-Gemisch (Lambdawert) ist es bekannt, in einem Abgaskanal einer Verbrennungskraftmaschine Lambdasonden anzuordnen. Derartige Lambdasonden stellen ein Signal entsprechend dem Lambdawert des Abgases zur Verfügung. Dieses Signal wird üblicherweise an ein Motorsteuergerät weitergeleitet, von diesem verarbeitet und zur Steuerung einer Zusammensetzung des Kraft-Luftstoff-Gemisches genutzt (Lambdaregelung).

[0003] In der Praxis finden im wesentlichen zwei verschiedene Bautypen von Lambdasonden Anwendung. Zum einen stellen sogenannte Sprung-Lambdasonden das Signal in Form einer elektrischen Spannung zur Verfügung, die sich entsprechend einer Gleichgewichtssauerstoffkonzentration zwischen zwei katalytisch aktiven Elektroden der Sonde einstellt. Da sich die Gleichgewichtssauerstoffkonzentration im Bereich bei λ = 1 (stöchiometrischer Betrieb) um mehrere Zehnerpotenzen ändert, zeigt eine solche Sprung-Lambdasonde einen sehr steilen und stabilen Kennlinienverlauf für den stöchiometrischen Bereich. Dagegen ist nachteilig, daß der Kennlinienverlauf in Bereichen mit λ ≠ 1 sehr flach verläuft. Somit ist eine Regelung eines Arbeitsmodus der Verbrennungskraftmaschine in einem Magerbetrieb (λ > 1) oder Fettbetrieb (λ < 1) stark erschwert oder nicht möglich.

[0004] Alternativ hierzu finden in der Praxis sogenannte Breitband-Lambdasonden, beispielsweise Zweizellen-Grenzstromsonden, Anwendung. Hierbei muß das Abgas zunächst eine Diffusionsbarriere überwinden, bevor es in eine Meßkammer eintritt. In der Meßkammer sind analog der Sprung-Lambdasonde die katalytisch aktiven Elektroden als eine Konzentrationszelle angeordnet. Eine Ausgangsspannung dieser Konzentrationszelle wird bei den Breitband-Lambdasonden einem Regler zugeführt und mit einer Spannung verglichen, die üblicherweise der Gleichgewichtssauerstoffkonzentration bei λ = 1 entspricht. Ein Ausgangssignal dieses Reglers steuert einen Strom durch eine zweite Zelle der Sonde, einer sogenannten Pumpzelle. Dieser Strom bewirkt im Magerbetrieb einen Sauerstofftransport aus der Meßkammer heraus, wobei dieser nach einer Gleichgewichtseinstellung an den Elektroden einem Diffusionsstrom durch die Diffusionsbarriere entspricht. Damit steht aber auch ein Ausgangssignal der Sonde in Form eines Meßstromes zur Verfügung, das proportional zum Sauerstoffpartialdruck im Abgas ist.

[0005] Im Fettbetrieb diffundieren in einem vermehrten Maße Reduktionsmittel wie CO, HC oder H2 durch die Diffusionsbarriere in die Meßkammer und reagieren dort an den katalytisch aktiven Elektroden mit dem jetzt von der Pumpzelle herangeführten Sauerstoff. Der fließende Meßstrom ist eine Funktion einer Summe der Partialdrücke der Reduktionsmittel multipliziert mit ihren jeweiligen Diffusionskoeffizienten. Derartige Breitband-Lambdasonden ermöglichen eine Messung des Lambdawertes in einem Bereich von λ = 0,7 bis ∞.

[0006] Nachteilig an derartigen Breitband-Lambdasonden ist es, daß wesentliche, eine Höhe des Meßstromes beeinflussende Parameter nur unzureichend oder gar nicht berücksichtigt werden. So ist bekannt, daß der Meßstrom außer von der Abgaszusammensetzung auch von einer Geometrie der Sonde, einer Porosität der Diffusionsbarriere, einem Gasdruck und einer Temperatur, die im Bereich der Sonde herrscht, abhängt. Es ist bekannt, zum Ausgleich von fertigungsbedingten Toleranzen das Ausgangssignal mit einem vorgebbaren Korrekturwert zu multiplizieren (Kalibrierung). Allerdings ändern sich die eine Empfindlichkeit der Sonde beeinflussenden Parameter infolge von Alterungseffekten oder durch Verschmutzung während eines Betriebs der Verbrennungskraftmaschine.

[0007] Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Verfügung zu stellen, das es ermöglicht, den Lambdawert des Abgases der Verbrennungskraftmaschine langzeitstabil und mit einer hohen Genauigkeit zu bestimmen. Dabei soll der vorgebbare Korrekturwert auch die betriebsbedingten Toleranzen weitestgehend ausgleichen.

[0008] Erfindungsgemäß wird diese Aufgabe durch das Verfahren zur Ermittlung eines Lambdawertes einer Lambdasonde mit den im Anspruch 1 genannten Merkmalen gelöst. Dadurch, daß zur Festlegung des Korrekturwertes

(a) in einem ersten Betriebspunkt p1 der Verbrennungskraftmaschine mit λ = 1 (stöchiometrischer Betrieb) eine Kraftstoffmasse mK1 und ein Luftmassenstrom mL1 erfaßt wird,

(b) nachfolgend in einem zweiten Betriebspunkt p2 der Verbrennungskraftmaschine mit λ ≠ 1 (Mager- oder Fettbetrieb) eine Kraftstoff masse mK2 und ein Luftmassenstrom mL2 erfaßt wird,

(c) in Abhängigkeit von den Luftmassenströmen mL1, mL2 und den Kraftstoffmassen mK1, mK2 der Betriebspunkte p1, p2 der Korrekturwert kw für den Lambdawert des Betriebspunktes p2 gebildet wird,

ist es möglich, eine genauere Bestimmung des Lambdawertes langzeitstabil durchzuführen.

[0009] Die Festlegung des Korrekturwertes erfolgt vorteilhafterweise in Abhängigkeit von ausgewählten Kalibrierungsparametern. So ist es denkbar, eine Temperatur und/oder einen Wassergehalt einer Ansaugluft der Verbrennungskraftmaschine bei der Ermittlung des Korrekturwertes zu berücksichtigen. Überschreitet beispielsweise die Temperatur der Ansaugluft während der Festlegung des Korrekturwertes eine Grenztemperatur, so erfolgt ein Abbruch der Kalibrierung. In gleicher Weise kann beim Überschreiten eines vorgebbaren Schwellenwertes für den Wassergehalt der Ansaugluft, eine Rohrwandtemperatur oder eine Abgastemperatur verfahren werden. Diese Maßnahmen führen nachfolgend zu einer Beeinflussung eines Wassergasgehalts des Abgases (CO- und H2-Gehalt). Selbstverständlich kann der Wassergasgehalt auch direkt erfaßt werden und somit ein störender Einfluß auf die Kalibrierung der Lambdasonde ausgeschlossen werden.

[0010] Vorteilhaft ist ferner, die Lage des Meßsignals oder des vorgebbaren Meßsignalbereichs bei der Kalibrierung zu berücksichtigen. So ist es sinnvoll, unterschiedliche Korrekturwerte im Magerbetrieb oder Fettbetrieb der Verbrennungskraftmaschine für die Ermittlung des Lambdawertes zu verwenden. Daneben können Kalibrierungsparameter, wie die Temperatur oder der vorgebbare Temperaturbereich der Lambdasonde, bei der Kalibrierung der Lambdasonde berücksichtigt werden.

[0011] Ein Wechsel von dem Betriebspunkt p1 in den Betriebspunkt p2 mit λ > 1 der Verbrennungskraftmaschine soll bevorzugt durch eine im wesentlichen den Luftmassenstrom beeinflussende Maßnahme erfolgen, da sich dabei ein Wirkungsgrad der Verbrennungskraftmaschine nur in relativ geringem Umfang ändert und die Luftmassenströme besonders exakt erfaßt werden können. Ferner ist es vorteilhaft, wenn eine Änderung der zugeführten Kraftstoffmasse mK1 beim Wechsel vom Betriebspunkt p1 in den Betriebspunkt p2 im wesentlichen zur Kompensation einer Leistungsänderung der Verbrennungskraftmaschine dient. Vorteilhafterweise kann ein Wechsel auf einen Betriebspunkt p2 mit λ < 1 (Fettbetrieb) ausschließlich durch die Änderung der Kraftstoffmasse mK1 erzwungen werden, wenn der Betriebspunkt p2 in einem Lambdabereich von λ = 0,8 bis 0,9 liegt. Erfahrungsgemäß findet sich in diesem Lambdabereich ein Betriebspunkt mit äquivalenten Leistungen wie im stöchiometrischen Betrieb mit λ = 1. Insgesamt läßt sich auf diese Weise die Kalibrierung der Lambdasonde mit besonders geringen Toleranzen durchführen.

[0012] Die Festlegung des Korrekturwertes kann periodisch nach Ablauf einer vorgebbaren Zeitspanne initiiert werden oder erfolgt während eines dynamischen Betriebs der Verbrennungskraftmaschine, wenn zufällig zwei aufeinanderfolgende geeignete Betriebspunkte erreicht werden.

[0013] Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.

[0014] Die Erfindung wird nachfolgend in einem Ausführungsbeispiel erläutert.

[0015] Zur Erfassung einer Gemischzusammensetzung eines Luft-Kraftstoff-Gemisches, das durch Verbrennung einem Antrieb einer Verbrennungskraftmaschine dient, ist es bekannt, Lambdasonden in einem Abgaskanal der Verbrennungskraftmaschine anzuordnen. Lage und Form derartiger Lambdasonden sind bekannt. Die Funktionsweise soll beispielhaft kurz anhand einer Zweizellen-Grenzstromsonde, einer sogenannten Breitband-Lambdasonde, erläutert werden.

[0016] Die Zweizellen-Grenzstromsonde besteht im wesentlichen aus einer Konzentrationszelle und einer Pumpzelle. Beide Zellen werden durch teils katalytisch aktive Elektroden gebildet, wobei der Konzentrationszelle eine Meßkammer zugeordnet ist. Durch eine poröse Diffusionsbarriere gelangt das Abgas in die Meßkammer. Dabei wird ein Ausgangssignal der Konzentrationszelle in Form einer elektrischen Spannung in Abhängigkeit von einer Gleichgewichtssauerstoffkonzentration eingestellt. Diese Ausgangsspannung der Konzentrationszelle wird einem Regler zugeführt und in diesem mit einer Spannung von üblicherweise 450 mV verglichen, die der Gleichgewichtssauerstoffkonzentration bei λ = 1 entspricht.

[0017] Die Gleichgewichtssauerstoffkonzentration ändert sich bei einem Übergang von einem Lambdawert von knapp über 1 zu einem Lambdawert knapp unter 1 und umgekehrt um mehrere Zehnerpotenzen, so daß sich das resultierende Meßsignal in der Konzentrationszelle stark ändert. Aufgrund dessen besitzt die Lambdasonde in dem Bereich um λ = 1 eine sehr hohe Genauigkeit.

[0018] Ein Ausgangssignal des Reglers steuert einen Strom durch die Pumpzelle und zwar derart, daß in einem Magerbetrieb der Verbrennungskraftmaschine (λ > 1) ein Sauerstofftransport aus der Meßkammer heraus erfolgt. Nach einer Gleichgewichtseinstellung der Sauerstoffkonzentration an den katalytisch aktiven Elektroden ist dieser Strom gleich einem Diffusionsstrom durch die Diffusionsbarriere und dient als Ausgangssignal der Sonde (Meßstrom). Der Meßstrom ist dabei proportional einem Sauerstoffpartialdruck im Abgas.

[0019] Im Fettbetrieb (λ < 1) diffundieren zusätzlich in einem vermehrten Maße Reduktionsmittel wie CO, HC oder H2 durch die Diffusionsbarriere in die Meßkammer. An den katalytisch aktiven Elektroden findet eine Oxidation der Reduktionsmittel durch den von der Pumpzelle herangeführten Sauerstoff statt. Der fließende Strom ist somit eine Funktion der Summen der Partialdrücke der Reduktionsmittel, multipliziert mit ihren jeweiligen Diffusionskoeffizienten. Mit geeigneten Kennlinien und unter der vereinfachenden Annahme, daß der Einfluß der Reduktionsmittel im wesentlichen auf ein im Gleichgewicht stehendes Wassergas (CO- und H2-Anteil) zurückzuführen ist, kann auf diese Weise ein Lambdawert ermittelt werden. Insgesamt ermöglicht eine solche Zweizellen-Grenzstromsonde eine Messung des Lambdawertes des Abgases einer Verbrennungskraftmaschine in einem weiten Bereich von λ = 0,7 bis ∞.

[0020] Eine zusätzliche Kalibrierung der Lambdasonde ist jedoch notwendig, um störende Einflüsse, wie beispielsweise geometrische Eigenschaften, eine Porosität der Diffusionsbarriere, einen Gasdruck oder eine Temperatur der Sonden auf den Meßstrom zu verhindern. Es ist daher bekannt, zum Ausgleich von fertigungsbedingten Toleranzen das Meßsignal mit einem einstellbaren Korrekturwert kw zu multiplizieren. Unberücksichtigt dabei bleibt allerdings, daß Verschmutzungen oder Alterungseffekte zu einem Drift des Meßsignals führen können und betriebsbedingte Toleranzen unberücksichtigt bleiben.

[0021] Der Verbrennungskraftmaschine sind üblicherweise Mittel zugeordnet, die eine Erfassung eines Luftmassenstroms und einer zugeführten Kraftstoffmasse innerhalb einer vorgebbaren Einspritzzeit ermöglichen. Der Luftmassenstrom kann von einem Luftmassenmesser gemessen oder anhand eines vorhandenen Lastsignals, zum Beispiel einem Saugrohrdruck, berechnet werden. Eine Genauigkeit der verfügbaren Luftmassenmesser ist besser als 3 % vom Meßwert, solange die Pulsationsamplituden einer Ansaugluft ausreichend klein sind.

[0022] In dem erfindungsgemäßen Verfahren erfolgt die Festlegung des Korrekturwertes kw in dem Magerbetrieb unter der Berücksichtigung folgender Bedingungen:

[0023] Zunächst wird an einem Betriebspunkt p1 mit λ1 = 1 innerhalb einer Einspritzzeit t1 eine Kraftstoffmasse mK1 und ein Luftmassenstrom mL1 erfaßt. Für den Meßstrom I1 der Zweizellen-Grenzstromsonde gilt:

X(O2)1 gibt einen Restsauerstoffgehalt des Abgases im Betriebspunkt p1 an. Der Restsauerstoffgehalt kann nach der katalytischen Reaktion an den Elektroden dabei einen Sauerstoffüberschuß oder einen Sauerstoffmangel in Bezug auf ein stöchiometrisches Verhältnis anzeigen. Unter stöchiometrischen Bedingungen, also bei λ = 1, ist X(O2)1 zu vernachlässigen. Unter Berücksichtigung eines stöchiometrischen Faktors kst ergibt ein Verhältnis des Luftmassenstroms mL1 zur innerhalb der Einspritzzeit t1 zugeführten Kraftstoffmasse mK1 den Lambdawert λ1 im Betriebspunkt p1.



[0024] Ferner kann die zugeführte Kraftstoffmasse mK1 während der Einspritzzeit t1 am Betriebspunkt p1 als Produkt der Einspritzzeit t1 und einem Proportionalitätsfaktor kin ausgedrückt werden.



[0025] Über die Lambdaregelung wird mit der Einspritzzeit t1 die Kraftstoffmasse mK1 so eingestellt, daß die Lambdasonde einen Lambdawert von λ = 1 anzeigt. Die Genauigkeit der Lambdasonde ist bei λ = 1 besonders hoch, da nach katalytischer Reaktion kein Restsauerstoffüberschuß oder Sauerstoffmangel vorhanden ist. Fehler in der Empfindlichkeit, die über den Korrekturwert kw ausgeglichen werden sollen, spielen in dem Betriebspunkt p1 damit keine Rolle, so daß davon ausgegangen werden kann, daß der Lambdawert mit λ1 = 1 mit hoher Genauigkeit eingestellt werden kann. Der Proportionalitätsfaktor kin kann aus den vorhandenen Meßwerten mit guter Genauigkeit ermittelt werden und ergibt sich aus den Gleichungen (II) und (III).



[0026] Nachfolgend findet ein Wechsel in einen zweiten Betriebspunkt p2 der Verbrennungskraftmaschine mit λ ≠ 1 beispielsweise mit λ2 = 2 (Magerbetrieb) statt. Der Wechsel von dem Betriebspunkt p1 in den Betriebspunkt p2 der Verbrennungskraftmaschine soll dabei möglichst durch eine im wesentlichen den Luftmassenstrom mL1 beeinflussende Maßnahme erfolgen, da hier eine Änderung eines Wirkungsgrades der Verbrennungskraftmaschine relativ gering ist. Gleichzeitig dient eine gegebenenfalls notwendige Änderung der zugeführten Kraftstoffmasse mK1 im wesentlichen zur Kompensation einer Leistungsänderung der Verbrennungskraftmaschine. Dabei gilt für den Meßstrom I2:

wobei der Restsauerstoffgehalt X(O2)2 im Abgas im Betriebspunkt p2 unter der Annahme, daß ein Verhältnis von Wasserstoff zu Kohlenstoff im Kraftstoff etwa 2 : 1 beträgt, näherungsweise durch die Gleichung

gegeben ist. Diese Gleichung wird beispielsweise von Pischinger et al. in "Thermodynamik der Verbrennungskraftmaschine", Springer Verlag, angegeben. Dabei ist der Lambdawert λ2 für den Betriebspunkt p2 über die Gleichung

wiederum als ein Verhältnis eines Luftmassenstroms mL2 zu einer über eine Einspritzzeit t2 zugeführten Kraftstoffmasse mK2 definiert. Die innerhalb der Einspritzzeit t2 am Betriebspunkt p2 zugeführte Kraftstoffmasse mK2 ist gegeben über



[0027] Durch Einsetzen der Gleichungen (II) bis (VIII) für die beiden Betriebspunkte p1, p2 ergibt sich für den Meßstrom I2 am Betriebspunkt p2 die Gleichung:

wobei

ist.

[0028] Der Korrekturwert kw für den Meßstrom läßt sich somit aus den Luftmassenströmen mL1, mL2 und den Einspritzzeiten t1, t2 an den Betriebspunkten p1 und p2 bestimmen. Unterstellt man eine hohe Genauigkeit des Luftmassenmeßsystems und eine Linearität eines Einspritzsystems, was bei nur geringen Änderungen der Einspritzzeit in den meisten Betriebspunkten der Verbrennungskraftmaschine der Fall ist, kann dieser Korrekturwert kw mit hoher Genauigkeit bestimmt werden und ergibt sich zu:



[0029] Mit dem so ermittelten Korrekturwert kw für das Ausgangssignal der Lambdasonde kann nun der Lambdawert für die übrigen Betriebspunkte mit λ ≠ 1, insbesondere λ > 1, ermittelt werden:

mit



[0030] Ein Spezialfall des Betriebspunktes p2 ist der Schubfall ohne Kraftstoffeinspritzung. In diesem Fall vereinfacht sich die Gleichung (XI) zu



[0031] Insgesamt kann durch eine derartige Kalibrierung der Lambdasonde auch ein Magerbetrieb der Verbrennungskraftmaschine lambdageregelt durchgeführt werden. Weiterhin können bekannte Überwachungsfunktionen, die beispielsweise eine Konvertierungsrate eines im Abgaskanal in der Verbrennungskraftmaschine angeordneten Katalysators erfassen, wesentlich genauer durchgeführt werden.

[0032] Zur Vermeidung von Fehlkalibrierungen ist es sinnvoll, die Festlegung des Korrekturwertes kw unter Berücksichtigung von Kalibrierungsparametern wie einer Lage des Meßsignals, einem vorgebbaren Meßsignalbereich, einer Temperatur oder einem Wassergehalt einer Ansaugluft, einer Temperatur oder einem vorgebbaren Temperaturbereich der Lambdasonde, einem Wassergasgehalt oder einer Temperatur des Abgases oder einer Kombination derselben durchzuführen.

[0033] Durch die Berücksichtigung des Meßsignals oder des vorgebbaren Meßsignalbereichs können beispielsweise für den Magerbetrieb und den Fettbetrieb der Verbrennungskraftmaschine verschiedene Korrekturwerte kw festgelegt werden. Dies ist insoweit sinnvoll, da im Fettbetrieb die maßgeblichen Diffusionskoeffizienten wegen eines höheren Wasserstoffgehalts weniger vom Mechanismus einer Porendiffusion bestimmt sind. Zur Festlegung des Korrekturwertes kw wird dabei bevorzugt ein Betriebspunkt p2 in einem Lambdabereich von λ = 0,8 bis 0,9 durch eine Änderung der zugeführten Kraftstoffmasse m1 eingestellt. Dabei kann ausgenutzt werden, daß bei konstantem Luftmassenstrom in diesen, Lambdabereich ein Betriebspunkt p2 existiert, in dem eine abgegebene Leistung der Verbrennungskraftmaschine in etwa der Leistung der Verbrennungskraftmaschine im Betriebspunkt p1 entspricht.

[0034] Bei der Ermittlung des Korrekturwertes kw im Fettbetrieb gelten ebenso die im Zusammenhang mit der Ermittlung des Korrekturwertes kw für den Magerbetrieb vorab aufgestellten Gleichungen. Lediglich der Restsauerstoffgehalt gemäß Gleichung (VI) muß entsprechend angepaßt werden, da im Magerbetrieb bekanntlich ein Sauerstoffüberschuß und im Fettbetrieb dagegen ein Sauerstoffmangel herrscht. Dies läßt sich in bekannter Weise unter Berücksichtigung eines Wassergasgleichgewichts für die Anteile am Abgas von CO, H2, H2O und CO2 berechnen.

[0035] Im Fettbetrieb diffundieren die Reduktionsmittel - wie bereits erläutert - durch die Diffusionsbarriere zu den katalytisch aktiven Elektroden der Lambdasonde. Dort reagieren sie mit dem durch die Pumpzelle herangeführten Sauerstoff, wobei ein zur Sauerstoffgleichgewichtskonzentration entsprechend λ = 1 benötigter Sauerstoffstrom den Meßwert darstellt. Der Sauerstoffstrom entspricht in seiner Höhe dem Diffusionsstrom aus CO und H2, so daß sich letztendlich ein Meßstrom I2 ergibt, der den Abgasanteilen von CO und H2, multipliziert mit ihren jeweiligen Diffusionskoeffizienten, entspricht, und aus dem ein Korrekturwert kw für den Fettbetrieb berechnet werden kann.

[0036] Die derartig ermittelten Korrekturwerte kw können zur Berücksichtigung von Alterungsprozessen oder Verschmutzungen der Lambdasonde periodisch nach Ablauf einer vorgebbaren Zeitspanne neu festgelegt werden. Denkbar ist auch, daß die Festlegung der Korrekturwerte kw während eines dynamischen Betriebes der Verbrennungskraftmaschine infolge zweier zufällig aufeinanderfolgender, geeigneter Betriebspunkte erfolgt.

[0037] Weiterhin sollte die Temperatur der Ansaugluft während der Kalibrierung nicht oberhalb einer vorgebbaren Grenztemperatur liegen. Vorteilhafterweise beträgt die Grenztemperatur 35 °C, da unterhalb dieser Temperatur der Wassergasgehalt der Ansaugluft vernachlässigbar ist. Daneben kann die Festlegung des Korrekturwertes abgebrochen werden, wenn der Wassergehalt der Ansaugluft oberhalb eines vorgebbaren Schwellenwertes liegt.

[0038] Die Kalibrierung sollte ebenfalls nur erfolgen, wenn die Abgastemperatur im Bereich der Lambdasonde während der Festlegung des Korrekturwertes kw oberhalb eines vorgebbaren Schwellenwertes liegt. Die Abgastemperatur kann mit einem Abgastemperatursensor direkt erfaßt werden oder über ein Modell aus den Motorbetriebsdaten berechnet werden. Auch eine Rohrwandtemperatur zwischen den Ausstoßventilen der Verbrennungskraftmaschine und dem Einbauort der Lambdasonde sollte über einem Schwellenwert liegen. Der Schwellenwert für die Abgastemperatur und die Rohrwandtemperatur sind dabei bevorzugt derart gewählt, daß die Kalibrierung erst ab einer Temperatur oberhalb von 60 °C, insbesondere 100 °C, erfolgt. Bei einer Temperatur von > 60 °C des Abgases ist der Taupunkt des Abgases sicher überschritten. Bei einer Temperatur von > 100 °C sind alle Verdampfungsprozesse von kondensiertem Wasser abgeschlossen, so daß der Wassergasgehalt des Abgases am Ort der Lambdasonde dem des Motors entspricht. Hierdurch kann der Einfluß von Kondensations- oder Verdampfungsprozessen innerhalb des Abgaskanals vermieden werden.


Ansprüche

1. Verfahren zur Ermittlung eines Lambdawertes eines Abgases einer Verbrennungskraftmaschine mit einer Lambdasonde, insbesondere einer Breitband-Lambdasonde, wobei die Lambdasonde in einem Abgaskanal der Verbrennungskraftmaschine angeordnet ist und ein Meßsignal der Lambdasonde in Abhängigkeit von einem vorgebbaren Korrekturwert kw den Lambdawert liefert (Kalibrierung) sowie der Verbrennungskraftmaschine Mittel zugeordnet sind, die eine Erfassung eines Luftmassenstroms und einer zugeführten Kraftstoffmasse ermöglichen, dadurch gekennzeichnet, daß zur Festlegung des Korrekturwertes (kw)

(a) in einem ersten Betriebspunkt (p1) der Verbrennungskraftmaschine mit λ = 1 (stöchiometrischer Betrieb) eine Kraftstoffmasse (mK1) und ein Luftmassenstrom (mL1) erfaßt wird,

(b) nachfolgend in einem zweiten Betriebspunkt (p2) der Verbrennungskraftmaschine mit λ ≠ 1 (Mager- oder Fettbetrieb) eine Kraftstoffmasse (mK2) und ein Luftmassenstrom (mL2) erfaßt wird,

c) in Abhängigkeit von den Luftmassenströmen (mL1, mL2) und den Kraftstoffmassen (mK1, mK2) der Betriebspunkte (p1, p2) der Korrekturwert (kw) für den Lambdawert des Betriebspunktes (p2) gebildet wird.


 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Festlegung des Korrekturwertes (kw) anhand von Kalibrierungsparametern, wie einer Lage des Meßsignals, einem vorgebbaren Meßsignalbereich, einer Temperatur oder einem Wassergehalt einer Ansaugluft, einer Temperatur oder einem vorgebbaren Temperaturbereich der Lambdasonde, einem Wassergasgehalt oder einer Temperatur des Abgases oder einer Kombination derselben erfolgt.
 
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein Korrekturwert (kw) für die Kalibrierung in dem Magerbetrieb ermittelt wird.
 
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein Korrekturwert (kw) für die Kalibrierung in dem Fettbetrieb ermittelt wird.
 
5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Temperatur der Ansaugluft während der Festlegung des Korrekturwertes (kw) unterhalb einer vorgebbaren Grenztemperatur liegt.
 
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Grenztemperatur 35°C beträgt.
 
7. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Wassergehalt der Ansaugluft während der Festlegung des Korrekturwertes (kw) unterhalb eines vorgebbaren Schwellenwertes liegt.
 
8. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Temperatur des Abgases und/oder einer Rohrwand der Abgasanlage im Bereich der Lambdasonde während der Festlegung des Korrekturwertes (kw) oberhalb eines vorgebbaren Schwellenwertes liegt.
 
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß der Schwellenwert oberhalb von 60 °C, insbesondere 100 °C, liegt.
 
10. Verfahren nach den Ansprüchen 1 und 3, dadurch gekennzeichnet, daß ein Wechsel von dem Betriebspunkt (p1) in den Betriebspunkt (p2) der Verbrennungskraftmaschine durch eine im wesentlichen den Luftmassenstrom (mL1) beeinflussende Maßnahme erfolgt.
 
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Änderung der zugeführten Kraftstoffmasse (mK1) beim Wechsel vom Betriebspunkt (p1) in den Betriebspunkt (p2) im wesentlichen zur Kompensation einer Leistungsänderung der Verbrennungskraftmaschine dient.
 
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Festlegung des Korrekturwertes (kw) periodisch nach Ablauf einer vorgebbaren Zeitspanne initiiert wird.
 
13. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Festlegung des Korrekturwertes (kw) während eines dynamischen Betriebs der Verbrennungskraftmaschine infolge zweier zufällig aufeinanderfolgender, geeigneter Betriebspunkte erfolgt.