Technical Field of the Invention
[0001] The present invention relates to an impeller used in a fan, a fan using the impeller,
and an air conditioner using the same. An impeller as specified in the preamble of
Claim 1 is known from
US-A-1 807 397.
Background of the Invention
[0002] A plan of an impeller of a conventional mixed flow fan is shown in Fig. 15, and a
rotation locus diagram of the impeller is given in Fig. 15. In the impeller used in
such mixed flow fan, the gas flows in the impeller in inclination toward the rotary
shaft. That is, in Fig. 15, the impeller 18 of the mixed flow fan comprises a truncated
conical hub 20, and a plurality of blades 19 disposed in the hub 20. The rotation
locus of the impeller 18 is shown in Fig. 14. The fan comprises this impeller 18,
a casing accommodating the impeller 18, a rotary shaft coupled to the hub 20, and
a motor. As the impeller 18 is rotated by the motor, a blowing action takes place.
When the aspect ratio b/L, or the ratio of the chord length L of the blade at the
representative square mean radius position of the vanes 19 and the representative
actual length b in the radial direction of the blades is 1 or less, that is, in a
range of b/L≤1, the number of blades 19 required for obtaining a sufficient static
pressure is at least three or more. The front edge 21 of the blades 19 has a logarithmic
spiral or similar curve.
[0003] In the conventional configuration, however, when the aspect ratio is 1 or less (that
is, in a range of b/L≤1), in the fan of the impeller having at least three blades
19 or more, a blade end vortex 19D occurs in the arrow direction near the outer circumference
of the rotating blades 19. The blade end vortex 19D was separated from the blade 19,
and had a large effect on the influent air state of the succeeding blade 19. That
is, the succeeding blade 19 had a large effect on the blade end vortex 19D generated
and separated from the preceding vane, and the succeeding blade 19 worked pneumatically
while receiving a largely disturbed influent air. Therefore, due to the effects of
the blade end vortex 19D, there was a limit in reduction of noise and improvement
of static pressure characteristic.
[0004] Further, as the number of blades 19 increases, the volume occupied by the impeller
increases, and the manufacturing cost of the impeller is raised.
[0005] It is hence an object of the invention to reduce the noise of the impeller for fan,
enhance the static pressure, and lower the manufacturing cost of the impeller.
Summary of the Invention
[0006] The impeller for fan of the invention is defined in Claim 1.
[0007] Preferably, the two blades are disposed symmetrically to the center of the hub.
[0008] The fan of the invention comprises a motor, and an impeller connected to the motor
as specified in Claim 9.
[0009] The air conditioner of the invention is specified in Claim 15.
[0010] In this constitution, since the pitch of the two blades is sufficiently wide, the
blade end vortex of air generated on the negative pressure surface near the outer
circumference of the rotating blade is separated from the blade and flows away, thereby
reducing the effect given to the influent air state of the other blade rotating behind.
As a result, the disturbance of the influent air flow on each blade is decreased.
The influent air getting into each blade is smooth. Therefore, air separation, decline
of speed, and other unstable phenomena in the succeeding blade in rotation are less
likely to occur. Hence, the noise is lower and the static pressure is enhanced in
the blades.
[0011] Further, the impeller having two blades is smaller in volume than the impeller having
three or more blades, so that the manufacturing cost of the impeller is lowered.
Brief Description of the Drawings
[0012]
Fig. 1 is a rotation locus diagram of impeller in a mixed flow fan using an impeller
for fan in an example not covered by the present invention.
Fig. 2 is a plan of the impeller for fan in an example not covered by the present
invention.
Fig. 3 is a development of a blade by cutting off the impeller for fan in an example
not covered by the present invention at a representative square mean radius position,
developing it, and applying a thick blade.
Fig. 4 is a development of a blade by cutting off the impeller for fan in an example
not covered by the present invention at a representative square mean radius position,
developing it, and applying a thin blade having a specific thickness.
Fig. 5 is a schematic diagram showing an operating status of the impeller for fan
in an example not covered by the present invention.
Fig. 6 is a characteristic diagram showing the relation between the aspect ratio b/L
of the impeller for fan in an example not covered by the present invention and the
air flow volume at blowing noise 41 dB.
Fig. 7 is a characteristic diagram comparing the experimental values of static pressure
characteristics, between an impeller having two vanes in the impeller for fan in an
example not covered by the present invention, and an impeller having three blades
of a conventional impeller for fan.
Fig. 8 is a rotation locus diagram of the impeller in the previous example not covered
by the invention by employing the impeller for fan in a further example not covered
by the invention in an axial flow fan.
Fig. 9 is a plan of the impeller using the impeller for fan in a further example not
covered by the invention in an axial flow fan.
Fig. 10 is a sectional view in radial direction of the impeller in embodiment of the
present invention by employing the impeller for fan in the embodiment of the invention
in a mixed flow fan.
Fig. 11 is a diagram showing results of experiment of noise spectrum of impeller for
fan in the embodiment of the present invention.
Fig. 12 is a plan showing the behavior of blade end vortex of impeller in a further
example not covered by the present invention by employing the impeller for fan in
a further example not covered by the invention in a mixed flow fan.
Fig. 13 is a schematic diagram of an air conditioner using the fan having the impeller
of the previous examples or that of the embodiment of the invention.
Fig. 14 is a plan of a conventional impeller for fan.
Fig. 15 is a rotation locus diagram of the conventional impeller for fan.
Reference Numerals
[0013]
- 1, 15, 16, 40
- Impeller
- 2, 14
- Blade
- 2a
- Concave curve shape
- 2b
- Convex curve shape
- 3, 13
- Hub
- 4
- Front edge
- 5
- Rear edge
- 6
- Tip
- 7
- Thick blade
- 8, 8a, 8b
- Negative pressure surface
- 9, 9a
- Pressure surface
- 10
- Thin blade
- 11
- Casing
- 12
- Motor
- 17
- Triangular auxiliary blade
- 33D
- Blade end vortex
- 50
- Air conditioner
- 51
- Indoor unit
- 52
- Outdoor unit
- 53
- Piping
- 54
- Heat exchanger
- 55
- Fan
- 56
- Impeller
- L
- Chord length of blade at representative square mean radius position of blade
- b
- Representative actual length in radial direction of blade
- b/L
- Aspect ratio
Description
[0014] The impeller for fan according to the invention is defined in Claim 1.
[0015] Preferably, the individual blades are mutually disposed symmetrically to the center
of the hub.
[0016] In this constitution, since the pitch of the blades is sufficiently wide, the blade
end vortex of air generated on the negative pressure surface near the outer circumference
of the rotating blade is separated from the blade and flows away, thereby reducing
the effect given to the influent air state of the blade rotating behind. Thus, the
two blades do not have effects of the blade end vortex mutually. As a result, the
disturbance of the influent air flow on each blade is decreased, and a smooth influent
air gets into each blade. Therefore, air separation, decline of speed, and other unstable
phenomena in each blade are less likely to occur.
[0017] Further, the impeller having two blades has a smaller volume than the impeller having
three blades or four blades.
[0018] In the radial section of each blade, the portion from around the representative square
mean radius position of the blade to the position at the outer circumference has a
concave curve shape to the windward side, and the portion from around the representative
square mean radius position of the blade to the position at the hub side has a convex
curve shape to the windward side.
[0019] In this constitution, since the blade has a concave curve shape, the blade itself
becomes a stream-line body in the rotating direction of the blade. Therefore, in the
case of two blades, the blade rotating noise or "nZ" sound becomes lower than the
sound pressure level of the turbulent flow noise. As a result, generation of abnormal
sound in the entire impeller is prevented. Further, actual auditory sense is improved.
[0020] Preferably, one point of triangular auxiliary blade is overlapped on the intersection
of the front edge of the blade and the outer circumference, and one side of the triangular
auxiliary blade is formed in tight contact with the front edge. Thus, the triangular
auxiliary vane is disposed in the blade as the principal blade.
[0021] In this constitution, starting from the leading end of the triangular blade, the
blade end vortex is generated conically on the negative pressure surface of the blade,
and this blade end vortex is separated and flows away in the midst of the blade. The
triangular vane has an action of defining the generation of blade end vortex at its
leading end. Accordingly, the triangular blade defines the state of generation of
the blade end vortex on the negative pressure surface near the outer circumference
of the blade, and the state of the blade end vortex separating from the blade and
flowing away. Therefore the triangular blade has an action of minimizing the effect
of the blade end vortex on the blade rotating behind. Hence, even in the impeller
having two blades sufficiently wide in the pitch between blades, the influent air
state of the blade rotating behind can be kept in the smooth and optimum state having
a further smaller turbulent flow. The succeeding blade is less influenced by the effect
of the blade end vortex, and the influent air into the blade is most smooth, and separation,
decline of speed and other unstable phenomena in the succeeding blades are less likely
to occur.
[0022] Preferably, the fan having such impeller is installed in the outdoor unit of the
air conditioner having a heat exchanger.
[0023] In this constitution, the outdoor unit operates quietly. Further, the manufacturing
cost is low. The design is easier and it is more advantageous.
[0024] Exemples not covered by the present invention are described below while referring
to Figs. 1 to Fig. 9 and Figs. 12 and 13. Embodiments of the invention are described
with reference to Figs. 9 and 10 and those of prior art to Figs. 9 and 10 and those
of prior art to Figs. 14 and 15.
Exemple (not covered by the invention)
[0025] Fig. 1 to Fig. 9 show the impeller for fan of an example not covered by the invention.
Fig. 1 is a rotation locus diagram of impeller used in a mixed flow blower. Fig. 2
is a plan of the impeller for the mixed flow fan. Fig. 3 is a development by cutting
off the impeller for the fan at a representative square mean radius position, and
developing it. In Fig. 3, the blade is a thick blade. Fig. 4 is a development by cutting
off the impeller for the fan at a representative square mean radius position, and
developing it, in which a thin blade of a specific thickness is applied as the blade.
Fig. 5 is a schematic diagram showing an operating status of the impeller used in
the fan. Fig. 6 is a characteristic diagram of characteristic experiment showing the
performance of the impeller for the fan, in which the axis of abscissas denotes the
aspect ratio b/L, and the axis of ordinates represents the air flow volume at blowing
noise 41 dB. Fig. 7 is a characteristic diagram comparing the static pressure characteristics
between an impeller for fan having two blades in this example, and an impeller for
fan having three blades in a prior art. Fig. 8 is a rotation locus diagram of the
impeller for fan when used in an axial flow fan. Fig. 9 is a plan of the impeller
for the axial flow fan.
[0026] In Fig. 1, the impeller 1 used in the mixed flow fan comprises a truncated conical
hub 3, and two blades 2 disposed on the outer circumference of the hub 3. The two
blades 2 mutually have an identical shape, and the blades 2 are installed at mutually
facing positions. That is, the blades 2 are disposed at mutually symmetrical positions
to the center of the hub 3. The blades 2 are defined by the aspect ratio b/L where
L is the chord length of the blade at the representative square mean radius position
of the blade and b is the representative actual length in the radial direction of
the blade. The aspect ratio is equal to 1 or less. That is, the aspect ratio is specified
in a range of b/L≤1. Thus, two blades 2 having the aspect ratio defined in this range
are disposed.
[0027] The constitution is further described below.
[0028] The hub 3 is a trapezoidal body having a circular section. Supposing the minimum
radius of the circular shape of the hub 3 to be r1, and the maximum radius thereof
to be r2, the representative hub radius "r" is defined as r = (r1 + r2)/2.
[0029] Supposing the distance from the center of the hub to the largest leading end of the
blade to be R2 and the distance from the center of the hub to the smallest leading
end of the blade to be "R1", the representative radius "R" of the impeller is defined
as R = (R1 + R2)/2.
[0030] The representative square mean radius "Rr" is defined as Rr = ((R
2 + r
2)/2)
1/2. The length "L" defined above is the chord length of the blade at this position of
representative square mean radius "Rr".
[0031] In Fig. 1, the central line of the impeller 1 is 31C-31C, and the apex of the cone
passing the representative square mean radius "Rr" is "P1". The development by cutting
off the blade 2 along the line 32A-32A of the cone is shown in Fig. 3 and Fig. 4.
The chord length of the blade 2 is "L".
[0032] The line 32A-32A is seen in curve 32A-32A in the plan in Fig. 2. In Fig. 1, the representative
actual length "b" in the radial direction of the blade 2 is the actual length in the
span direction of the blade 2 linking the position of the representative hub radius
"r" and the position of the representative radius "R".
[0033] As shown In Fig. 5, the shaft of the motor 12 is fixed to the hub 3, and they are
accommodated in a proper casing 11. As the impeller 1 is rotated by the motor 12,
a blowing action is generated as indicated by arrow. At this time, the majority of
the air In Fig. 1 flows in from the front edge 4 of the blade 2, and flows out from
the rear edge 5. Thus, the impeller 1 works pneumatically.
[0034] In Fig. 1, the ratio b/L of the chord length L at the representative square mean
radius position of the impeller 1 for the mixed flow fan and the representative actual
length "b" in the radial direction of the blade is the aspect ratio.
[0035] Fig. 6 is a characteristic diagram showing the relation between the aspect ratio
b/L of the impeller having two blades, and the air flow rate at blowing noise 41 dB.
Fig. 6 is based on the data of the experiment of the impeller 1 having a diameter
(⌀) of 415 mm.
[0036] As clear from Fig. 6, when the aspect ratio is in a range of b/L≤1, the air flow
rate at blowing noise 41 dB is saturated. However, at the aspect ratio in a range
of b/L≥1, the air flow rate is decreased suddenly.
[0037] The impeller 1 for mixed flow fan of this exemple has two blades 2 disposed in the
hub 3. The aspect ratio b/L of the chord length "L" of the blade 2 at the representative
square mean radius position of the blade 2 and the representative actual length b
in the radial direction of the blade 2 is set in a range of b/L≤1, and the impeller
1 has two blades having the specified aspect ratio. The chord length of the outer
side of the blade is longer than the chord length of the hub side.
[0038] In this constitution, in the impeller with the vanes having an aspect ratio in a
range of b/L≤1, since the pitch of the blades 2 is sufficiently wide, the blade end
vortex 33D generated on the negative pressure surface 8 near the outer circumference
of each blade 2 (that is, near the tip 6) is separated from the blade 2 and flows
away, thereby reducing the effect given to the influent air state of the vane 2 rotating
behind. Thus, the blades 2 do not have effects of the blade end vortex 33D mutually.
As a result, the disturbance of the influent air flow on each blade 2 is decreased,
and a smooth influent air gets into each blade 2. Therefore, separation, decline of
speed, and other unstable phenomena in the blades 2 are less likely to occur. Hence,
the air flow rate at same noise level of the impeller 1 is improved. The data supporting
it is shown in Fig. 6. Fig. 6 is a characteristic diagram 6 of the impeller 1 for
the mixed flow fan.
[0039] Since the effect of the blade end vortex 33D due to the preceding rotating blade
on the succeeding blade 2 is small, unstable phenomena such as separation and decline
of speed hardly occur in the succeeding blade 2. As a result, the static pressure
characteristic of the impeller 1 is improved. Fig. 7 shows a characteristic curve
of static pressure characteristic comparing two blades and three blades in the axial
flow fan. In Fig. 7, the impeller for axial flow fan with diameter of 415 mm is operated
at a rotating speed of 712 rpm, and the static pressure characteristic is shown at
the opening air flow rate point of 29.5 m
3/min. The opening air flow rate point is the air flow rate when the static pressure
is 0. In the range from the opening air flow rate point to the air flow rate point
Q1, the impeller having two blades shows a stronger static pressure than the impeller
having three blades. In the range from the air flow rate point Q1 to the air flow
rate point Q2, the impeller having two blades and the impeller having three blades
show the same static pressure. In the range from the air flow rate point Q2 to the
closing air flow rate point (where air flow rate is 0), the impeller having three
blades shows a slightly stronger static pressure than the impeller having two blades.
The fan used in the air conditioner is operated, in heating mode, usually in a range
from the opening air flow rate point nearly to the air flow rate point Q2. Only in
the heating operation when frosting on the heat exchanger is extremely promoted, it
is operated in the range from the air flow rate point Q2 to the closing air flow rate
point (air flow rate being 0), and defrosting operation does not take place so often.
Therefore, the performance in the range from the air flow rate point Q2 to the closing
air flow rate point in the fan used in the air conditioner is not so important for
designing of the apparatus. Thus, in the range from the air flow rate point Q2 to
the closing air flow rate point (air flow rate being 0), the performance of the impeller
having three blades showing slightly stronger static pressure than the impeller having
two blades is not important for the fan used in the air conditioner.
[0040] Further, the impeller having two blades is smaller in occupying volume than the impeller
having three blades or four blades. Hence, the manufacturing cost of the impeller
is lower.
[0041] In Fig. 1, the center line of the impeller is line 31C-31C, the apex of the line
32A-32A of the cone passing the representative square mean radius "Rr" is "P1", and
the development of the blade cut off along the line 32A-32A of the cone is shown in
Fig. 3 and Fig. 4. Fig. 3 shows the blade having a thick blade 7. In Fig. 3, the front
edge 4 of the blade 7 in the sectional shape of the blade 7 is an arc, and the rear
edge 5 has a pointed end. The blade 7 has a pressure surface 9 and a negative pressure
surface 8. In Fig. 3, each blade has a circular front edge 4 and a sharp rear edge
5, and the shape from the rear edge to the front edge is gradually increased in thickness.
[0042] Fig. 4 shows the blade having a thin blade 10. In Fig. 4, the blade 10 has a thin
section of a uniform thickness. That is, the shape from the rear edge to the front
edge nearly has a same thickness. The blade 10 has a pressure surface 9a and a negative
pressure surface 8a. The pressure surface 9a is positioned at the windward side, and
the negative pressure surface 8b is positioned at the windward side.
[0043] As an impeller for fan in a further exemple not covered by the invention, an axial
flow fan is explained. A rotation locus diagram of the impeller in the axial flow
fan is shown in Fig. 8, and its plan is given in Fig. 9. In Fig. 8 and Fig. 9, an
impeller 15 has two blades 14. Herein, the position at the representative square mean
radius "Rr" is indicated by line 34B-34B. In this impeller 15 for axial flow fan,
too, the aspect ratio b/L of the chord length "L" of the blade 14 at the representative
square mean radius position of the blade 14 and the representative actual length b
in the radial direction of the blade 14 is set in a range of b/L≤1. Two blades having
the aspect ratio set in the specified range are installed in a hub 13.
[0044] The impeller for the axial flow fan having such constitution has the same action
and effect as the impeller for the mixed flow fan.
Embodiment of the present invention
[0045] Fig. 10 is a sectional view in radial direction of the impeller for mixed flow blower
in an exemplary embodiment of the invention. In Fig. 10, the radial sectional view
along line 35B-35B in Fig. 2 is shown, but the vanes of the impeller of this exemplary
embodiment are different from the blades of the impeller in previous exemple of Figures
1 to 9. Fig. 11 is a diagram showing results of experiment of noise spectrum of impeller
for mixed flow fan in this exemplary embodiment of the invention.
[0046] The impeller of this exemplary embodiment is same as the impeller of the previous
examples not covered by the invention, except that only the shape of the blades is
different. The parts having the same fan and same action and effect as in the previous
examples are identified with same reference numerals, and detailed description is
omitted, and different points are mainly explained.
[0047] The shape from around the line 36A-36A passing the representative square mean radius
"Rr" of the blade 2 to the position at the tip 6 side is a concave curve shape 2a
toward the windward side, and the shape from around the line 36A-36A passing the representative
square mean radius Rr to the position of the hub 3 side is a convex curve shape 2b
toward the windward side. Two blades 2 having such shape are disposed in the hub 3.
These two blades 2 are disposed symmetrically to the center of the hub 3. Each blade
2 has a negative pressure surface 8b and a pressure surface 9b. The impeller 16 has
two blades 2 having such shape. The impeller 16 is used in the mixed flow fan.
[0048] In this constitution, since the shape from around the line 36A-36A passing the representative
square mean radius "Rr" of the blade 2 to the position at the outer peripheral side
is a concave curve shape toward the windward side, the blade 2 itself becomes a stream-line
body in the rotating direction of the impeller 16. Therefore, in the case of two blades,
the rotating noise of the blade 2 or "nZ" sound becomes lower than the sound pressure
level of the turbulent flow noise. As a result, generation of abnormal sound in the
entire impeller 16 is prevented, and further, actual auditory sense is improved. Such
effects are understood from the noise spectrum in Fig. 11.
[0049] Fig. 11 shows the noise spectrum measured when the impeller for mixed flow fan shown
in Fig. 10 is operating at a rotating speed of 720 rpm and the air flow rate is 29.8
m
3/min. The impeller 16 including the blades 2 has a diameter of 415 mm. The blade has
a circular front edge and a pointed rear edge.
[0050] The sound pressure level near 1 kHz is a turbulent flow noise. The 1nZ sound, and
its higher harmonics of 2nZ, 3nZ and 4nZ sound are rotating noise. As compared with
the sound pressure level of turbulent flow noise near 1 kHz, it is clearly known from
Fig. 11 that the sound pressure level is lower in the rotating noise of the blade,
that is, 1nZ sound, and its higher harmonics of 2nZ, 3nZ and 4nZ sound.
[0051] In this exemplary embodiment of the invention the impeller used in the mixed flow
fan is explained, but the same effects are obtained in the impeller used in the axial
flow fan.
Exemplary Embodiment 3
[0052] Fig. 12 is a plan of the impeller for mixed flow fan in a further example not covered
by the present invention. The impeller of this further example is same as the impeller
of the previous example according to Figures 1 to 9, except that only the shape of
the blades is different. The parts having the same fan and same action and effect
as in the said example of Figures 1 to 9 are identified with same reference numerals,
and detailed description is omitted, and different points are mainly explained.
[0053] In Fig. 12, one point of a triangular auxiliary blade 17 is overlapped with the intersection
of the front edge 4 and tip 6 of the blade 2 as the principal blade, and one side
of the triangular auxiliary blade 17 is disposed in tight contact with the front edge
4 of the blade 2. Two blades 2 having such triangular auxiliary blade 17 are disposed
in the hub 3. The blades 2 are disposed symmetrically to the center of the hub 3.
Thus, an impeller 40 for mixed flow fan is composed.
[0054] In this constitution, starting from the leading end of the triangular auxiliary blade
17, the vane end vortex 33D is generated conically on the negative pressure surface
of the blade 2, and this blade end vortex 33D is separated and flows away in the midst
of the blade. The leading end of the triangular auxiliary blade 17 has an action of
defining the generation of blade end vortex 33D. Accordingly, it defines the basic
points of the state of generation of the blade end vortex 33D on the negative pressure
surface near the tip 6 of the blade 2, and the state thereof separating from the blade
2 and flowing away. Therefore it minimizes the effect of the blade end vortex 33D
on the vane 2 rotating behind. Hence, even in the case of vanes with the aspect ratio
in a range of b/L≤1 and having two blades sufficiently wide in the pitch between vanes,
the influent air state of the blade 2 rotating behind can be kept in the smooth and
optimum state having a further smaller turbulent flow. Relatively, the succeeding
blade 2 is less influenced by the effect of the blade end vortex 33D, and the influent
air into the blade is most smooth, and separation of air, decline of speed and other
unstable phenomena in the blades 2 are less likely to occur. As a result, the blade
noise is further suppressed and the static pressure is further enhanced.
[0055] In this example, the impeller used in the mixed flow fan is explained, but the same
effects are obtained in the impeller used in the axial flow fan.
[0056] An air conditioner is shown in Fig. 13. In Fig. 13, an air conditioner 50 comprises
an indoor unit 51 installed indoors, an outdoor unit 52 installed outdoors, and a
circulation piping 53 installed between the indoor unit 51 and outdoor unit 52. The
indoor unit 51, outdoor unit 52, and circulation piping 53 compose a refrigeration
cycle of refrigerant.
[0057] The outdoor unit 52 includes a heat exchanger 54 and a fan 55. The fan 55 has an
impeller 56. As the impeller 56, the impeller 1, impeller 15 or impeller 40 explained
in the examples of Figures 1 to 9, 12 and 13 or that of the invention of Figures 9
and 10 are used. The fan 55 has a blowing action for heat exchange of the heat exchanger
54.
[0058] That is, the fan 55 sends wind into the heat exchanger 54. The fan 55 has a function
of moving the near around the heat exchanger 54 by force.
[0059] In the air conditioner 50, the noise generated from the fan 55 is extremely lower
than in the air conditioner using the conventional fan. Further, the blowing performance
and heat exchange performance are enhanced. Moreover, the manufacturing cost is lower.
[0060] Specifically, the two blades are mutually free from effects of blade end vortex of
the other blade, and the influent air coming into each blade is less turbulent and
more smooth, and separation at blade, decline of speed and other unstable phenomena
are less likely to occur. As a result, the noise generated by the blade is extremely
small. The static pressure is improved. The volume occupied by the impeller is decreased,
and the manufacturing cost is saved.
[0061] Moreover, the blade rotating noise of "nZ" sound and its higher harmonics are lower
than the sound pressure level of turbulent flow noise, and generation of abnormal
noise is prevented in the entire impeller. Further, the actual sensory feel is satisfactory.
[0062] Further, if the blade has a triangular auxiliary blade, these effects are much more
enhanced.
[0063] In the constitution of the air conditioner of the invention, the noise released from
the outdoor unit is much lower than in the conventional air conditioner. The blowing
performance and heat exchange performance of the air conditioner are improved. In
addition, a more inexpensive air conditioner is obtained.
1. An impeller for fan comprising:
a hub (3), and two blades (2) disposed in said hub, wherein said hub is a trapezoidal
body having a circular section, characterized in that supposing the minimum radius of the circular shape of said hub to be "r1", and the
maximum radius thereof to be "r2", a representative hub radius "r" is defined as "r=(r1+r2)/2",
further supposing the distance from the centre of said hub to the largest leading
end of said blade to be "R2" and the distance from the centre of said hub to the smallest
leading end of said blade to be "R1", a representative radius "R" of the impeller
being defined as "R=(R1+R2)/2",
a representative square mean radius "Rr" is defined as "Rr= ((R2+ r2) /2) ½", and
the "L" is the chord length of the blade at this position of representative square
mean radius "Rr", and the "b" is the actual length in the radial, span direction of
said blade linking the position of the representative hub radius "r" and the position
of the representative radius "R", and
an aspect ratio (b/L) of each blade has a shape in a range of "b/L ≤ 1"
in the radial section of each blade, the portion from around the representative square
mean radius position of the blade to the position at a tip side of the outer circumference
has a concave (2a) curve shaped streamline to the windward side, and the portion from
around the representative square mean radius position of the blade to the position
at the hub side has a convex (2b) curve shape to the windward side, and
said blades are mutually disposed such that the pitch between said each blade is sufficiently
wide to avoid influence of said blade end vortex (33D).
2. The impeller for fan of claim 1,
wherein the chord length of the outer circumference side of each blade is longer than
the chord length of the hub side.
3. The impeller for fan of any one of claims 1 or 2,
wherein said blades are disposed symmetrically to the centre of the hub with respect
to each other.
4. The impeller for fan of any one of claims 1 or 2,
wherein each blade has a circular front edge (4) and a sharp rear edge (5), and
the shape from the rear edge to the front edge is gradually increased in thickness.
5. The impeller for fan of any one of claims 1 or 2,
wherein each blade has a circular front edge (4) and a sharp rear edge (5), and
the shape from the rear edge to the front edge is nearly same in thickness.
6. The impeller for fan of any one of claims 1or 2,
wherein said blades rotate to admit air from the front edge (4) of the each blade
and discharge from the rear edge (5), and
a blade end vortex (33D) generated on the negative pressure surface (8, 8a, 8b) of
the each blade is separated from the blade and flows away.
7. The impeller for fan of any one of claims 1or 2, being used in an outdoor unit of
an air conditioner.
8. A fan comprising:
a motor (12), and
an impeller (16 ) connected to said motor, said impeller being as specified in any
of claims 1 to 7.
9. The fan of claim 8,
wherein the chord length of the outer circumference side of each blade is longer than
the chord length of the hub side.
10. The fan of any one of claims 8 or 9,
wherein said impeller has a mixed flow fan.
11. The fan of any one of claims 9 or 10,
wherein said impeller has an axial flow fan.
12. The fan of any one of claims 9 or 10, being used in an outdoor unit of an air conditioner.
13. An air conditioner comprising:
an indoor unit (51),
an outdoor unit (52), and
a piping (53) installed between said indoor unit and outdoor unit,
(a) said outdoor unit having a heat exchanger (54) and a fan (55),
(b) said fan being a fan according to anyone of claims 8 to 12.
1. Laufrad für Gebläse mit
einer Nabe (3) und zwei an der Nabe angeordneten Flügeln (2), worin die Nabe ein trapezförmiger
Körper mit kreisförmigem Querschnitt ist,
dadurch gekennzeichnet, dass
unter der Annahme, dass der kleinste Radius der Kreisgestalt der Nabe "r1" und ihr
grösster Radius "r2" sei, ein repräsentativer Nabenradius "r" als "r = (r1 + r2)/2)
definiert ist,
unter der weiteren Annahme, dass die Entfernung zwischen der Mitte der Nabe und dem
breitesten Vorderende des Flügels "R2" und die Entfernung zwischen der Mitte der Nabe
und dem engsten Vorderende des Flügels "R1" sei, ein repräsentativer Radius "R" des
Laufrads als "R = (R1 + R2)/2 definiert ist,
ein repräsentativer quadratischer Mittelwert des Radius "Rr" als"Rr = ((r2 + r2)/2)½" definiert ist und
"L" die Sehnenlänge des Flügels an diesem Ort des repräsentativen quadratischen Mittelwerts
des Radius "Rr" ist und "b" die tatsächliche Länge des Flügels in der radialen Spannrichtung
ist, die den Ort des repräsentativen Nabenradius "r" und den Ort des repräsentativen
Radius "R" verbindet,
ein Seitenverhältnis (b/L) jedes Flügels eine Gestalt in einem Bereich von "b/L ≤
1" besitzt
im radialen Querschnitt jedes Flügels der Abschnitt von ungefähr dem Ort des repräsentativen
quadratischen Mittelwerts des Radius des Flügels bis zum Ort an der Seite einer Spitze
am Aussenumfang zur Windseite hin eine konkave (2a) Stromliniengestalt besitzt und
der Abschnitt von ungefähr dem Ort des repräsentativen quadratischen Mittelwerts des
Radius des Flügels bis zum Ort an der Seite der Nabe zur Windseite hin eine konvexe
(2b) Kurvengestalt hat, und
die Flügel zueinander so angeordnet sind, dass der Abstand zwischen allen Flügeln
genügend gross ist, um einen Einfluss des Wirbels (33D) am Flügelende zu vermeiden.
2. Laufrad für Gebläse nach Anspruch 1,
dadurch gekennzeichnet, dass die Sehnenlänge an der Seite des Aussenumfangs jedes Flügels grösser als die Sehnenlänge
an der Seite der Nabe ist.
3. Laufrad für Gebläse nach einem der Ansprüche 1 oder 2,
dadurch gekennzeichnet, dass die Flügel zur Nabenmitte hin symmetrisch zueinander angeordnet sind.
4. Laufrad für Gebläse nach einem der Ansprüche 1 oder 2,
dadurch gekennzeichnet, dass jeder Flügel eine kreisförmige Vorderkante (4) und eine scharfe Hinterkante (5) besitzt
und
die Gestalt von der Hinterkante zur Vorderkante allmählich in ihrer Dicke zunimmt.
5. Laufrad für Gebläse nach einem der Ansprüche 1 oder 2,
dadurch gekennzeichnet, dass jeder Flügel eine kreisförmige Vorderkante (4) und eine scharfe Hinterkante (5) besitzt
und
die Gestalt von der Hinterkante zur Vorderkante in ihrer Dicke nahezu gleich ist.
6. Laufrad für Gebläse nach einem der Ansprüche 1 oder 2,
dadurch gekennzeichnet, dass sich die Flügel drehen, um Luft von der Vorderkante (4) jedes Flügels anzusaugen
und von der Hinterkante (5) auszustossen, und
ein auf der Unterdruckseite (8, 8a, 8b) jedes Flügels am Flügelende erzeugter Wirbel
(33D) vom Flügel getrennt wird und wegströmt.
7. Laufrad für Gebläse nach einem der Ansprüche 1 oder 2, der in einer Ausseneinheit
einer Klimaanlage verwendet wird.
8. Gebläse mit
einem Motor (12) und
einem an den Motor angeschlossenen Laufrad, wobei das Laufrad wie in einem der Ansprüche
1 bis 7 vorgegeben ist.
9. Gebläse nach Anspruch 8,
dadurch gekennzeichnet, dass die Sehnenlänge an der Seite des Aussenumfangs jedes Flügels grösser als die Sehnenlänge
an der Seite der Nabe ist.
10. Gebläse nach einem der Ansprüche 8 oder 9,
dadurch gekennzeichnet, dass das Laufrad ein Diagonalgebläse hat.
11. Gebläse nach einem der Ansprüche 9 oder 10,
dadurch gekennzeichnet, dass das Laufrad ein Axialgebläse hat.
12. Gebläse nach einem der Ansprüche 9 oder 10, das in einer Ausseneinheit einer Klimaanlage
verwendet wird.
13. Klimaanlage mit
einer Inneneinheit (51),
einer Ausseneinheit (52) und
zwischen der Inneneinheit und der Ausseneinheit installierten Rohrleitungen (53),
wobei
(a) die Ausseneinheit einen Wärmetauscher (54) und ein Gebläse (55) besitzt,
(b) das Gebläse ein Gebläse nach einem der Ansprüche 8 bis 12 ist.
1. Roue de ventilateur comprenant :
un moyeu (3) et deux aubes (2) disposées dans ledit moyeu,
dans laquelle ledit moyeu est un corps trapézoïdal possédant une section circulaire,
caractérisée en ce que en supposant que le rayon minimum de la forme circulaire dudit moyeu soit « r1 »,
et le rayon maximum de celle-ci soit « r2 », un rayon de moyeu représentatif « r »
est défini comme « r=(r1+r2)/2 »,
en supposant en outre que la distance depuis le centre dudit moyeu jusqu'à l'extrémité
avant la plus large de ladite aube soit « R2 » et la distance depuis le centre dudit
moyeu jusqu'à l'extrémité avant la plus petite de ladite aube soit « R1 », un rayon
représentatif « R » de la roue est défini comme « R=(R1+R2)/2 »,
un rayon moyen carré représentatif « Rr » est défini comme « Rr= ((R2 +r2)/2)1/2 », et
« L » est la longueur de la corde de l'aube au niveau de cette position du rayon moyen
carré représentatif « Rr », et « b » est la longueur réelle dans la direction de la
longueur radiale de ladite aube reliant la position du rayon de moyeu représentatif
« r » et la position du rayon représentatif « R »,
un rapport de longueur (b/L) de chaque aube présente une forme dans une plage de «
b/L ≤ 1 »
dans la section radiale de chaque aube, la partie située entre le pourtour de la position
du rayon moyen carré représentatif de l'aube et la position au niveau d'un côté en
pointe de la circonférence externe présente une courbe concave (2a) de forme aérodynamique
sur le côté au vent, et la partie située entre le pourtour de la position du rayon
moyen carré représentatif de l'aube et la position au niveau du côté de moyeu possède
une forme de courbe convexe (2b) du côté au vent, et
lesdites aubes sont mutuellement disposées de telle sorte que le pas entre chaque
aube est suffisamment large pour éviter une influence d'un vortex (33D) à l'extrémité
de ladite aube.
2. Roue de ventilateur selon la revendication 1,
dans laquelle la longueur de la corde du côté de la circonférence externe de chaque
aube est plus longue que la longueur de la corde du côté du moyeu.
3. Roue de ventilateur selon l'une quelconque des revendication 1 ou 2,
dans laquelle lesdites aubes sont disposées symétriquement au centre du moyeu les
unes par rapport aux autres.
4. Roue de ventilateur selon l'une quelconque des revendications 1 ou 2,
dans laquelle chaque aube possède une arête avant circulaire (4) et une arête arrière
vive (5), et
la forme entre l'arête arrière et l'arête avant augmente progressivement en épaisseur.
5. Roue de ventilateur selon l'une quelconque des revendications 1 ou 2,
dans laquelle chaque aube possède une arête avant circulaire (4) et une arête arrière
vive (5), et
la forme entre l'arête arrière et l'arête avant est pratiquement la même en épaisseur.
6. Roue de ventilateur selon l'une quelconque des revendications 1 ou 2,
dans laquelle lesdites aubes tournent pour laisser passer l'air depuis l'arête avant
(4) de chaque aube et l'évacuer depuis l'arête arrière (5), et
un vortex d'extrémité d'aube (33D) généré sur la surface de dépression (8, 8a, 8b)
de chaque aube est séparé de l'aube et circule plus loin.
7. Roue de ventilateur selon l'une quelconque des revendications 1 ou 2, étant utilisée
dans une unité extérieure d'un système de climatisation.
8. Ventilateur comprenant :
un moteur (12), et
une roue connectée audit moteur, ladite roue étant définie dans l'une quelconque des
revendications 1 à 7.
9. Ventilateur selon la revendication 8,
dans lequel la longueur de la corde du côté de circonférence externe de chaque aube
est plus longue que la longueur de la corde du côté du moyeu.
10. Ventilateur selon l'une quelconque des revendications 8 ou 9,
dans lequel ladite roue possède un ventilateur à flux mixte.
11. Ventilateur selon l'une quelconque des revendications 9 ou 10,
dans lequel ladite roue possède un ventilateur à flux axial.
12. Ventilateur selon l'une quelconque des revendications 9 ou 10, étant utilisé dans
une unité extérieure d'un système de climatisation.
13. Système de climatisation comprenant :
une unité intérieure (51),
une unité extérieure (52), et
une canalisation (53) installée entre ladite unité intérieure et ladite unité extérieure,
(a) ladite unité extérieure possédant un échangeur thermique (54) et un ventilateur
(55),
(b) ledit ventilateur étant un ventilateur selon l'une quelconque des revendications
8 à 12.