Gebiet der Erfindung
[0001] Die Erfindung betrifft die Verwendung von Polyolcarbonsäureester als Verdickungsmittel
in oberflächenaktiven Zubereitungen.
Stand der Technik
[0002] Oberflächenaktive Zubereitungen, insbesondere solche, die im Bereich der Wasch- und
Reinigungsmittel sowie in der Körperpflege zum Einsatz kommen, enthalten zumeist Aniontenside,
wie zum Beispiel Alkylethersulfate. Um diese klaren oder dispersen Systeme zu stabilisieren
und ihre Handhabbarkeit für den Anwender zu verbessern, werden diesen Tensidlösungen
üblicherweise Verdickungsmittel zugesetzt [
Seifen-Öle- Fette-Wachse, 116, 60 (1990)].
Dem Fachmann sind bereits eine Vielzahl von anorganischen und organischen Verbindungen
bekannt, die zur Erhöhung der Viskosität oberflächenaktiver Zubereitungen, wie beispielsweise
aniontensidhaltiger Lösungen, eingesetzt werden. Als anorganische Verdickungsmittel
[
Seifen-Öle-Fette-Wachse, 113, 135 (1987)] werden in der Regel wasserlösliche Elektrolytsalze, üblicherweise Kochsalz, eingesetzt.
Beispiele für organische Verdickungsmittel sind Fettsäurealkanolamide, Polyethylenglykoldifettsäureester
sowie eine Reihe wasserlöslicher Polymere. In den meisten Fällen ist es höchstens
unter Einsatz großer Mengen möglich, alleine durch Verwendung anorganischer Elektrolytsalze
die gewünschte Viskosität der Tensidlösung einzustellen. Man geht daher in der Regel
den Weg, zusätzlich zu den anorganischen Salzen organische Verdickungsmittel einzusetzen,
die aber teilweise mit einer Reihe von Nachteilen behaftet sind. So weisen die mit
Polyethylenglykolfettsäurediestern [
DE 3541813 A1, DE 3551535 A1. DE 3600263 A1] verdickte Tensidlösungen oft eine unzureichende Viskositätsstabilität bei Lagerung
auf, während wasserlösliche Polymere ein unerwünschtes schleimiges Fließverhalten
mit Neigung zum Fädenziehen in den verdickten Tensidlösungen zeigen. In den deutschen
Patentanmeldungen
DE 3730179 A1, EP 0343463 A2 und
DE 3817415 A1 wird daher vorgeschlagen, zur Verdickung von Tensidlösungen Anlagerungsprodukte von
Ethylenoxid und/oder Propylenoxid an Fettalkohole zu verwenden. Weiterhin sind Glycerintrifettsäureester
[
Cosm. Toil., 103, 99 (1988)] sowie Fettsäurealkanolamide als organische Verdickungsmittel bekannt.
[0003] Die Aufgabe der vorliegenden Erfindung hat darin bestanden, weitere organische Verdicker
mit erhöhter verdickender Wirkung zur Verfügung zu stellen, die bereits bei geringeren
Konzentrationen in oberflächenaktiven Zubereitungen Wirksamkeit zeigen und stabile
Viskositäten liefern. Darüber hinaus sollen sie neben einem rückfettenden Effekt frei
von Ethylenoxid sein.
Beschreibung der Erfindung
[0004] Gegenstand der Erfindung ist die Verwendung von Polyolcarbonsäureestern, die man
durch Umsetzung von (I) Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 6 OH-Gruppen
mit (II) linearen und/oder verzweigten, gesättigten und/oder ungesättigten Fettsäuren
mit 6 bis 22 Kohlenstoffatomen und (III) polyfunktionellen Carbonsäuren mit 2 bis
8 Kohlenstoffatomen und Hydroxycarbonsäuren mit 2 bis 4 Kohlenstoffatomen erhält,
als Verdickungsmittel in oberflächenaktiven Zubereitungen.
[0005] Überraschenderweise wurde gefunden, daß die genannten langkettigen Polyolcarbonsäureester
verdickende Eigenschaften besitzen. Ihre Anwendung als Verdickungmittel in oberflächenaktiven
Zubereitungen führt bereits bei geringen Konzentrationen zu stabilen Mischungen mit
konstanten Viskositäten bei Lagerung. Darüber hinaus wird eine synergistische Wirkung
in Kombination mit niedrig ethoxylierten Fettalkoholen sowie mit anderen Verdickungsmitteln
gefunden. Ein weiterer Vorteil ist, daß die erfindungsgemäßen Polyolcarbonsäureester
ethylenoxidfrei sind und darüber hinaus rückfettende Eigenschaften aufweisen.
Polyolcarbonsäureester
[0006] Es werden Polyolcarbonsäureester eingesetzt, die durch Umsetzung von (I) Polyolen
mit 2 bis 15 Kohlenstoffatomen und 2 bis 6 OH-Gruppen mit (II) linearen und/oder verzweigten,
gesättigten und/oder ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und (III)
polyfunktionellen Carbonsäuren mit 2 bis 8 Kohlenstoffatomen und Hydroxycarbonsäuren
mit 2 bis 4 Kohlenstoffatomen erhältlich sind.
[0007] Polyole, die im Sinne der Erfindung als Komponente (I) in Betracht kommen, können
noch weitere funktionelle Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff
modifiziert sein. Vorzugsweise werden folgende Polyole eingesetzt:
- Glycerin;
- Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol,
Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen
Molekulargewicht von 100 bis 1.000 Dalton;
- technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie
etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
- Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Tnmethylolbutan,
Pentaerythrit und Dipentaerythrit;
- Niedrigalkylglucoside, insbesondere solche, mit 1 bis 8 Kohlenstoffen im Alkylrest,
wie beispielsweise Methyl- und Butylglucosid;
- Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
- Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose,
- Aminozucker, wie beispielsweise Glucamin und
- Dialkoholamine, wie Diethanolamin oder 2-Amino-1,3-propandiol.
Insbesondere werden Ethylenglycol, Propylenglycol, Trimethylolpropan, Pentaerythrit,
Propylenglykol, Sorbitol und/oder Glycerin als Polyole eingesetzt.
[0008] Typische Beispiele für Fettsäuren, die im Sinne der Erfindung als Komponente (II)
in Betracht kommen, sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure,
Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure,
Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure,
Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren
technische Mischungen, die z.B. bei der Druckspaltung von natürlichen Fetten und Ölen,
bei der Reduktion von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung
von ungesättigten Fettsäuren anfallen. Bevorzugt sind technische Fettsäuren mit 12
bis 18 Kohlenstoffatomen, wie beispielsweise Kokos-, Palm-, Palmkern- oder Talgfettsäure.
Als polyfunktionelle Carbonsäuren (III) können auch entsprechende C
2-8-Dicarbonsäuren eingesetzt werden, so daß ebenfalls Bernsteinsäure, Maleinsäure, Fumarsäure,
Glutarsäure, Adipinsäure und Dodecandisäure in Frage kommen. Als Hydroxycarbonsäuren,
die im Sinne der Erfindung als Komponente (III) in Betracht kommen, werden vorzugsweise
Citronensäure, Apfelsäure, Weinsäure, Glykolsäure und/oder Milchsäure eingesetzt.
Die Polyolcarbonsäureester werden erhalten, indem man zunächst die entsprechenden
Polyole in an sich bekannter Weise in Gegenwart saurer Katalysatoren mit den Fettsäuren
zu entsprechenden Partialestern umsetzt und diese dann in einem weiteren Schritt mit
den polyfunktionellen Carbonsäuren bzw. Hydroxycarbonsäuren zu den gewünschten Polyolcarbonsäure-
und/oder Polyolhydroxycarbonsäureestern umsetzt.
Fettalkoholethoxylate
[0009] Die Polyolcarbonsäureester können vorzugsweise in Kombination mit Fettalkoholethoxylaten
der Formel
(I),

in der R
1 für einen linearen oder verzweigten, gesättigten oder ungesättigten Kohlenwasserstoffrest
mit 10 bis 18, vorzugsweise 12 bis 14 Kohlenstoffatomen und m für Zahlen von durchschnittlich
2 bis 6; vorzugsweise 2 bis 3 steht, eingesetzt werden.
Typische Beispiele sind Anlagerungsprodukte 2 bis 6 Ethylenoxid-Einheiten an Capronalkohol,
Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol,
Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol,
Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol,
Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol
und Brassidylalkohol sowie deren technische Mischungen, die z.B. bei der Hochdruckhydrierung
von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der
Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten
Fettalkoholen anfallen. Bevorzugt sind technische Fettalkohole mit 12 bis 18 Kohlenstoffatomen,
wie beispielsweise Kokos-, Palm-, Palmkern- oder Talgfettalkohol.
Verdickungsmittel
[0010] Die Polyolcarbonsäureester können vorzugsweise in Kombination mit weiteren geeigneten
Verdickungsmitteln in oberflächenaktiven Zubereitungen eingesetzt werden. Als Verdickungsmittel
kommen beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polysaccharide, insbesondere
Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und
Hydroxyethylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester
von Fettsäuren, Polyacrylate, (z.B. Carbopole® von Goodrich oder Synthalene® von Sigma),
Polyacrylamide, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise
ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise
Pentaerythrit oder Trimethylolpropan oder Alkyloligoglucoside sowie Elektrolyte wie
Kochsalz und Ammoniumchlorid in Frage.
[0011] Die Einsatzmenge der Verdickungsmittel - bezogen auf die Summe der Verdickungsmittel
in den oberflächenaktiven Zubereitungen - kann 0,1 bis 6, üblicherweise 0,5 bis 4
und vorzugsweise 2 bis 3 Gew.-% betragen.
Oberflächenaktive Zubereitungen
[0012] Die erfindungsgemäßen Polyolcarbonsäureester können zur Herstellung von oberflächenaktiven
Zubereitungen, wie Wasch-, Spül-, Reinigungs- und Wäscheweichspülmittel und kosmetischen
und/oder pharmazeutischen Zubereitungen zur Pflege und Reinigung von Haut, Haaren,
Mund und Zähnen, wie beispielsweise Haarlotionen, Schaumbäder, Duschbäder, Cremes,
Gele, Lotionen, alkoholische und wäßrig/alkoholische Lösungen, Emulsionen, Wachs/
Fett-Massen, Stiftpräparaten oder Salben, vorzugsweise Haarshampoos, dienen. Diese
Mittel können ferner als weitere Hilfs- und Zusatzstoffe Tenside, Ölkörper, Überfettungsmittel,
Perlglanzwachse, Konsistenzgeber, Polymere, Siliconverbindungen, Fette, Wachse, Stabilisatoren,
biogene Wirkstoffe, Deodorantien, Antitranspirantien, Antischuppenmittel, Filmbildner,
Quellmittel, UV-Lichtschutzfaktoren, Antioxidantien, Hydrotrope, Konservierungsmittel,
Insektenrepellentien, Selbstbräuner, Solubilisatoren, Parfümöle, Farbstoffe und dergleichen
enthalten.
[0013] Die oberflächenaktiven Zubereitungen, die in der Regel einen nicht wäßrigen Anteil
im Bereich von 1 bis 99 und vorzugsweise 20 bis 50 Gew.-% aufweisen, können nichtionische,
anionische, kationische und/oder amphotere Tenside enthalten. Typische Beispiele für
anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate,
Glycerinethersulfonate, α-Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate,
Glycerinethersulfate, Fettsäureethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate,
Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate,
Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate,
Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren, wie beispielsweise Acyllactylate,
Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate
(insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern
die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle,
vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele
für
nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester,
Fettsäureamidpolyglycol-ether, Fettaminpolyglycolether, alkoxylierte Triglyceride,
Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk(en)yloligoglykoside
bzw. Glucoronsäurederivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere
pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester,
Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten
enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung
aufweisen. Typische Beispiele für
kationische Tenside sind quartäre Ammoniumverbindungen, wie beispielsweise das Dimethyldistearylammoniumchlorid,
und Esterquats, insbesondere quaternierte Fettsäuretrialkanolaminestersalze. Typische
Beispiele für
amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine
und Sulfobetaine. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte
Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige
Übersichtsarbeiten beispielsweise
J.Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J.Falbe (ed.), "Katalysatoren,
Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen.
[0014] Als
Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise
8 bis 10 Kohlenstoffatomen, Ester von linearen C
6-C
22-Fettsäuren mit linearen C
6-C
22-Fettalkoholen, Ester von verzweigten C
6-C
13-Carbonsäuren mit linearen C
6-C
22-Fettalkoholen, wie z.B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylisostearat,
Myristyloleat, Myristylbehenat, Myristylerucat, Cetylmyristat, Cetylpalmitat, Cetylstearat,
Cetylisostearat, Cetyloleat, Cetylbehenat, Cetylerucat, Stearylmyristat, Stearylpalmitat,
Stearylstearat, Stearylisostearat, Stearyloleat, Stearylbehenat, Stearylerucat, Isostearylmyristat,
Isostearylpalmitat, Isostearylstearat, Isostearylisostearat, Isostearyloleat, Isostearylbehenat,
Isostearyloleat, Oleylmyristat, Oleylpalmitat, Oleylstearat, Oleylisostearat, Oleyloleat,
Oleylbehenat, Oleylerucat, Behenylmyristat, Behenylpalmitat, Behenylstearat, Behenylisostearat,
Behenyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat,
Erucylisostearat, Erucyloleat, Erucylbehenat und Erucylerucat. Daneben eignen sich
Ester von linearen C
6-C
22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Hydroxycarbonsäuren
mit linearen oder verzweigten C
6-C
22-Fettalkoholen, insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten
Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol)
und/oder Guerbetalkoholen, Triglyceride auf Basis C
6-C
10-Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von C
6-C
18-Fettsäuren, Ester von C
6-C
22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere
Benzoesäure, Ester von C
2-C
12-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen
oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche
Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte
C
6-C
22-Fettalkoholcarbonate, Guerbetcarbonate, Ester der Benzoesäure mit linearen und/oder
verzweigten C
6-C
22-Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische
Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukte
von epoxidierten Fettsäureestern mit Polyolen, Siliconöle und/oder aliphatische bzw.
naphthenische Kohlenwasserstoffe, wie z.B. wie Squalan, Squalen oder Dialkylcyclohexane
in Betracht.
[0015] Als
Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte
oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride
und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren
dienen.
[0016] Als
Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethylenglycoldistearat;
Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell
Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte
Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoftatomen, speziell langkettige
Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde,
Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen,
speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure
oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen
mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen
und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
[0017] Als
Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise
16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfettsäuren
in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden
und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten.
[0018] Geeignete
kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quaternierte Hydroxyethylcellulose,
die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische
Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymere,
wie z.B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quaternierte
Kollagenpolypeptide, wie beispielsweise Lauryldimonium hydroxypropyl hydrolyzed collagen
(Lamequat®L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische
Siliconpolymere, wie z.B. Amidomethicone, Copolymere der Adipinsäure und Dimethylaminohydroxypropyldiethylentriamin
(Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyldiallylammoniumchlorid
(Merquat® 550/Chemviron), Polyaminopolyamide, wie z.B. beschrieben in der
FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise
quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte
aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis-Dimethylamino-1,3-propan,
kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma
Celanese, quaternierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1,
Mirapol® AZ-1 der Firma Miranol.
[0019] Als
anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere,
Vinylacetat/Butylmaleat/Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere
und deren Ester, unvernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamidopropyltrimethylammoniumchlorid/Acrylat-Copolymere,
Octylacrylamid/Methylmethacrylat/tert. Butyl-aminoethylmethacrylat/2-Hydroxyproyl-methacrylat-Copolymere,
Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/ Dimethylaminoethylmethacrylat/Vinylcaprolactam-Terpolymere
sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage.
[0020] Geeignete
Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpolysiloxane, cyclische Silicone
sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder
alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch
harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich
um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis
300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt. Eine detaillierte
Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in
Cosm.Toil. 91, 27 (1976).
[0021] Typische Beispiele für
Fette sind Glyceride, als
Wachse kommen u.a. natürliche Wachse, wie z.B. Candelillawachs, Carnaubawachs, Japanwachs,
Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs,
Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett,
Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse; chemisch modifizierte
Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse
sowie synthetische Wachse, wie z.B. Polyalkylenwachse und Polyethylenglycolwachse
in Frage.
[0022] Als
Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat
bzw. -ricinoleat eingesetzt werden.
[0023] Unter
biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherolpalmitat, Ascorbinsäure,
Desoxyribonucleinsäure, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säuren,
Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe
zu verstehen.
[0024] Kosmetische
Deodorantien (Desodorantien) wirken Körpergerüchen entgegen, überdecken oder beseitigen sie. Körpergerüche
entstehen durch die Einwirkung von Hautbakterien auf apokrinen Schweiß, wobei unangenehm
riechende Abbauprodukte gebildet werden. Dementsprechend enthalten Deodorantien Wirkstoffe,
die als keimhemmende Mittel, Enzyminhibitoren, Geruchsabsorber oder Geruchsüberdecker
fungieren.
[0025] Als
keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe geeignet, wie
z. B. 4-Hydroxybenzoesäure und ihre Salze und Ester, N-(4-Chlorphenyl)-N
'-(3,4 dichlorphenyl)harnstoff, 2,4,4
'-Trichlor-2
'-hydroxydiphenylether (Triclosan), 4-Chlor-3,5-dimethylphenol, 2,2
'-Methylen-bis(6-brom-4-chlorphenol), 3-Methyl-4-(1-methylethyl)phenol, 2-Benzyl-4-chlorphenol,
3-(4-Chlorphenoxy)-1,2-propandiol, 3-Iod-2-propinylbutylcarbamat, Chlorhexidin, 3,4,4
'-Trichlorcarbanilid (TTC), antibakterielle Riechstoffe, Thymol, Thymianöl, Eugenol,
Nelkenöl, Menthol, Minzöl, Farnesol, Phenoxyethanol, Glycerinmonolaurat (GML), Diglycerinmonocaprinat
(DMC), Salicylsäure-N-alkylamide wie z. B. Salicylsäure-n-octylamid oder Salicylsäure-n-decylamid.
[0026] Als
Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vorzugsweise
um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat
und insbesondere Triethylcitrat (Hydagen® CAT, Henkel KGaA, Düsseldorf/FRG). Die Stoffe
inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Weitere Stoffe,
die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate,
wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmasterin- und Sitosterinsulfat
bzw -phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester,
Glutarsäurediethylester, Adipinsäure, Adipinsäuremonoethylester, Adipinsäurediethylester,
Malonsäure und Malonsäurediethylester, Hydroxycarbnonsäuren und deren Ester wie beispielsweise
Citronensäure, Äpfelsäure, Weinsäure oder Weinsäurediethylester, sowie Zinkglycinat.
[0027] Als
Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten
können. Sie senken den Partialdruck der einzelnen Komponenten und verringern so auch
ihre Ausbreitungsgeschwindigkeit. Wichtig ist, daß dabei Parfums unbeeinträchtigt
bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten
beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsäure oder spezielle,
weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als "Fixateure" bekannt sind,
wie z. B. Extrakte von Labdanum bzw. Styrax oder bestimmte Abietinsäurederivate. Als
Geruchsüberdecker fungieren Riechstoffe oder Parfümöle, die zusätzlich zu ihrer Funktion
als Geruchsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfümöle
seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen.
Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten,
Fruchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen
und Balsamen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet
und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ
der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen
vom Typ der Ester sind z.B. Benzylacetat, p-tert.-Butylcyclohexylacetat, Linalylacetat,
Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclohexylpropionat, Styrallylpropionat
und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den
Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal,
Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal,
zu den Ketonen z.B. die Jonone und Methylcedrylketon, zu den Alkoholen Anethol, Citronellot,
Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den
Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden
jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende
Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten
verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl,
Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl,
Olibanöl, Galbanumöl, Labdanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl,
Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd,
Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol,
Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal,
Lavandinöl, Muskateller Salbeiöl, β-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat,
Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure,
Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Floramat allein oder in
Mischungen, eingesetzt.
[0028] Antitranspirantien (Antiperspirantien) reduzieren durch Beeinflussung der Aktivität der ekkrinen Schweißdrüsen
die Schweißbildung, und wirken somit Achselnässe und Körpergeruch entgegen. Wässrige
oder wasserfreie Formulierungen von Antitranspirantien enthalten typischerweise folgende
Inhaltsstoffe:

adstringierende Wirkstoffe,

Ölkomponenten,

nichtionische Emulgatoren,

Coemulgatoren,

Konsistenzgeber,

Hilfsstoffe wie z. B. Verdicker oder Komplexierungsmittel und/oder

nichtwässrige Lösungsmittel wie z. B. Ethanol, Propylenglykol und/oder Glycerin.
[0029] Als adstringierende Antitranspirant-Wirkstoffe eignen sich vor allem Salze des Aluminiums,
Zirkoniums oder des Zinks. Solche geeigneten antihydrotisch wirksamen Wirkstoffe sind
z.B. Aluminiumchlorid, Aluminiumchlorhydrat, Aluminiumdichlorhydrat, Aluminiumsesquichlorhydrat
und deren Komplexverbindungen z. B. mit Propylenglycol-1,2. Aluminiumhydroxyallantoinat,
Aluminiumchloridtartrat, Aluminium-Zirkonium-Trichlorohydrat, Aluminium-Zirkonium-tetrachlorohydrat,
Aluminium-Zirkonium-pentachlorohydrat und deren Komplexverbindungen z. B. mit Aminosäuren
wie Glycin.
Daneben können in Antitranspirantien übliche öllösliche und wasserlösliche Hilfsmittel
in geringeren Mengen enthalten sein. Solche öllöslichen Hilfsmittel können z.B. sein:

entzündungshemmende, hautschützende oder wohlriechende ätherische Öle,

synthetische hautschützende Wirkstoffe und/oder

öllösliche Parfümöle.
[0030] Übliche wasserlösliche Zusätze sind z.B. Konservierungsmittel, wasserlösliche Duftstoffe,
pH-Wert-Stellmittel, z.B. Puffergemische, wasserlösliche Verdickungsmittel, z.B. wasserlösliche
natürliche oder synthetische Polymere wie z.B. Xanthan-Gum, Hydroxyethylcellulose,
Polyvinylpyrrolidon oder hochmolekulare Polyethylenoxide.
[0031] Als
Antischuppenmittel können Climbazol, Octopirox und Zinkpyrethion eingesetzt werden. Gebräuchliche
Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quaterniertes Chitosan,
Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe,
quaternäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche
Verbindungen.
[0032] Als
Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkylmodifizierte
Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw. Quellmittel können
der Übersicht von R.Lochhead in
Cosm.Toil. 108, 95 (1993) entnommen werden.
[0033] Unter
UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische
Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen
zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B.
Wärme wieder abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche
Substanzen sind z.B. zu nennen:

3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4-Methylbenzyliden)campher
wie in der EP 0693471 B1 beschrieben;

4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethylhexylester,
4-(Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoesäureamylester;

Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäurepropylester,
4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimtsäure-2-ethylhexylester (Octocrylene);

Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropylbenzylester,
Salicylsäurehomomenthylester;

Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon,
2,2'-Dihydroxy-4-methoxybenzophenon;

Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexylester;

Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1,3,5-triazin
und Octyl Triazon, wie in der EP 0818450 A1 beschrieben oder Dioctyl Butamido Triazone (Uvasorb® HEB);

Propan-1,3-dione, wie z.B. 1-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-1,3-dion;

Ketotricyclo(5.2.1.0)decan-Derivate, wie in der EP 0694521 B1 beschrieben.
[0034] Als wasserlösliche Substanzen kommen in Frage:

2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-,
Alkanolammonium- und Glucammoniumsalze;

Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure
und ihre Salze;

Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bomylidenmethyl)benzolsulfonsäure
und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
[0035] Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage,
wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1,3-dion, 4-tert.-Butyl-4'-methoxydibenzoylmethan
(Parsol 1789), 1-Phenyl-3-(4'-isopropylphenyl)-propan-1,3-dion sowie Enaminverbindungen,
wie beschrieben in der
DE 19712033 A1 (BASF). Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt
werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche
Lichtschutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele
für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide
des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische.
Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden.
Die Oxide und Salze werden in Form der Pigmente für hautpflegende und hautschützende
Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren
Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere
zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können
jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger
Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch
oberflächenbehandelt, d.h. hydrophilisiert oder hydrophobiert vorliegen. Typische
Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Eusolex®
T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei
speziell Trialkoxyoctylsilane oder Simethicone in Frage. In Sonnenschutzmitteln werden
bevorzugt sogenannte Mikro- oder Nanopigmente eingesetzt. Vorzugsweise wird mikronisiertes
Zinkoxid verwendet. Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von
P.Finkel in
SÖFW-Journal 122, 543 (1996) zu entnehmen.
[0036] Neben den beiden vorgenannten Gruppen primärer Lichtschulzstoffe können auch sekundäre
Lichtschutzmittel vom Typ der
Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst
wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren
(z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure)
und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate
(z.B. Ansetin), Carotinoide, Carotine (z.B. α-Carotin, β-Carotin, Lycopin) und deren
Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure),
Aurothioglucose, Propylthiouracil und andere Thiote (z.B. Thioredoxin, Glutathion,
Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-,
Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cholesteryl- und Glycerylester)
sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure
und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze)
sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Butioninsulfone,
Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen
(z.B. pmol bis µmol/kg), ferner (Metall)-Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure,
Phytinsäure, Lactoferrin), α-Hydroxysäuren (z.B. Citronensäure, Milchsäure, Äpfelsäure),
Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren
Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ-Linolensäure, Linolsäure,
Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate,
Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat),
Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat)
sowie Koniferytbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin,
Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butylhydroxyanisol,
Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure
und deren Derivate, Mannose und deren Derivate, Superoxid-Dismutase, Zink und dessen
Derivate (z.B. ZnO, ZnSO
4) Selen und dessen Derivate (z.B. Selen-Methionin), Stilbene und deren Derivate (z.B.
Stilbenoxid, trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze,
Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten
Wirkstoffe.
[0037] Zur Verbesserung des Fließverhaltens können ferner
Hydrotrope, wie beispielsweise Ethanol, Isopropylalkohol, oder Polyole eingesetzt werden.
[0038] Als
Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Parabene, Pentandiol
oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten
weiteren Stoffklassen. Als
Insekten-Repellentien kommen N,N-Diethyl-m-toluamid, 1,2-Pentandiol oder Ethyl Butylacetylaminopropionate
in Frage, als
Selbstbräuner eignet sich Dihydroxyaceton.
[0039] Als
Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche
Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang),
Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander,
Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis,
Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-,
Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian),
Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum,
Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in
Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen
sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe.
Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat,
p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat,
Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat,
Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether,
zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral,
Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial
und Bourgeonal, zu den Ketonen z.B. die Jonone, ∝-Isomethylionon und Methylcedrylketon,
zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol
und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame.
Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam
eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit,
die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl,
Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl,
Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl,
Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd,
Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol,
Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal,
Lavandinöl, Muskateller Salbeiöl, β-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat,
Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure,
Geranylacetat, Benzylacetat, Rosenoxid, Romilliat, Irotyl und Floramat allein oder
in Mischungen, eingesetzt.
[0040] Als
Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet
werden, wie sie beispielsweise in der Publikation
"Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft,
Verlag Chemie, Weinheim, 1984, S.81-106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von
0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
[0041] Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40
Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann durch
übliche Kalt - oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur-Methode.
Beispiele