[0001] Gemäß einem ersten Aspekt betrifft die Erfindung eine Preßvorrichtung wie beispielsweise
eine Preßvorrichtung mit mehreren eine Kammer bildenden Walzen, und insbesondere eine
einheitliche Membran zur Verwendung insbesondere in einer solchen Preßvorrichtung,
sowie ein Verfahren zur Herstellung einer entsprechenden Membran.
[0002] Es sind seit vielen Jahren Versuche unternommen worden, äußeren Luftdruck dafür zu
verwenden, Wasser aus einer Papierbahn herauszudrücken. Statt ein Blatt an einem Preßspalt
bis zu dem Punkt zu komprimieren, an dem Hydraulikdruck Wasser heraustreibt, wie es
beim normalen Naßpressen der Fall ist, wurde überlegt, daß mehr Wasser entfernt und
Blattvolumen aufrechterhalten werden könnte, wenn Luftdruck aufgebracht werden könnte,
um die durch den Walzenspalt erzeugten Hydraulikdrücke zu unterstützen. Ein derartiger
Versuch umfaßt, daß eine Mehrwalzenstruktur bereitgestellt wird, die eine geschlossene
Kammer bildet, wobei Luft durch die Kammer hindurch zirkulieren gelassen wird, um
Feuchtigkeit aus der Papierbahn herauszutransportieren.
[0003] Die Bereitstellung einer wirksamen Abdichtung einer Mehrwalzenkammer kann problematisch
sein. Es ist bekannt, eine Walzenanordnung zu bilden, bei der Gummiwalzen derart angeordnet
sind, daß sie mit Walzen mit fester Oberfläche in Wechselwirkung stehen. Es ist beim
Versuch, eine derartige Kammer abzudichten, ein mögliches Problem, daß eine beträchtliche
Last auf der Walzenstruktur erforderlich sein kann, um die Abdichtung zwischen den
Walzen aufrechtzuerhalten. Demgemäß ist ein robuster Rahmen erforderlich, um die Walzenstruktur
zu begrenzen. Es ist beim Versuch, eine derartige Kammer abzudichten, ein weiteres
mögliches Problem, daß jegliche Einschnitte in der Gummioberfläche leicht dazu führen
würden, daß die gesamte Walze unbrauchbar wird.
[0004] Es ist auch festgestellt worden, daß herkömmliche Naßpreßverfahren dadurch sehr uneffizient
sind, daß nur ein kleiner Teil eines Walzenumfangs zur Verarbeitung der Papierbahn
verwendet wird. Um diese Beschränkung zu überwinden, sind einige Versuche unternommen
worden, ein festes, undurchlässiges Band derart anzupassen, daß ein ausgedehnter Spalt
zum Pressen der Papierbahn gebildet und somit die Papierbahn entwässert wird. Ein
Problem bei einem derartigen Ansatz ist jedoch, daß das undurchlässige Band die Strömung
eines Trocknungsfluids, wie Luft, durch die Papierbahn hindurch verhindert.
[0005] Dementsprechend besteht ein Bedarf nach einem verbesserten Gewebe, das eine verbesserte
Entwässerung einer kontinuierlichen Bahn ermöglicht und eine wirksame Abdichtung einer
Kammer an den Walzenspalten bereitstellt.
[0006] Die den ersten Aspekt betreffende erfindungsgemäße Lösung bringt eine verbesserte
Entwässerung einer kontinuierlichen Bahn, wie beispielsweise Papier, mit sich und
ermöglicht eine wirksame Abdichtung einer Kammer an den Walzenspalten in einer Preßvorrichtung.
[0007] So schafft die Erfindung gemäß dem ersten Aspekt eine einheitliche Membran zur Verwendung
in einer Preßvorrichtung. Die Preßvorrichtung umfaßt zwei sich in Längsrichtung erstreckende
Randabschnitte und einen semipermeablen Abschnitt mit einer Vielzahl von miteinander
in Verbindung stehenden Poren. Der semipermeable Abschnitt ist zwischen dem Paar sich
in Längsrichtung erstreckenden Randabschnitten angeordnet. Die einheitliche Membran
umfaßt ein Formgewebe und weist eine Dicke von weniger als ungefähr 2,54 mm (0,1 Zoll)
auf. Der semipermeable Abschnitt weist eine Permeabilität von größer als Null und
kleiner als ungefähr 0,025 m/s (fünf CFM pro Quadratfuß) auf, wie durch das TAPPI-Testverfahren
TIP 0404-20 gemessen (vgl. insbesondere Anspruch 1).
[0008] Bei manchen der insbesondere in den Unteransprüchen 2 bis 9 angegebenen Ausführungsformen
ist das Paar sich in Längsrichtung erstreckender Randabschnitte derart verjüngt, daß
ein Querschnitt der einheitlichen Membran eine Trapezform aufweist. Ebenso sind die
beiden sich in Längsrichtung erstreckenden Randabschnitte vorzugsweise undurchlässig.
[0009] Die Erfindung gemäß dem ersten Aspekt schafft ferner ein Verfahren zum Herstellen
der einheitlichen Membran und umfaßt die Schritte, daß ein Trägergewebe bereitgestellt
wird, das sehr permeabel ist, und daß viele miteinander in Verbindung stehende Poren
in dem Trägergewebe gebildet werden (vgl. insbesondere Anspruch 10).
[0010] Es ist ein Vorteil der vorliegenden Erfindung, wenn diese in einer Preßvorrichtung
mit einer unter Druck gesetzten Kammer eingesetzt wird, die aus mehreren Walzen gebildet
ist, daß sie eine vorbestimmte Fluidströmung durch eine kontinuierliche Bahn, wie
beispielsweise eine Papierbahn, hindurch sowie eine mechanische Druckkraft auf diese
bewirken kann, um eine verbesserte Entwässerung der kontinuierlichen Bahn zu fördern.
[0011] Es ist ein weiterer Vorteil der Erfindung, wenn diese in einer Preßvorrichtung verwendet
wird, daß die Erfindung die Abdichtung einer unter Druck gesetzten Kammer, die aus
mehreren Walzen gebildet ist, an zwei oder mehr Walzenspalten unterstützt.
[0012] Vorteilhafte Ausgestaltungen des gemäß diesem ersten Aspekt der Erfindung vorgeschlagenen
Verfahrens sind in den Unteransprüchen 11 bis 19 angegeben.
[0013] Gemäß einem zweiten Aspekt der Erfindung wird ein Verfahren zur Entwässerung einer
Faserstoffbahn, insbesondere einer Papier- oder Kartonbahn, bereitgestellt, bei dem
die Faserstoffbahn durch eine Entwässerungszone geführt wird, in der sie zumindest
teilweise durch eine Beaufschlagung mit unter Druck stehendem Verdrängungsfluid, insbesondere
Verdrängungsgas, entwässert wird, wobei die Faserstoffbahn zusammen mit einer porösen
Membran durch die Entwässerungszone geführt und durch die Membran hindurch mit dem
Verdrängungsfluid beaufschlagt wird (vgl. Anspruch 20).
[0014] In den Unteransprüchen 21 bis 24 sind vorteilhafte Ausgestaltungen des Verfahrens
gemäß diesem zweiten Aspekt der Erfindung angegeben.
[0015] So kann als Membran insbesondere eine aus Folienmaterial mit Durchgangslöchern bestehende
Membran verwendet werden.
[0016] Der Druck des die Membran beaufschlagenden Verdrängungsfluids ist insbesondere größer
als der Umgebungsdruck.
[0017] Beim Verfahren gemäß diesem zweiten Aspekt der Erfindung kann insbesondere auch wieder
eine Membran verwendet werden, wie sie im Zusammenhang mit dem ersten Aspekt der Erfindung
beschrieben wurde.
[0018] Die Membran kann insbesondere mit zusammenhängenden Poren versehen sein.
[0019] Gemäß einem dritten Aspekt betrifft die Erfindung ein Verfahren zur Entwässerung
einer Faserstoffbahn, insbesondere einer Papier- oder Kartonbahn, bei dem die Faserstoffbahn
durch eine Entwässerungszone geführt wird, in der sie zumindest teilweise durch eine
Beaufschlagung mit unter Druck stehendem Verdrängungsfluid, insbesondere Verdrängungsgas,
entwässert wird (vgl. den Oberbegriff des Anspruchs 25). Sie betrifft gemäß diesem
dritten Aspekt ferner eine Vorrichtung gemäß dem Oberbegriff des Anspruchs 34.
[0020] Wasser kann durch die Anwendung eines Fluid- bzw. Gasdifferenzdrucks aus einer Papierbahn
entfernt werden. Dieses Verfahren wird Verdrängungsentwässerung genannt. Hierbei wird
das sich in den Poren zwischen den Fasern befindende Wasser aus dem Papiervlies herausgeblasen.
Im Vergleich zum konventionellen Naßpressen in einem einfach oder doppelt befilzten
Walzenspalt hat das fertige Papier ein höheres spezifisches Volumen bei gleichem Trockengehalt
wie nach der mechanischen Entwässerung. Mit Hilfe des Verdrängungsentwässerungsprozesses
können auch andere wichtige Eigenschaften der fertigen Faserstoffbahn wie Biegesteifigkeit,
Porosität und Opazität positiv beeinflußt werden (J.D. Lindsay: "Displacement dewatering
to maintain bulk", Paperi ja Puu Vol. 74/No. 3/1992). Es wurde auch bereits eine entsprechende
apparative Anordnung für den Verdrängungsentwässerungsprozeß vorgeschlagen (W. Kawka
u. E. Szwarcztajn: "Some results of investigations on the equipment for intensive
dewatering and drying of porous papers, EUCEPA-79 International Conference, London,
paper 31, S. 153).
[0021] Wird auf der Seite des Fluid- bzw. Gasdruckes eine Membran über das Papier gebracht,
so erfolgt aufgrund des Druckabfalls in der Membran eine Kompression des Papiers.
Wasser wird aus den Fasern in die Poren zwischen den Fasern gepreßt. Dieses Wasser
wird durch den Fluid- bzw. Gasdifferenzdruck aus den Poren herausgeblasen. Bei der
Verwendung einer Membran erhält man erfahrungsgemäß einen höheren Trockengehalt (Kari
Räisänen: "High-Vacuum dewatering on a paper machine wire section - a literature review",
Paperi ja Puu, Vo. 78, Nr. 3, 1996).
[0022] Das Ausmaß dieser Kompression hängt von dem Verhältnis der Permeabilität der Membran
und des Faservlieses ab. Mit einer gezielten Kompression können Trockengehalt und
spezifisches Volumen der fertigen Faserstoffbahn eingestellt werden. Die Kompression
des Faservlieses läßt sich in der Verdrängungsentwässerungsanlage in der Praxis aber
nur schwer steuern, da sich die Membranpermeabilität im Betrieb der Produktionsanlage
nur schwer ändern läßt. Somit ergibt sich bei im übrigen gleichen Prozeßbedingungen
bei einem bestimmten Fluid- bzw. Gasdruck ein bestimmter Trockengehalt und ein bestimmtes
spezifisches Volumen.
[0023] Gemäß dem dritten Aspekt ist es Ziel der Erfindung, ein Verfahren sowie eine Vorrichtung
der zuvor genannten Art zu schaffen, mit denen das Ergebnis des Verdrängungsentwässerungsprozesses
in bezug auf den erreichten Trockengehalt und papiertechnische Eigenschaften der fertigen
Faserstoffbahn wie insbesondere spezifisches Volumen, Porosität, Oberflächenrauhigkeit
und/oder dergleichen gezielt steuerbar ist.
[0024] Bezüglich des Verfahrens wird diese Aufgabe gemäß dem dritten Aspekt der Erfindung
dadurch gelöst, daß die Entwässerungszone in mehrere Sektionen unterteilt wird, in
denen der angelegte Fluid- bzw. Gasdruck individuell einstellbar ist (vgl. Anspruch
25). Dabei wird die Faserstoffbahn vorzugsweise zusammen mit einer Membran durch die
Entwässerungszone geführt und durch diese Membran hindurch mit dem Verdrängungsfluid
bzw. -gas beaufschlagt.
[0025] Aufgrund dieser Ausbildung sind das Ausmaß der Blattkompression und die Höhe des
angelegten Fluid- bzw. Gasdruckes getrennt steuerbar. Der Entwässerungsprozeß kann
somit direkt während des Betriebs eingestellt bzw. optimiert werden.
[0026] In den Unteransprüchen 26 bis 33 sind vorteilhafte Ausgestaltungen des Verfahrens
gemäß dem dritten Aspekt der Erfindung angegeben.
[0027] So wird bei einer zweckmäßigen praktischen Ausführungsform die Entwässerungszone
in mehrere in Bahnlaufrichtung hintereinander liegende Sektionen unterteilt, in denen
der angelegte Fluid- bzw. Gasdruck individuell einstellbar ist.
[0028] Vorzugsweise wird die von einer Seite her mit Verdrängungsfluid bzw. -gas beaufschlagte
Faserstoffbahn zusammen mit wenigstens einem Sieb- oder Filzband durch die Entwässerungszone
geführt, das auf der anderen Bahnseite angeordnet ist.
[0029] Insbesondere in dem Fall, daß die Anfangsentwässerung schonend bei einem niedrigen
Fluid- bzw. Gasdruck erfolgen soll, wird zweckmäßigerweise in einer in Bahnlaufrichtung
betrachtet vorderen Sektion der Entwässerungszone ein geringerer Fluid- bzw. Gasdruck
angelegt als in einer in Bahnlaufrichtung betrachtet weiter hinten liegenden Sektion.
[0030] Wird beispielsweise ein hoher Endtrockengehalt gefordert, so wird vorteilhafterweise
in wenigstens einer in Bahnlaufrichtung betrachtet weiter hinten liegenden Sektion
der Entwässerungszone ein höherer Fluid- bzw. Gasdruck angelegt als in einer in Bahnlaufrichtung
betrachtet vorderen Sektion.
[0031] Dagegen kann zur Erzielung eines relativ hohen Volumens der fertigen Faserstoffbahn
in wenigstens einer in Bahnlaufrichtung betrachtet weiter hinten liegenden Sektion
der Entwässerungszone ein entsprechender niedriger Fluid- bzw. Gasdruck angelegt werden.
[0032] Beim Verfahren gemäß diesem dritten Aspekt der Erfindung kann insbesondere auch wieder
eine Membran verwendet werden, wie sie im Zusammenhang mit dem ersten Aspekt der Erfindung
beschrieben wurde und insbesondere in den Ansprüchen 1 bis 19 angegeben ist.
[0033] Bei der Vorrichtung gemäß dem dritten Aspekt der Erfindung wird die Aufgabe entsprechend
dadurch gelöst, daß die Entwässerungszone in mehrere Sektionen unterteilt ist, in
denen der angelegte Fluid- bzw. Gasdruck individuell einstellbar ist (vgl. Anspruch
34).
[0034] In den Unteransprüchen 35 bis 42 sind vorteilhafte Ausführungsformen der Vorrichtung
gemäß dem dritten Aspekt der Erfindung angegeben.
[0035] Bei der Vorrichtung gemäß diesem dritten Aspekt kann insbesondere auch wieder eine
Membran vorgesehen sein, wie sie im Zusammenhang mit dem ersten Aspekt der Erfindung
beschrieben wurde uns insbesondere in den Ansprüchen 1 bis 19 angegeben ist.
[0036] Gemäß einem vierten Aspekt betrifft die Erfindung ein Verfahren zur Entwässerung
einer Faserstoffbahn, insbesondere einer Papier- oder Kartonbahn, bei dem die Faserstoffbahn
durch eine Verdrängungsentwässerungszone geführt wird, in der sie zumindest teilweise
durch eine Beaufschlagung mit Verdrängungsfluid, insbesondere Verdrängungsgas, entwässert
wird (vgl. den Oberbegriff des Anspruchs 43). Sie betrifft gemäß diesem vierten Aspekt
ferner eine Vorrichtung gemäß dem Oberbegriff des Anspruchs 49.
[0037] Dieser vierte Aspekt der Erfindung befaßt sich zumindest im wesentlichen wieder mit
der zuvor bereits im Zusammenhang mit dem dritten Aspekt der Erfindung erläuterten
Problematik.
[0038] Auch gemäß diesem vierten Aspekt de Erfindung ist es daher wieder Ziel der Erfindung,
ein Verfahren sowie eine Vorrichtung der zuvor genannten Art zu schaffen, mit denen
das Ergebnis des Verdrängungsentwässerungsprozesses in bezug auf den endgültigen Trockengehalt
und papiertechnische Eigenschaften der fertigen Faserstoffbahn wie insbesondere spezifisches
Volumen, Porosität, Oberflächenrauhigkeit und/oder dergleichen gezielt steuerbar ist.
[0039] Bezüglich des Verfahrens wird diese Aufgabe gemäß dem vierten Aspekt der Erfindung
dadurch gelöst, daß die Faserstoffbahn überdies durch eine der Verdrängungsentwässerungszone
vorgeschaltete Presse geführt wird (vgl. Anspruch 43).
[0040] Aufgrund dieser Ausbildung sind das Ausmaß der Blattkompression und die Höhe des
angelegten Fluid- bzw. Gasdruckes getrennt steuerbar. Durch die der Verdrängungsentwässerungszone
vorgeschaltete Presse kann das Faservlies auf das gewünschte Maß vorkompaktiert werden.
Hierdurch kann insbesondere die Permeabilität des Faservlieses in der gewünschten
Weise eingestellt werden. Durch die Entkopplung von Entwässerungs- und Kompaktierungsprozeß
können somit die Eigenschaften der fertigen Faserstoffbahn bzw. des fertigen Papiers
gezielt eingestellt werden.
[0041] Wird das Vlies stark vorkompaktiert, so kann entsprechend mehr Wasser aus dem Vlies
entfernt werden. Dies ist insbesondere bei solchen Papiersorten erforderlich, bei
denen in erster Linie ein hoher Entwässerungsgehalt nach der Presse gefordert wird.
[0042] In den Unteransprüchen 44 und 48 sind vorteilhafte Ausgestaltungen des Verfahrens
gemäß dem vierten Aspekt der Erfindung angegeben.
[0043] So kann als vorgeschaltete Presse eine Schuhpresse oder auch eine Walzenpresse verwendet
werden.
[0044] Die Faserstoffbahn kann insbesondere wieder zusammen mit einer porösen Membran durch
die Verdrängungsentwässerungszone geführt und durch die Membran hindurch mit dem Verdrängungsfluid
bzw. -gas beaufschlagt werden.
[0045] Beim Verfahren gemäß diesem vierten Aspekt der Erfindung kann insbesondere auch wieder
eine Membran verwendet werden, wie sie im Zusammenhang mit dem ersten Aspekt der Erfindung
beschrieben wurde und insbesondere in den Ansprüchen 1 bis 19 angegeben ist.
[0046] Bei der Vorrichtung gemäß dem vierten Aspekt der Erfindung wird die Aufgabe entsprechend
dadurch gelöst, daß der Verdrängungsentwässerungszone eine insbesondere mechanische
Presse vorgeschaltet ist und daß die Faserstoffbahn zunächst durch die vorgeschaltete
Presse und daraufhin durch die Verdrängungsentwässerungszone geführt ist (vgl. Anspruch
49).
[0047] Grundsätzlich kann auch eine nachgeschaltete mechanische Presse vorgesehen sein.
[0048] Vorteilhafte Weiterbildungen der Vorrichtung gemäß dem vierten Aspekt der Erfindung
sind in den Unteransprüchen 50 bis 54 angegeben.
[0049] So kann als vorgeschaltete Presse insbesondere wieder eine Schuhpresse oder eine
Walzenpresse vorgesehen sein.
[0050] Die Faserstoffbahn kann insbesondere auch wieder zusammen mit einer porösen Membran
durch die Verdrängungsentwässerungszone geführt und durch die Membran hindurch mit
dem Verdrängungsfluid bzw. -gas beaufschlagbar sein.
[0051] Bei der Vorrichtung gemäß diesem vierten Aspekt kann insbesondere auch wieder eine
Membran vorgesehen sein, wie sie im Zusammenhang mit dem ersten Aspekt der Erfindung
beschrieben wurde uns insbesondere in den Ansprüchen 1 bis 19 angegeben ist.
[0052] Die Erfindung wird im folgenden anhand von Ausführungsbeispielen unter Bezugnahme
auf die Zeichnungen näher erläutert. Dabei betreffen die Figuren 1 bis 9 insbesondere
den ersten, sämtliche Figuren 1 bis 13 insbesondere auch den zweiten, die Figuren
10 und 11 insbesondere den dritten und die Figuren 12 und 13 insbesondere den vierten
Aspekt der Erfindung, wobei grundsätzlich auch beliebige Kombinationen der verschiedenen
Aspekte der Erfindung möglich sind. Es zeigen:
- Fig. 1
- eine teilweise schematische Seitenansicht einer Ausführungsform der vorliegenden Erfindung,
- Fig. 2
- eine perspektivische Seitenansicht der Anordnung der Walzen der Ausführungsform von
Fig. 1,
- Fig. 3
- eine Teilfrontansicht der Anordnung der Walzen der Ausführungsform von Fig. 1,
- Fig. 4
- eine schematische Darstellung einer Variante einer Endabdichtungsplatte der vorliegenden
Erfindung,
- Fig. 5
- eine schematische Darstellung einer Variante einer weiteren Endabdichtungsplatte der
vorliegenden Erfindung,
- Fig. 6
- eine in übertriebenem Maßstab dargestellte Seitenansicht einer Variante eines Hauptwalzenprofils
der Erfindung,
- Fig. 7
- eine schematische Darstellung einer Variante der Ausführungsform mit einer einzigen
Kammer von Fig. 1,
- Fig. 8
- eine schematische Darstellung einer Ausführungsform der Erfindung, die zwei Kammern
umfaßt,
- Fig. 9
- eine Explosionsteilschnittansicht, die Kammerabdichtungsaspekte der vorliegenden Erfindung
veranschaulicht,
- Fig. 10
- eine schematische Darstellung einer ersten Ausführungsform einer Vorrichtung zur Entwässerung
einer Faserstoffbahn,
- Fig. 11
- eine schematische Darstellung einer weiteren Ausführungsform einer Vorrichtung zur
Entwässerung einer Faserstoffbahn,
- Fig. 12
- eine schematische Darstellung einer ersten Ausführungsform einer Vorrichtung zur Entwässerung
einer Faserstoffbahn und
- Fig. 13
- eine schematische Darstellung einer weiteren Ausführungsform einer solchen Entwässerungsvorrichtung.
Ausführungsbeispiele insbesondere zum ersten Aspekt der Erfindung (vgl. Figuren 1
bis 9)
[0053] Entsprechende Bezugszeichen geben in den gesamten Ansichten entsprechende Teile an.
Die hierin aufgeführten Ausführungsbeispiele veranschaulichen bevorzugte Ausführungsformen
der Erfindung, und derartige Ausführungsbeispiele sind nicht als den Schutzbereich
der Erfindung auf irgendeine Weise begrenzend anzusehen.
[0054] In den Zeichnungen und insbesondere in Fig. 1 ist eine Preßanordnung 10 gezeigt,
die bei der Papierherstellung besonders gut verwendbar ist. Die Preßanordnung 10 umfaßt
einen Rahmen 12, einen Belastungszylinder 14, eine Preßwalzenanordnung 16, einen Spannaufbau
18, eine Membran 20 und eine Steuereinheit 21.
[0055] Der Rahmen 12 umfaßt einen Hauptrahmen 22, einen oberen Schwenkrahmen 24, einen unteren
Schwenkrahmen 26, einen oberen Schwenkarm 28, einen unteren Schwenkarm 30 und ein
Paar Seitenrahmen 32, 33. Der Seitenrahmen 32 ist mit einem weggebrochenen Teil gezeigt,
um einen inneren Teil des Seitenrahmens 33 freizulegen. Die Schwenkarme 24, 26 sind,
beispielsweise durch Schweißungen oder Schrauben, fest an dem Hauptrahmen 22 angebracht.
Die Schwenkarme 28, 30 sind jeweils über mehrere Drehzapfen 34 auf herkömmliche Weise
schwenkbar an den Schwenkrahmen 24, 26 montiert. Jeder Schwenkarm 28, 30 weist ein
erstes Ende 36, 38 auf, das jeweils derart ausgebildet ist, daß es entgegengesetzte
Enden 40, 42 des Belastungszylinders 14 über Zapfen 44 aufnimmt. Jeder Schwenkarm
28, 30 weist ein zweites Ende 46, 48 auf, das derart ausgebildet ist, beispielsweise
durch Schweißungen oder Schrauben, daß es das jeweilige Lagergehäuse 50, 52 fest aufnimmt.
Die ersten und zweiten Seitenrahmen 32, 33 sind an entgegengesetzte Seiten des Hauptrahmens
22 montiert.
[0056] Die Preßwalzenanordnung 16 umfaßt mehrere Walzen 60, 62, 64, 66 (vier Walzen, wie
gezeigt), die zur zusammenwirkenden Rotation in dem Rahmen 12 angeordnet sind. Mit
zusammenwirkender Rotation ist gemeint, daß die Drehgeschwindigkeit an der Umfangsfläche
von jeder der Walzen 60, 62, 64, 66 gemeinsam im wesentlichen gleich ist, wobei im
wesentlichen kein Schlupf zwischen den Walzenoberflächen auftritt. Der Zweckmäßigkeit
halber sind manchmal die Walzen 60, 62 als Hauptwalzen und die Walzen 64, 66 als Druckwalzen
bezeichnet.
[0057] Nach den Fig. 2 und 3 sind im allgemeinen alle Walzen 60, 62, 64, 66 geschlossene
Hohlzylinder mit jeweils einem ersten kreisförmigen Ende 68, 70, 72, 74, einem zweiten
kreisförmigen Ende 76, 78, 80, 82 und einer zylindrischen, mittleren Umfangsfläche
84, 86, 88, 90, und es sind alle jeweils radial symmetrisch um eine Drehachse 92,
94, 96, 98. Ein Satz Dichtungen 99 kann an den ersten kreisförmigen Enden 68, 70,
72, 74 und den zweiten kreisförmigen Enden 76, 78, 80, 82 angebracht sein. Die Hauptwalzen
60, 62 und Druckwalzen 64, 66 sind axial parallel angeordnet. Der Umfang jeder Druckwalze
64, 66 ist kleiner als der Umfang jeder Hauptwalze 60, 62. Nach Fig. 1 sind die Walzen
60, 62, 64, 66 derart angeordnet, daß sie eine entsprechende Anzahl von Walzenspalten
100, 102, 104, 106 definieren.
[0058] Die Druckwalzen 64, 66 werden dazu verwendet, eine Dichtung entlang der axialen Ausdehnung
der Hauptwalzen 60, 62 an den Walzenspalten 100, 102, 104, 106 zu schaffen. Jede Walze
60, 62, 64, 66 kann eine elastische Beschichtung, wie beispielsweise Gummi, umfassen,
um die Abdichtung an den Walzenspalten zu unterstützen. Die Abdichtung an den Walzenspalten
100, 102, 104, 106 erfordert einen relativ gleichmäßigen Druck entlang aller Walzenspalten
100, 102, 104, 106. Mit der wahrscheinlichen Verbiegung der Hauptwalzen 60, 62 aufgrund
der Kraftausübung auf diese durch die Druckwalzen 64, 66 ist irgendein Mechanismus
notwendig, um die Schaffung eines gleichmäßigen Spaltdruckes an den Walzenspalten
100, 102, 104, 106 zu unterstützen. Dementsprechend können die Druckwalzen 64, 66
Hydraulikdruck und eine Reihe von Kolben innerhalb des Walzenmantels der Walzen 64,
66 dazu verwenden, um den Walzenmantel der Walzen 64, 66 in den Walzenmantel der Hauptwalzen
60, 62 zu pressen, um einen gleichmäßigen Druck an den zugehörigen Spalten bereitzustellen.
Alternativ könnte eine ballige bzw. eine Durchbiegungsausgleichsdruckwalze verwendet
werden.
[0059] Nach Fig. 3 umfassen der erste und der zweite Seitenrahmen 32, 33 jeweils eine erste
bzw. eine zweite Abdichtungsplatte 108, 110, die an eine Innenseite von diesen montiert
sind. Die erste und die zweite Abdichtungsplatte 108, 110 werden durch die Seitenrahmen
32, 33 dazu gezwungen, mit einem Teil der ersten kreisförmigen Enden 68, 70, 72, 74
bzw. einem Teil der zweiten kreisförmigen Enden 76, 78, 80, 82 der Walzen 60, 62,
64, 66 des Preßwalzenaufbaus 16 in Eingriff zu treten, um eine Kammer 112 zu definieren
und somit eine Endabdichtung der Kammer 112 zu bewirken. Wahlweise ist zumindest eine
Spannstange 113 zwischen eine erste Abdichtungsplatte 108 und eine zweite Abdichtungsplatte
110 in der Kammer 112 geschaltet. Bei manchen Ausführungsformen sind die erste und
die zweite Abdichtungsplatte 108, 110 flexibel und derart aufgebaut und ausgebildet,
daß sie sich jeweils im wesentlichen an die Form der ersten kreisförmigen Enden 68,
70, 72, 74 bzw. zweiten kreisförmigen Enden 76, 78, 80, 82 der Walzen 60, 62, 64,
66 anpassen. Um die Abdichtung der Kammer 112 weiter zu unterstützen, sind Dichtungen
jeweils zwischen der ersten bzw. zweiten Abdichtungsplatte 108, 110 sowie den ersten
bzw. zweiten kreisförmigen Enden 68, 70, 72, 74 bzw. 76, 78, 80, 82 angeordnet. Derartige
Dichtungen können mechanische Dichtungen und Fluiddichtungen umfassen.
[0060] Die Hauptwalzen 60, 62 sind an den Seitenrahmen 32, 33 unter Verwendung herkömmlicher
Lagerbefestigungsaufbauten, wie jene, die Wälzlager oder Buchsen enthalten, fest drehbar
montiert. In diesem Zusammenhang bedeutet fest drehbar montiert, daß die Lage der
Achsen 92, 94 der Walzen 60, 62 bezüglich des Hauptrahmens 22 und der Seitenrahmen
32, 33 im Anschluß an den Einbau nicht verschoben wird, aber eine Drehung um die Achsen
92, 94 herum gestattet wird.
[0061] Vorzugsweise umfaßt die Hauptwalze 60, die über die Membran 20 in Fluidverbindung
mit der Kammer 112 steht, zumindest einen Leerraum in Form einer Nut, eines Loches
und einer Pore, der in ihrer mittleren Umfangsfläche ausgebildet ist, um eine Druckdifferenz
über die Membran 20 und irgendein dazwischenliegendes Material, wie die kontinuierliche
Bahn 140, hinweg zu erleichtern. Die Hauptwalze 62, die nicht in Fluidverbindung mit
der Kammer 112 über die Membran 20 steht, umfaßt vorzugsweise keinen derartigen Leerraum
in ihrer mittleren Umfangsfläche. Jede Walze kann eine elastische Beschichtung, wie
beispielsweise Gummi, über die Gesamtheit oder einen Teil ihrer Walzenoberfläche umfassen,
um die Abdichtung der Kammer 112 an den Walzenspalten 100, 102, 104, 106 zu unterstützen.
[0062] Die Druckwalzen 64, 66 sind jeweils drehbar an Lagergehäusen 50, 52 montiert. Jedoch
sind die Drehachsen 96, 98 der Walzen 64, 66 in bezug auf den Hauptrahmen 22 jeweils
über Schwenkarme 28, 30 beweglich, um eine Belastung des Preßwalzenaufbaus 16 zu bewirken.
Da der Umfang und der entsprechende Durchmesser jeder Druckwalze 64, 66 vorzugsweise
kleiner als der Umfang und der entsprechende Durchmesser jeder Hauptwalze 60, 62 ist,
sind die an den Druckwalzen 64, 66 erzeugten Kräfte reduziert, wodurch kleinere Strukturen
die Kräfte innerhalb der Kammer 112 halten können.
[0063] Beispielsweise erfordern die Druckwalzen 64, 66, die relativ kleiner sind, eine geringere
Betätigungskraft, als dies eine relativ größere Gegendruckwalze tun würde. Wenn die
Durchmesser der Druckwalzen 64, 66 ein Drittel der Durchmesser der Hauptwalzen 60,
62 betragen, können die auf die Druckwalzen 64, 66 ausgeübten Kräfte im Vergleich
mit den Kräften auf die Hauptwalzen 60, 62 um 40 Prozent reduziert werden.
[0064] Je enger der Abstand zwischen den Hauptwalzen 60 und 62 ist, und je größer die Durchmesserdifferenz
zwischen den Hauptwalzen 60, 62 und Druckwalzen 64, 66 ist, desto größer ist im allgemeinen
die Differenz der Kräfte, die durch die Hauptwalzen 60, 62 und die Druckwalzen 64,
66 auf den Rahmen 12 ausgeübt wird. Diese Anordnung läßt es zu, daß die Trägerstruktur,
z.B. der Rahmen 12, für den Preßwalzenaufbau 16 einfacher wird. Da beispielsweise
der größte Teil der Kraft durch die relativ größeren Hauptwalzen 60, 62 ausgeübt wird,
sind die Hauptwalzen 60, 62 auf Lagern montiert, die fest an den Seitenrahmen 32,
33 angebracht sind, die wiederum fest an dem Hauptrahmen 22 angebracht sind. Indem
die Hauptwalzen 60 und 62 strukturell miteinander verbunden und ihre relativen Positionen
fixiert sind, werden die Hauptkräfte innerhalb der Preßanordnung 10 innerhalb einer
relativ einfachen mechanischen Struktur gehalten.
[0065] Um die Membran 20 unter einer geeigneten Betriebsspannung zu halten, ist der Spannaufbau
18 an dem Hauptrahmen 22 montiert. Der Spannaufbau 18 umfaßt einen Spannzylinder 114
und eine Spannwalze 116. Die Spannwalze 116 ist drehbar an den Spannzylinder 114 gekoppelt,
der die Spannwalze 116 in einer Richtung quer zur Drehachse der Spannwalze 116 bewegt.
[0066] Wie es in Fig. 1 in Relation zu Fig. 2 gezeigt ist, bewegt sich die Membran 20 in
der Richtung des Pfeils 118 und wird über einen Teil der Umfangsfläche 88 der Druckwalze
64 geleitet, läuft in einen Einlaßwalzenspalt 100 hinein, läuft über einen Teil der
Umfangsfläche 84 der Hauptwalze 60 innerhalb der Kammer 112 hinweg, läuft aus dem
Auslaßwalzenspalt 102 heraus, läuft über einen Teil der Umfangsfläche 90 der Druckwalze
66 hinweg und läuft um ungefähr die Hälfte der Umfangsfläche der Spannwalze 116 herum.
Die Membran 20 ist vorzugsweise ein kontinuierliches Band, das aus einem semipermeablen
Material hergestellt ist, das derart strukturiert und ausgebildet ist, daß es eine
vorbestimmte Permeabilität aufweist, die eine vorbestimmte Fluidströmung durch dieses
hindurch gestattet. Ebenso bevorzugt ist die semipermeable Membran 20 bis zu einem
begrenzten Grad sowohl gaspermeabel als auch flüssigkeitspermeabel. Außerdem ist die
Membran 20 derart strukturiert und ausgebildet, daß sie die Abdichtung der Kammer
112 am Einlaßspalt 100 und am Auslaßspalt 102 unterstützt. In der Kammer 112, nachdem
diese unter Druck gesetzt worden ist, dient der kombinierte Effekt des Einlaßspalts
100, der Membran 20, die in Umfangsrichtung um die Hauptwalze 60 herum läuft, und
des Auslaßspalts 102 dazu, einen einzigen ausgedehnten Spalt 115 zur Aufbringung einer
mechanischen Druckkraft in Richtung der Hauptwalze 60 und irgendeines dazwischenliegenden
Materials, das zwischen der Membran 20 und der Hauptwalze 60 angeordnet ist, zu bilden.
Somit steht die Membran 20 mit der unter Druck gesetzten Kammer 112 und der Hauptwalze
60 in Verbindung, um gleichzeitig eine vorbestimmte Fluidströmung durch das dazwischenliegende
Material hindurch sowie eine mechanische Druckkraft auf dieses zu bewirken.
[0067] Bei bevorzugten Ausführungsformen ist die Membran 20 ungefähr 2,54 mm (0,1 Zoll)
oder weniger dick und umfaßt ein Formgewebe, das semipermeabel hergestellt ist, indem
mehrere miteinander in Verbindung stehende Poren 117 (die durch Punkte in Fig. 6 gezeigt
sind) in dem Formgewebe gebildet sind, die eine Größe, Form, Häufigkeit und/oder Muster
aufweisen, das so gewählt ist, daß die gewünschte Permeabilität bereitgestellt wird.
Die Permeabilität ist so gewählt, daß sie größer als Null und kleiner als ungefähr
0,025 m/s (fünf CFM pro Quadratfuß) ist, wie durch das TAPPI-Testverfahren TIP 0404-20
gemessen, und ist besonders bevorzugt so gewählt, daß sie größer als Null und kleiner
als ungefähr 0,010 m/s (zwei CFM pro Quadratfuß) ist. Daher ist die semipermeable
Membran 20 bis zu einem begrenzten Grad sowohl gaspermeabel als auch flüssigkeitspermeabel.
[0068] Die Membran 20 wird semipermeabel hergestellt, indem von einem Trägergewebe ausgegangen
wird, das sehr permeabel ist, und dann mehrere miteinander in Verbindung stehende
Poren 117 in dem Trägergewebe gebildet werden. Auf das Trägergewebe ist eine Wattierung
aufgebracht, die aus einer Mischung von über Wärme schmelzbaren und nicht über Wärme
schmelzbaren Fasern hergestellt ist. Die Wattierung aus der Fasermischung ist in das
Trägergewebe eingenäht. Auf das genähte Trägergewebe wird Wärme aufgebracht, um die
über Wärme schmelzbaren Fasern zu schmelzen, die wiederum Leerräume in der Form von
miteinander in Verbindung stehenden Poren ähnlich denjenigen eines Schaumschwammes,
zurücklassen.
[0069] Die Membran 20 umfaßt vorzugsweise zwei verjüngte, undurchlässige, sich in Längsrichtung
erstreckende Außenränder 20A, 20B, die neben dem semipermeablen Abschnitt der Membran
20 mit den miteinander in Verbindung stehenden Poren 117 gebildet sind. Die Außenränder
20A, 20B können undurchlässig hergestellt werden, indem über Wärme schmelzbare Fasern
an den Außenrändern der Membran 20 bei Abwesenheit von nicht über Wärme schmelzbaren
Fasern geschmolzen werden.
[0070] Die Fasermischung kann in das Trägergewebe eingenäht werden, um eine Strömungswiderstandsschicht
in der Nähe der Oberfläche der Membran 20 zu bilden, die am nächsten bei der Kammer
112 angeordnet sein wird.
[0071] Daher wird im Betrieb, wenn sie Kammerdruck ausgesetzt ist, der Druckabfall über
die Membran 20 hinweg nahe auf der kammerseitigen Oberfläche der Membran 20 auftreten,
wodurch bewirkt wird, daß die Membran 20 eine minimale Menge Kammerluft mitreißt.
Da die Membran ihr mitgerissenes, unter Druck gesetztes Fluid freigeben wird, wenn
sie aus der Kammer herausläuft, ist es erwünscht, das mitgerissene Fluidvolumen so
klein wie möglich einzurichten, um eine Verschwendung von unter Druck gesetztem Kammerfluid
zu vermeiden. Deshalb ist es bevorzugt, die Strömungswiderstandsschicht nahe an die
kammerseitige Oberfläche der Membran zu setzen, und es ist bevorzugt, das Gewebe so
dünn wie möglich, vorzugsweise weniger als 2,54 mm (0,1 Zoll) herzustellen. Zusätzlich
ist es bevorzugt, den Prozentsatz des Membranleerraums so gering wie möglich, vorzugsweise
weniger als 40 Prozent, herzustellen. Die kammerseitige Oberfläche ist vorzugsweise
auch abriebbeständig. Der Rest des Gewebes, der nicht die Fasermischung umfaßt, kann
als Fluidverteilungsschicht wirken, die eine Fluidströmung aus der Widerstandsschicht
aufnimmt und die Fluidströmung über die darunterliegende kontinuierliche Bahn 140
verteilt.
[0072] Alternativ werden die miteinander in Verbindung stehenden Poren 117 der Membran 20
gebildet, indem Beschichtungslagen auf das Trägergewebe aufgebracht werden, bis die
gewünschte Permeabilität erreicht ist. Die Permeabilität wird eingestellt, indem irgendein
Parameter verändert wird von: die Beschichtungsart, das Mitreißen von Luft in den
Träger hinein, um einen Schaum zu bilden, und das Einstellen des Feststoffgehaltes
der Beschichtung. Der Beschichtungsprozeß wird gestoppt, wenn das gewünschte Strömungswiderstandsniveau
der Membran 20 erreicht ist.
[0073] Die Steuereinheit 21 umfaßt einen Controller 120, eine Druckluftquelle 122, eine
Fluidquelle 124, eine Differenzdruckquelle 125 und einen Sensoraufbau 126.
[0074] Der Controller 120 umfaßt vorzugsweise einen Mikroprozessor und einen Speicher zum
Speichern und Ausführen eines Steuerprogramms, und umfaßt eine I/O-Einrichtung zur
Herstellung der Eingabe/Ausgabe-Kommunikation und der Datenübertragung mit externen
Geräten. Der Controller 120 kann beispielsweise ein industrieller programmierbarer
Controller von einer Art sein, die in der Technik allgemein bekannt ist.
[0075] Die Druckluftquelle 122 umfaßt mehrere einzeln steuerbare Ausgänge. Die Druckluftquelle
122 ist mit dem Belastungszylinder 14 über eine Leitung 128 fluidgekoppelt. Die Druckluftquelle
122 ist auch mit dem Spannzylinder 114 über Leitung 130 fluidgekoppelt. Während das
bevorzugte Arbeitsfluid, um die Zylinder 14, 114 zu betreiben, komprimierte Luft ist,
werden Fachleute feststellen, daß das Druckluftsystem gegen eine andere Fluidquelle
ausgetauscht werden könnte, die ein anderes Gas oder ein flüssiges Arbeitsfluid verwendet.
[0076] Die Fluidquelle 124 ist mit der Kammer 112 über Leitung 132 fluidgekoppelt. Die Art
des Fluids ist durch den Benutzer abhängig von der Art des Materials, das die Preßanordnung
10 verarbeitet, wählbar. Beispielsweise kann es bei manchen Anwendungen erwünscht
sein, komprimierte Trockenluft zu verwenden, um die Kammer 112 auf einen vordefinierten
Druck unter Druck zu setzen, der bei bevorzugten Ausführurigsformen der Erfindung
ein Druck ist, der größer als 30 psi über dem Druck des Differenzdruckes der Differenzdruckquelle
125 ist. Bei anderen Anwendungen kann es erwünscht sein, ein unter Druck gesetztes
Gas, wie ein erwärmtes Gas, oder eine Flüssigkeit, wie Wasser, oder eine Flüssigkeitslösung
zu verwenden.
[0077] Bei der Ausführungsform von Fig. 1 strömt Fluid in die Kammer 112 über die Leitung
132 hinein und strömt aus der Kammer 112 über die Leerräume, zum Beispiel Nuten, Löcher
oder Poren, die in der mittleren Umfangsfläche 84 der Hauptwalze 60 gebildet sind,
heraus. Die Leerräume in der Hauptwalze 60 stehen mit der Differenzdruckquelle 125
über eine Leitung 133 in Verbindung. Die Differenzdruckquelle 125 kann beispielsweise
eine Unterdruckquelle, eine Druckquelle, die bei einem Druck arbeitet, der niedriger
als der Druck in der Kammer 112 ist, oder einfach eine Entlüftung zur Atmosphäre sein,
die über Leitung 133 an das Innere der Walze 60 gekoppelt ist, um eine Evakuierung
der Leerräume zu bewirken.
[0078] Alternativ ist keine Entlüftung über Leitung 133 notwendig, wenn die Hauptwalze 60
mit Nuten versehene Leerräume umfaßt und die Nuten mit Atmosphärendruck in Verbindung
stehen. Ähnlich kann eine Entlüftung über Leitung 133 beseitigt werden, wenn die Walzenleerräume,
wie Sacklöcher, groß genug sind, und wenn sie in den Spalt bei einem Druck eintreten,
der niedriger als der Kammerdruck ist. In diesem Fall werden die Leerräume wie eine
Differenzdruckquelle wirken, bis die Leerräume den Kammerdruck erreichen. Die Leerraumgröße
kann derart gewählt werden, daß die Wirksamkeit des Entwässerungsprozesses gesteuert
wird.
[0079] Die unter Druck gesetzte Kammer 112 umfaßt eine ihr eigene Druckentlastung, indem
ein übermäßiger Druckaufbau in der Kammer 112 dazu führen wird, daß sich eine oder
mehrere Walzen 60, 62, 64, 66 öffnen, um den Druck abzulassen, statt daß ein katastrophales
Versagen auftritt.
[0080] Der Controller 120 ist elektrisch mit der Druckluftquelle 122 über ein Elektrokabel
134 verbunden, um den Fluidausgang von dieser selektiv zu steuern und somit den Betrieb
des Belastungszylinders 14 unabhängig zu steuern und eine Last auf den Preßwalzenaufbau
16 zu schaffen, und den Betrieb des Spannzylinders 114 unabhängig zu steuern und somit
eine vorbestimmte Spannung auf der semipermeablen Membran 20 zu schaffen.
[0081] Der Controller 120 ist elektrisch mit der Fluidquelle 124 über ein Elektrokabel 136
verbunden. Der Controller 120 ist ferner elektrisch mit dem Sensoraufbau 126 über
ein Elektrokabel 138 verbunden. Der Sensoraufbau 126 umfaßt einen oder mehrere Sensormechanismen,
um elektrische Rückkopplungssignale an den Controller 120 zu liefern, die einen oder
irgendeine Kombination von einem Druck, einer Temperatur oder einem anderen Umgebungsfaktor
innerhalb der Kammer 112 darstellen. Der Controller 120 verarbeitet die Rückkopplungssignale,
um Ausgangssignale zu erzeugen, die der Fluidquelle 124 zugeführt werden, um selektiv
die Fluidausgabe von dieser zu steuern.
[0082] Im Betrieb verarbeitet der Controller 120 von dem Sensoraufbau 126 empfangene Rückkopplungssignale,
um einen Druck der unter Druck gesetzten Kammer 112 vorzugsweise auf einen Druck zu
steuern, der größer als 30 psi über dem Druck der Differenzdruckquelle 125 liegt.
Die Walzen 60, 62, 64, 66 werden mit wenig oder keinem Schlupf zwischen diesen gedreht,
und die Membran 20 wird mit der gleichen Geschwindigkeit wie die Oberflächengeschwindigkeit
der Walzen 60, 62, 64, 66 angetrieben. Eine kontinuierliche Bahn oder Papierbahn 140
und eine Bahnträgerschicht 142 werden in den Einlaßwalzenspalt 100 in der Richtung
des Pfeils 143 eingeleitet und von der Membran 20 durch den ausgedehnten Spalt 115
hindurch zum Auslaßwalzenspalt 102 geführt. Die Membran 20 ist innerhalb des Walzenaufbaus
16 angeordnet, so daß sie neben einer ersten Seite 144 der kontinuierlichen Bahn 140
liegt, um deren direkte Verbindung mit der unter Druck stehenden Kammer 112 wirksam
zu trennen. Mit anderen Worten kann das Fluid in der Kammer 112 nicht auf die kontinuierliche
Bahn 140 außer durch die Membran 20 hindurch wirken. Die Bahnträgerschicht 142 ist
derart angeordnet, daß sie mit der zylindrischen Mittelfläche 84 der Hauptwalze 60
in Kontakt steht, und daß sie mit einer zweiten Seite 146 der kontinuierlichen Bahn
140 in Kontakt steht.
[0083] Die Membran 20 ist derart strukturiert und ausgebildet, daß sie eine Permeabilität
aufweist, die eine vorbestimmte Fluidströmung durch diese hindurch zu der kontinuierlichen
Bahn 140 gestattet, und steht mit der unter Druck gesetzten Kammer 112 und zumindest
einem Leerraum der Hauptwalze 60 in Verbindung, um eine Druckdifferenz über die Membran
20 und die kontinuierliche Bahn 140 hinweg zu erzeugen. Dieser Druckabfall führt dazu,
daß eine mechanische Druckkraft auf die kontinuierliche Bahn 140 aufgebracht wird,
die hilft, diese zu verfestigen. Daher steht die Membran 20 mit der unter Druck gesetzten
Kammer 112 und der Hauptwalze 60 in Verbindung, um in Kombination gleichzeitig eine
vorbestimmte Fluidströmung durch die kontinuierliche Bahn 140 hindurch sowie eine
mechanische Druckkraft auf diese zu bewirken und somit eine verbesserte Entwässerung
der kontinuierlichen Bahn 140 zu fördern.
[0084] Die Erfindung ist besonders vorteilhaft, wenn der Trockengehalt der kontinuierlichen
Bahn 140 vor dem Entwässern höher als ungefähr 6 Prozent und niedriger als ungefähr
70 Prozent ist, und wenn das Grundgewicht der kontinuierlichen Bahn 140 höher als
ungefähr 25 g/m
2 ist.
[0085] Die Bahnträgerschicht 142 weist vorzugsweise eine Dicke von ungefähr 2,54 mm (0,1
Zoll) oder weniger auf und kann ein Filz sein oder alternativ einen Filz umfassen,
der neben einer hydrophoben Schicht angeordnet ist, wobei die hydrophobe Schicht neben
der zweiten Seite 146 der kontinuierlichen Bahn 140 angeordnet ist. Die Bahnträgerschicht
142 umfaßt vorzugsweise eine Filzschicht 142A, die integral mit einer hydrophoben
Schicht 142B ausgebildet ist, wobei die hydrophobe Schicht 142B Wasser über Kapillarwirkung
von der kontinuierlichen Bahn 140 weg transportiert, damit es von der Filzschicht
142A aufgenommen wird (siehe Fig. 6). Die hydrophobe Schicht 142B stellt eine Wirkung
eines Nachbefeuchtungsschutzes bereit, wodurch verhindert wird, daß Wasser zurück
in die kontinuierliche Bahn 140 strömt.
[0086] Die relativen Größen des auf die kontinuierliche Bahn 140 aufgebrachten mechanischen
Drucks werden durch Faktoren bewirkt, wie beispielsweise der Kammerdruck in der Kammer
112, die Permeabilität der semipermeablen Membran 20 und die Permeabilität der kontinuierlichen
Bahn 140. Die Fluidströmung, vorzugsweise Luft, durch die kontinuierliche Bahn 140
hindurch wird durch Faktoren beeinflußt, wie beispielsweise der Kammerdruck in der
Kammer 112, die Permeabilität der semipermeablen Membran 20 und die Größe (z.B. Länge)
der Kammer 112. Der dynamische Fluiddruck in der unter Druck gesetzten Kammer 112
wird auf der Grundlage der Überwachung des Kammerdrucks durch den Sensoraufbau 126
gesteuert. Der Sensoraufbau 126 erfaßt einen Druck innerhalb der Kammer 112 und liefert
ein Druckrückkopplungssignal an den Controller 120. Der Controller 120 verarbeitet
das Druckrückkopplungssignal, um ein Druckausgangssignal zu erzeugen, das der Fluidquelle
124 zugeführt wird, um selektiv deren Fluidausgabe zu steuern und somit einen Druck
der unter Druck gesetzten Kammer 112 auf einem vorbestimmten Druck, vorzugsweise einen
Druck, der größer als 30 psi über den Druck der Differenzdruckquelle 125 liegt, zu
steuern. Wenn eine Temperatur in Relation zu einem Druck innerhalb der unter Druck
gesetzten Kammer 112 von Belang ist, kann der Sensoraufbau 126 derart angepaßt werden,
daß er eine Temperatur innerhalb der Kammer 112 erfaßt und ein Temperaturrückkopplungssignal
liefert. Der Controller 120 verarbeitet das Temperaturrückkopplungssignal zusammen
mit dem Druckrückkopplungssignal, um Ausgangssignale zu erzeugen, die der Fluidquelle
124 zugeführt werden, um den Druck und die Temperatur in der unter Druck gesetzten
Kammer 112 zu regeln.
[0087] Der Controller 120 steuert auch die Belastung der Hauptwalzen 60, 62 durch die Druckwalzen
64, 66, indem eine Druckgröße gesteuert wird, die der Belastungszylinder 14 auf die
oberen und unteren Schwenkarme 28, 30 aufbringt. Die Belastungsgröße der Hauptwalzen
60, 62 steht vorzugsweise mit einem Druck in der unter Druck gesetzten Kammer 112
in Beziehung, die von einem Drucksensor des Sensoraufbaus 126 überwacht wird. Die
Belastung kann eine Vorbelastung zusätzlich zu einer Belastung umfassen, die proportional
zum Druck in der Kammer 112 ist.
[0088] Natürlich sind Veränderungen der oben beschriebenen Ausführungsform möglich. Beispielsweise
und nach Fig. 4 kann, um die Endabdichtung der Kammer 112 aufrechtzuerhalten und Verschleiß
zwischen den Abdichtungsplatten 108, 110 und den Walzen 60, 62, 64 und 66 zu verhindern,
ein Schmier- und Abdichtungsfluid, wie Luft oder Wasser, oder irgendein viskoses Fluid
in mehrere Dichtungsöffnungen 148 über einen Leitungsring 150 hineingedrückt werden,
der mit einer Fluidquelle 152 über eine Leitung 153 gekoppelt ist. Die Druckfluidquelle
152 ist elektrisch mit dem Controller 120 über ein Elektrokabel 155 gekoppelt und
wird dadurch gesteuert. Die Dichtungsöffnungen 148 in den Abdichtungsplatten 108,
110 sind derart angeordnet, daß sie den Enden der Walzen 60, 62, 64, 66 zugewandt
sind, um unter Druck gesetztes Schmier- und Abdichtungsfluid zwischen den Abdichtungsplatten
108, 110 und Teilen der jeweiligen kreisförmigen Enden 68, 70, 72, 74 und 76, 78,
80, 82 weiterzuleiten. Aufgrund der Injektion des Schmier- und Abdichtungsfluids schwimmen
die Abdichtungsplatten 108, 110 über den kreisförmigen Enden 68, 70, 72, 74 und 76,
78, 80, 82 in kleinen steuerbaren Distanzen mit wenig oder ohne physikalischem Kontakt
zwischen den Abdichtungsplatten 108, 110 und den kreisförmigen Enden 68, 70, 72, 74
und 76, 78, 80, 82 der Walzen 60, 62, 64, 66. Obwohl es eine Leckage um eine derartige
Dichtungsanordnung herum gibt, ist die Größe der Leckage durch die sorgfältige Auswahl
von Abstandstoleranzen und dem Schmier- und Abdichtungsfluid so steuerbar, daß sie
klein ist.
[0089] Zusätzlich ist beabsichtigt, daß die Hauptwalze 62 auch eine Entlüftung zu einer
Differenzdruckquelle umfaßt und daß die kontinuierliche Bahn 140 zusammen mit der
Membran 20 derart geführt ist, daß sie durch alle vier Spalten hindurch läuft, wie
beispielsweise in Spalt 106 hinein, aus Spalt 104 heraus, in Spalt 100 hinein und
aus Spalt 102 heraus, um die Verweilzeit zu erhöhen, über die die Membran 20 mit der
kontinuierlichen Bahn 140 in Wechselwirkung steht.
[0090] Fig. 5 zeigt eine weitere Variante der Erfindung, bei der die Endabdichtung der Kammer
112 verbessert ist, indem Fluidöffnungen 154 in Abdichtungsplatten 108, 110 derart
angeordnet sind, daß sie nahe bei den Enden der Walzen 60, 62, 64, 66 jedoch diesen
nicht zugewandt angeordnet sind. Ein Leitungsring 156 ist mit den Öffnungen 154 gekoppelt
und ist mit der Fluidquelle 152 über Leitung 158 gekoppelt, um ein Schmier- und Abdichtungsfluid,
wie Luft oder Wasser, oder irgendein anderes viskoses Fluid durch die Öffnungen 154
hindurch in die Kammer 112 hinein zuzuführen. Die Fluidquelle 152 ist elektrisch mit
dem Controller 120 über Elektrokabel 155 gekoppelt und wird dadurch gesteuert. Der
Druck in der Kammer 112 drückt das hinzugefügte Fluid zwischen die kreisförmigen Enden
68, 70, 72, 74 bzw. 76, 78, 80, 82 der Walzen 60, 62, 64, 66 bzw. den Abdichtungsplatten
108, 110, wodurch zugelassen wird, daß die Abdichtungsplatten 108, 110 über den kreisförmigen
Enden schwimmen. Bei dieser Ausführungsform wird die Leckage gesteuert, indem der
Abstand zwischen den kreisförmigen Enden 68, 70, 72, 74 bzw. 76, 78, 80, 82 der Walzen
60, 62, 64, 66 bzw. Abdichtungsplatten 108, 110 derart gesteuert wird, daß in keinem
Bereich eine übermäßige Leckage auftritt, und daß übermäßiger Verschleiß zwischen
den Abdichtungsplatten 108, 110 und Walzen 60, 62, 64, 66 verhindert wird.
[0091] Fig. 6 zeigt eine weitere Variante der Erfindung, bei der eine Hauptwalze 160, die
das gezeigte Profil aufweist, die Hauptwalze 60 ersetzen würde. Die Hauptwalze 160
umfaßt ein erstes kreisförmiges Ende 162, ein zweites kreisförmiges Ende 164, eine
erste zylindrische Endfläche 166 und eine zweite zylindrische Endfläche 168, eine
erste geneigte Ringfläche 170, eine zweite geneigte Ringfläche 172 und eine zylindrische
Mittelfläche 174. Die erste zylindrische Endfläche 166 ist neben dem ersten kreisförmigen
Ende 162 angeordnet, und die zweite zylindrische Endfläche 168 ist neben dem zweiten
kreisförmigen Ende 164 angeordnet. Die zylindrische Mittelfläche 174 weist einen Umfang
auf, der kleiner als der Umfang der ersten und der zweiten zylindrischen Endfläche
166, 168 ist. Die erste geneigte Ringfläche 170 stellt einen Übergang von der zylindrischen
Mittelfläche 174 zur ersten zylindrischen Endfläche 166 bereit, und die zweite geneigte
Ringfläche 172 stellt einen Übergang von der zylindrischen Mittelfläche 174 zur zweiten
zylindrischen Endfläche 168 bereit.
Die Breite der zylindrischen Mittelfläche 174 ist derart gewählt, daß sie annähernd
gleich der Breite der Membran 20 ist. Die erste und die zweite geneigte Ringfläche
170, 172 definieren eine Führungsstrecke für die Membran 20, die kontinuierliche Bahn
140 und die Bahnträgerschicht 142. Eine jede der Membran 20 und der Bahnträgerschicht
142 umfaßt vorzugsweise zwei verjüngte Außenränder, die die erste und die zweite geneigte
Ringfläche 170, 172 berühren. Insbesondere bevorzugt umfaßt die permeable Membran
20 zwei verjüngte, undurchlässige, sich in Längsrichtung erstreckende Außenränder
20A, 20B, die neben einem semipermeablen Teil 20C gebildet sind, um die Abdichtung
entlang der geneigten Ringflächen 170, 172 zu verbessern. Ebenso bevorzugt umfaßt
die Bahnträgerschicht 142 eine Filzschicht 142A und eine hydrophobe Schicht 142B.
Wahlweise kann die Bahnträgerschicht 142 zwei undurchlässige, sich in Längsrichtung
erstreckende Außenränder umfassen, die die erste und die zweite geneigte Ringfläche
170, 172 berühren.
[0092] Fig. 7 veranschaulicht schematisch eine weitere Variante der Erfindung, bei der eine
Preßanordnung 200 einen Walzenaufbau 201 mit mehreren Walzen 202, 204, 206, 208 umfaßt,
die in einem viereckigen Muster zur zusammenwirkenden Rotation bei der Verarbeitung
einer ersten kontinuierlichen Bahn 209, wie beispielsweise einer Papierbahn, die auf
einer Bahnträgerschicht 210 mitgenommen wird, und einer zweiten kontinuierlichen Bahn
212, wie beispielsweise einer Papierbahn, die auf einer Bahnträgerschicht 214 mitgenommen
wird, angeordnet ist. Die Bahnträgerschichten 210, 214 können beispielsweise Filzschichten
sein.
[0093] Jede der Vielzahl von Walzen 202, 204, 206, 208 ist von dem oben zuvor als Hauptwalzen
60, 62 und/oder 160 und Druckwalzen 64, 66 beschriebenen Art und wird daher nicht
wieder im Detail beschrieben. Es ist auch zu verstehen, daß Abdichtungsplatten von
der gleichen allgemeinen Art, wie sie oben in bezug auf die Abdichtungsplatten 108
und 110 beschrieben wurden auf die oben in bezug auf die Fig. 4 und 5 beschriebene
Weise verwendet werden würden, um eine Kammer 216 zu definieren. Die Steuer- und Druckquellenanschlüsse
für die Kammer 216 und die zugehörige Arbeitsweise sind derart, wie es oben in bezug
auf die Fig. 1-4 beschrieben wurde, was daher hier nicht mehr wiederholt wird.
[0094] Zu Zwecken dieser Diskussion werden die Walzen 202 und 204 als Hauptwalzen bezeichnet,
und die Walzen 206, 208 werden als Druckwalzen bezeichnet, obwohl bei der vorliegenden
Ausführungsform die Walzen 202, 204, 206, 208 annähernd die gleiche Größe aufweisen.
Die Hauptwalzen 202, 204 und die Druckwalzen 206, 208 sind so angeordnet, daß sie
mehrere Walzenspalten 220, 222, 224, 226 definieren, von denen auf der Grundlage der
Drehung der Hauptwalze 202 in der durch den Pfeil 230 gezeigten Richtung die Walzenspalten
220, 224 Einlaßwalzenspalten der Preßanordnung 200 bilden und die Walzenspalten 222,
226 Auslaßwalzenspalten bilden.
[0095] Die erste kontinuierliche Bahn 209 und die erste Bahnträgerschicht 210 treten in
den Einlaßspalt 220 ein und werden durch die Kammer 216 hindurch um den Umfang der
Hauptwalze 202 herum verarbeitet. Die zweite kontinuierliche Bahn 212 und die zweite
Bahnträgerschicht 214 treten in den Einlaßspalt 224 ein und werden durch die Kammer
216 hindurch um die Umfangsfläche der Hauptwalze 204 herum verarbeitet. Die erste
Bahnträgerschicht 210, die kontinuierliche Bahn 209, die kontinuierliche Bahn 212
und die zweite Bahnträgerschicht 214 werden durch den Auslaßspalt 222 hindurch verarbeitet,
um eine laminierte Bahn 228 zu bilden, die aus den kontinuierlichen Bahnen 209, 212
besteht. Während der Verarbeitung bleibt die zweite kontinuierliche Bahn 212 aufgrund
der Oberflächenspannung oder aufgrund der Entlüftung in der Hauptwalze 202 durch Löcher,
Nuten oder Poren, die in der zylindrischen Fläche der Hauptwalze 202 gebildet sind,
in Kontakt mit der ersten kontinuierlichen Bahn 209. Es ist beabsichtigt, daß die
zweite kontinuierliche Bahn 212 und die zweite Bahnträgerschicht 214 durch eine auf
die kontinuierliche Bahn 209 aufgebrachte Beschichtungslage ersetzt werden könnten.
[0096] Fig. 8 ist eine schematische Darstellung einer anderen Ausführungsform der Erfindung,
bei der eine Preßanordnung 300 einen Walzenaufbau 301 mit mehreren Walzen 302, 304,
306, 308, 310 und 312 umfaßt, die zur zusammenwirkenden Rotation bei der Verarbeitung
einer kontinuierlichen Bahn 314, wie beispielsweise einer Papierbahn, angeordnet sind.
Jede Walze 302, 304 ist von der zuvor als Hauptwalze 60 und/oder 160 beschriebenen
Art und ist mit einer Differenzdruckquelle auf eine Weise fluidgekoppelt, die oben
beschrieben ist. Die Walzen 306, 308, 310, 312 sind von der oben in bezug auf nicht
entlüftete Haupt- und Druckwalzen, wie beispielsweise die Hauptwalze 62 und die Druckwalze
64, beschriebenen Art und werden daher nicht wieder im Detail beschrieben. Ebenso
ist die Abdichtungsplatte 316 von der gleichen allgemeinen Art, wie sie oben in bezug
auf die Abdichtungsplatten 108 und 110 beschrieben ist, und kann auf die oben in bezug
auf die Fig. 4 und 5 beschriebene Weise verwendet werden.
[0097] Zu Zwecken dieser Diskussion werden die Walzen 302 und 304 als Hauptwalzen bezeichnet,
und die Walzen 306, 308, 310 und 312 werden als Druckwalzen bezeichnet, aufgrund ihrer
jeweiligen Hauptfunktion innerhalb einer gegebenen Kammer in bezug auf die kontinuierliche
Bahn 314. Bei der vorliegenden Ausführungsform weisen die Walzen 302, 304, 306, 308,
310 und 312 annähernd die gleiche Größe auf. Die Hauptwalzen 302, 304 und Druckwalzen
306, 308, 310, 312 sind derart angeordnet, daß sie mehrere Walzenspalten 320, 322,
324, 326, 328, 330, 332 definieren, auf deren Grundlage eine Rotation der Hauptwalze
302 in der durch den Pfeil 334 gezeigten Richtung die Walzenspalten 320, 326, 330
Einlaßwalzenspalten der Preßanordnung 300 bilden, die Walzenspalten 322, 328, 332
Auslaßwalzenspalten bilden und der Walzenspalt 324 ein Kammerteilungsspalt ist. Die
Orientierung und/oder Größe der Walzen 302, 304, 306, 308, 310 und 312 kann derart
modifiziert werden, daß die Walzenspalten an den gewünschten Orten angeordnet sind
und die Effizienz der Verarbeitung optimiert ist.
[0098] Die Abdichtungsplatten 316 definieren zusammen mit den Walzen 302, 304, 306, 308,
310 und 312 eine erste Kammer 336 und eine zweite Kammer 338, wobei jeder Kammer mindestens
ein Einlaßspalt und mindestens ein Auslaßspalt zugeordnet ist.
[0099] Eine erste Druckquelle 340 ist mit einer Kammer 336 über eine Leitung 342 fluidgekoppelt,
und eine zweite Druckquelle 344 ist mit einer Kammer 338 über eine Leitung 346 fluidgekoppelt.
Die Leitungen 342 und 346 erstrecken sich jeweils von der Abdichtungsplatte 316 in
die Kammern 336 bzw. 338 hinein, um eine Fluidströmung darin zu verteilen. Der Controller
120 ist elektrisch mit der Druckquelle 340 über ein Elektrokabel 348 gekoppelt und
ist elektrisch mit der Druckquelle 344 über ein Elektrokabel 350 gekoppelt. Ein Sensoraufbau
352 ist elektrisch mit dem Controller 120 über ein Elektrokabel 354 verbunden. Der
Sensoraufbau 352 ist derart ausgebildet, daß er den Druck und die Temperatur jeder
Kammer 336, 338 überwacht.
[0100] Die Preßanordnung 300 umfaßt ferner eine erste semipermeable Membran 360 und eine
zweite semipermeable Membran 362. Die Membranen 360, 362 stehen mit den Umfangsflächen
der Hauptwalzen 302, 304 in Wechselwirkung, um einen ersten ausgedehnten Spalt 364
und einen zweiten ausgedehnten Spalt 366 zu definieren. Der ausgedehnte Spalt 364
befindet sich in der ersten Kammer 336, und der ausgedehnte Spalt 366 befindet sich
in der zweiten Kammer 338.
[0101] Die kontinuierliche Bahn 314 umfaßt eine erste Seite 370 und eine zweite Seite 372.
Während sie sich in der Kammer 336 befindet, strömt ein Fluid durch die kontinuierliche
Bahn 314 hindurch in einer ersten Richtung von der ersten Seite 370 zur zweiten Seite
372 an dem ausgedehnten Spalt 364. Während sie sich in der Kammer 338 befindet, strömt
ein Fluid durch die kontinuierliche Bahn 314 in einer zweiten Richtung, die entgegengesetzt
zur ersten Richtung ist, von der zweiten Seite 372 zur ersten Seite 370 an dem ausgedehnten
Spalt 364. Eine erste Membran 360 steht mit der ersten Kammer 336 und der Hauptwalze
302 in Verbindung, um eine mechanische Preßkraft auf die kontinuierliche Bahn 314
in der ersten Richtung, d.h., von der ersten Seite 370 zur zweiten Seite 372 aufzubringen.
Eine zweite Membran 362 steht mit der zweiten Kammer 338 und der Hauptwalze 304 in
Verbindung, um eine mechanische Preßkraft auf die kontinuierliche Bahn 314 in der
zweiten Richtung, d.h., von der zweiten Seite 372 zur ersten Seite 370 aufzubringen.
Dadurch stehen die Membranen 360, 362 jeweils mit den jeweiligen unter Druck gesetzten
Kammern 336, 338 und den jeweiligen Hauptwalzen 302, 304 in Verbindung, um in Kombination
gleichzeitig eine vorbestimmte Fluidströmung sowie eine mechanische Preßkraft auf
die kontinuierliche Bahn 314 in zwei Richtungen zu bewirken und somit eine verbesserte
Entwässerung der kontinuierlichen Bahn 314 zu fördern. Bei der vorliegenden Ausführungsform
umfassen die Hauptwalzen 302, 304 jeweils zumindest einen Leerraum, wie ein Loch,
eine Nut oder eine Pore, um eine Druckdifferenz über die kontinuierliche Bahn 314
hinweg zu bewirken.
[0102] Vorzugsweise ist eine jede der ersten semipermeablen Membran 360 und der zweiten
semipermeablen Membran 362 aus einem Formgewebe ungefähr 2,54 mm (0,1 Zoll) oder weniger
dick und semipermeabel hergestellt, indem mehrere miteinander in Verbindung stehende
Poren 117 in dem Formgewebe mit einer Größe, Form, Häufigkeit und/oder Muster gebildet
sind, das derart gewählt ist, daß die gewünschte Permeabilität geschaffen wird, wie
es vollständiger oben in Verbindung mit der Membran 20 beschrieben ist. Die Permeabilität
von einer jeden der ersten semipermeablen Membran 360 und der zweiten semipermeablen
Membran 362 ist derart gewählt, daß sie größer als Null und kleiner als ungefähr 0,025
m/s (fünf CFM pro Quadratfuß) ist, wie durch das TAPPI-Testverfahren TIP 0404-20 gemessen,
und insbesondere größer als Null und kleiner als ungefähr 0,01 m/s (zwei CFM pro Quadratfuß)
ist.
[0103] Bei bevorzugten Ausführungsformen umfaßt die Preßanordnung 300 ferner eine erste
Bahnstützschicht 361 und eine zweite Bahnstützschicht 363, die jeweils auf entgegengesetzten
Seiten der kontinuierlichen Bahn 314 angeordnet sind. Nach Fig. 8 ist die erste Bahnstützschicht
361 zwischen der Membran 362 und den Walzen 302 und 312 angeordnet, und die zweite
Bahnstützschicht 363 ist zwischen der Membran 360 und den Walzen 306 und 304 angeordnet.
Alternativ kann die erste Bahnstützschicht 361 derart angeordnet sein, daß sie zwischen
der kontinuierlichen Bahn 314 und der Membran 362 liegt, und die zweite Bahnstützschicht
363 kann derart angeordnet sein, daß sie zwischen der kontinuierlichen Bahn 314 und
der Membran 360 liegt. Vorzugsweise ist eine jede der Bahnstützschichten 361, 363
ein integrales Gewebe, das eine Filzschicht und eine hydrophobe Schicht mit einer
Gesamtdicke von ungefähr 2,54 mm (0,1 Zoll) oder weniger aufweist, und ist derart
orientiert, daß die hydrophobe Schicht der kontinuierlichen Bahn 314 zugewandt ist.
[0104] Nach Fig. 8 weisen die ausgedehnten Spalten 364 und 366 im wesentlichen die gleiche
Länge auf. Jedoch können die Spaltlängen unterschiedlich sein, was beispielsweise
bewirkt werden kann, indem Hauptwalzen mit unterschiedlichen Umfängen gewählt und/oder
indem die Umfangsgröße von irgendeiner oder mehreren der Druckwalzen verändert wird,
um effektiv die Lage von einem oder mehreren Walzenspalten 320, 324 und 328 zu verändern.
[0105] Der Innendruck einer jeden der ersten Kammer 336 und der zweiten Kammer 338 wird
individuell von dem Controller 120 gesteuert und kann auf unterschiedliche Drücke
unter Druck gesetzt werden. Die Kammer 338 wird vorzugsweise auf einen größeren Druck
als der Druck der Kammer 336 unter Druck gesetzt. In manchen Fällen kann es auch erwünscht
sein, die Kammer 336 mit einem ersten Material zu befüllen und die Kammer 338 mit
einem zweiten Material, das von dem ersten Material verschieden ist, zu befüllen.
Derartige Materialien können trockene Luft, Dampf oder Gas, Wasser oder anderes Fluid
umfassen.
[0106] Zusätzlich zur Steuerung der Drücke in den Kammern 336 ist es in manchen Fällen erwünscht,
die Temperaturen der Kammern 336, 338 auf die gleichen oder möglicherweise verschiedenen
Temperaturen zu steuern. Fig. 8 zeigt ferner eine Temperaturregeleinheit 374, die
über Leitungen 376, 378 jeweils mit jeweiligen Kammern 336, 338 fluidgekoppelt ist,
um den Kammern 336, 338 ein Heiz- oder Kühlfluid, wie beispielsweise Luft, zuzuführen.
Die Temperaturregeleinheit 374 ist elektrisch mit dem Controller 120 über ein Elektrokabel
380 gekoppelt. Der Controller 120 empfängt Temperatursignale, die die Temperaturen
der Kammern 336, 338 darstellen, von dem Sensoraufbau 352. Der Controller 120 verwendet
dann diese Temperaturen, um Temperaturausgangssignale auf der Grundlage von vordefinierten
Zieltemperaturen zu erzeugen, die der Temperaturregeleinheit 374 zugeführt werden.
Die Temperaturregeleinheit 374 spricht dann auf die Temperaturausgangssignale an,
um die Temperaturen der Kammern 336, 338 zu regeln. Die Temperatur der Kammer 338
wird vorzugsweise derart gesteuert, daß sie höher als die Temperatur der Kammer 336
ist.
[0107] Alternativ kann die Temperaturregelung der Kammern 336, 338 bewirkt werden, indem
jeweils die Temperatur der von der ersten Druckquelle 340 und/oder der zweiten Fluidquelle
344 den jeweiligen Kammern 336, 338 zugeführten Fluide geregelt wird. In einem solchen
Fall kann die Temperaturregeleinheit 374 beseitigt werden.
[0108] Fig. 9 zeigt einen Teil der Walzenanordnung 400, die eine Hauptwalze 402 und eine
Druckwalze 404 umfaßt, die anstelle der zuvor beschriebenen Hauptwalzen bzw. Druckwalzen
verwendet werden können.
[0109] Die Hauptwalze 402 umfaßt eine allgemeine Struktur, die derjenigen der in Fig. 6
gezeigten Hauptwalze 160 entspricht. Während in Fig. 9 nur ein rechter Endabschnitt
406 der Hauptwalze 402 gezeigt ist, ist einzusehen, daß das linke Ende der Walze 402
ein Spiegelbild des rechten Endes 406 ist und somit die gleichen Bezugszeichen, die
dazu verwendet werden, das rechte Ende 406 zu beschreiben, für das linke Ende der
Hauptwalze 402 gelten werden.
[0110] Die Hauptwalze 402 umfaßt eine zylindrische Mittelfläche 408, linke und rechte kreisförmige
Enden 410, linke und rechte zylindrische Endflächen 412 und linke und rechte geneigte
Ringflächen 414. Die zylindrischen Endflächen 412 sind neben jeweiligen kreisförmigen
Enden 410 angeordnet. Die zylindrische Mittelfläche 408 weist einen Umfang auf, der
kleiner als der Umfang der zylindrischen Endflächen 412 ist. Die geneigten Ringflächen
414 stellen einen Übergang von der zylindrischen Mittelfläche 408 zu den zylindrischen
Endflächen 412 bereit. Die zylindrische Mittelfläche 408 umfaßt zumindest einen Leerraum,
wie eine Nut, ein Loch oder eine Pore, um eine Druckdifferenz über die Membran 20
und jedes dazwischenliegende Material hinweg zu erleichtern.
[0111] Der Abstand zwischen den geneigten Ringflächen 414 der Hauptwalze 402 ist derart
gewählt, daß er annähernd gleich der Breite der semipermeablen Membran 20 ist. Die
geneigten Ringflächen 414 definieren eine Führungsstrecke für die semipermeable Membran
20 und die Bahnträgerschicht 142. Vorzugsweise umfaßt eine jede der semipermeablen
Membran 20 und der Bahnträgerschicht 142 zwei verjüngte Außenränder, die die geneigten
Ringflächen 414 berühren. Insbesondere bevorzugt umfaßt die semipermeable Membran
20 zwei verjüngte, undurchlässige, sich in Längsrichtung erstreckende Außenränder
20A, 20B (siehe Fig. 6), um die Abdichtung entlang der geneigten Ringflächen 414 zu
verbessern. Die Bahnträgerschicht 142 umfaßt eine Filzschicht 142A und eine hydrophobe
Schicht 142B. Die Profile der semipermeablen Membran 20 und der Bahnträgerschicht
142 sind vorzugsweise derart bemessen, daß sie in das Walzenprofil der Hauptwalze
402 zwischen den geneigten Ringflächen 414 passen, so daß die Membran 20 und die zylindrischen
Endflächen 412 im wesentlichen die gleiche Umfangshöhe aufweisen. Im Betrieb wäre
eine kontinuierliche Bahn, wie eine Papierbahn (nicht gezeigt) zwischen der semipermeablen
Membran 20 und der Bahnträgerschicht 142 angeordnet.
[0112] An den kreisförmigen Enden 410 sind austauschbare Enddichtungen 416 angebracht, die
mehrere Fluidhohlräume 418 umfassen. Die Anbringung wird durch Klebstoff oder Befestigungselemente
bewirkt. Die austauschbaren Enddichtungen 416 sind vorzugsweise aus einem elastischen
Material, wie beispielsweise Gummi, hergestellt und können ein Verstärkungsgewebe,
wie Nylon oder Stahl, umfassen.
[0113] Die Druckwalze 404 umfaßt eine im allgemeinen zylindrische Struktur, die derjenigen
der in den Fig. 1-3 gezeigten Druckwalze 64 entspricht. Während nur ein rechter Endabschnitt
420 der Druckwalze 404 in Fig. 9 gezeigt ist, ist einzusehen, daß das linke Ende der
Druckwalze 404 ein Spiegelbild des rechten Endes 420 ist und somit die gleichen Bezugszeichen,
die dazu verwendet werden, das rechte Ende 420 zu beschreiben, für das linke Ende
der Druckwalze 404 gelten werden.
[0114] Die Druckwalze 404 umfaßt eine zylindrische Mittelfläche 422 und linke und rechte
kreisförmige Enden 424. Eine Abdichtungshülse 426 mit einer Innenfläche 428 und einer
Außenfläche 430 ist über der zylindrischen Mittelfläche 422 aufgenommen und in einer
festen Beziehung mit der Druckwalze 404 aufgrund von Reibungskräften gehalten, die
zwischen der zylindrischen Mittelfläche 422 und der Innenfläche 428 der Abdichtungshülse
426 wirken. Alternativ kann die Abdichtungshülse 426 durch Klebstoff oder durch Befestigungselemente,
die unter der Außenfläche 430 der Abdichtungshülse 426 angeordnet und in der zylindrischen
Mittelfläche 422 aufgenommen sind, an ihrer Stelle gehalten werden. Vorzugsweise ist
jedoch jede Abdichtungshülse 426 derart austauschbar, daß, wenn die Abdichtungshülse
426 ein unannehmbares Ausmaß an Verschleiß zeigt, die Abdichtungshülse 426 ohne die
Notwendigkeit, die Druckwalze 404 wegzuwerfen, ausgetauscht werden kann. Die Abdichtungshülse
426 umfaßt eine Beanspruchungsschicht 432 und mehrere Fluidhohlräume 434.
[0115] An den kreisförmigen Enden 424 sind austauschbare Enddichtungen 436 angebracht, die
mehrere Fluidhohlräume 438 umfassen. Die Anbringung wird mittels Klebstoff oder Befestigungselementen
bewirkt. Die austauschbaren Enddichtungen 436 sind vorzugsweise aus einem elastischen
Material, wie beispielsweise Gummi, hergestellt und können ein Verstärkungsgewebe,
wie Nylon oder Stahl, umfassen.
[0116] Die Abdichtungshülse 426 ist vorzugsweise aus einem elastischen Material, wie beispielsweise
Gummi, hergestellt. Die Beanspruchungsschicht 432 der Abdichtungshülse 426 wird dazu
verwendet, die Hoop- oder Umreifungsspannungen und/oder Beanspruchungen der Abdichtungshülse
426 über die Maschine hinweg zu halten, und umfaßt ein Verstärkungsgewebe, wie beispielsweise
Nylon oder Stahl. Die Größe, Form und Geometrie der Fluidhohlräume 434 sind derart
gewählt, daß sie insbesondere in der Nähe der sich in Längsrichtung erstreckenden
Ränder 20A, 20B der semipermeablen Membran 20 elastisch verformbar sind. Ebenso bevorzugt
erstrecken sich die Fluidhohlräume 434 entweder in Umfangsrichtung um die Abdichtungshülse
426 herum in einem wiederholten Muster über die Breite der Druckwalze 404 hinweg,
oder über die Breite der Druckwalze 404 hinweg in einem wiederholten Muster um den
Umfang der Abdichtungshülse 426 herum. Alternativ können sich die Hohlräume 434 diagonal
um die Abdichtungshülse 426 herum erstrecken.
[0117] Die Fluidhohlräume 434 sind mit einem Fluid, wie beispielsweise Luft, Wasser oder
Gel, unter Druck gesetzt, um eine nachgiebige, jedoch feste Dichtung mit der semipermeablen
Membran 20 um den zylindrischen Endflächen 412 der Hauptwalze 402 aufrechtzuerhalten.
Bei einer Form der Erfindung werden die Fluidhohlräume 434 zum Zeitpunkt der Herstellung
der Abdichtungshülse 426 unter Druck gesetzt. Alternativ werden die Drucklufthohlräume
434 zum Zeitpunkt der Herstellung der Abdichtungshülse 426 nicht unter Druck gesetzt,
sondern vielmehr kann die Abdichtungshülse 426 ein oder mehrere Ventilöffnung(en)
440 umfassen, wie beispielsweise die Art, die gewöhnlich dazu verwendet wird, um Luft
in einen Luftreifen einzuleiten, um Fluid aufzunehmen und somit die Hohlräume 434
unter Druck zu setzen. Alternativ können die Ventilöffnung(en) 440 offene Öffnungen
sein, die mit einer Fluidquelle über eine Fluidleitung und eine drehbare Fluidkupplung
verbunden sind. Bei manchen Anwendungen kann es erwünscht sein, die Fluidhohlräume
434 miteinander zu verbinden, um jegliche von außen aufgebrachte Kräfte zu verteilen
und effektiv einen einzigen Hohlraum zu bilden.
[0118] Die Fluidhohlräume 418, 438 der austauschbaren Enddichtungen 416, 436 sind mit einem
Fluid, wie Luft, Wasser oder Gel, unter Druck gesetzt. Die Größe, Form und Geometrie
der Hohlräume 418, 438 sind derart gewählt, daß sie elastisch verformbar sind, um
eine nachgiebige aber feste Dichtung zwischen den austauschbaren Enddichtungen 416,
436 und mit den zugeordneten Abdichtungsplatten, wie die Abdichtungsplatten 108, 110
von Fig. 3, aufrechtzuerhalten. Bei einer Form der Erfindung werden die Fluidhohlräume
418, 438 zum Zeitpunkt der Herstellung der Enddichtungen 416, 436 unter Druck gesetzt.
Alternativ werden die Fluidhohlräume 418, 438 zum Zeitpunkt der Herstellung der Enddichtungen
416, 436 nicht unter Druck gesetzt. Vielmehr können die austauschbaren Enddichtungen
416, 436 jeweils eine oder mehrere Ventilöffnung(en) 442, 444 umfassen, wie beispielsweise
die Art, die gewöhnlich dafür verwendet wird, um Luft in einen Luftreifen einzuleiten,
um Fluid aufzunehmen und somit die Hohlräume 418, 438 unter Druck zu setzen. Bei manchen
Anwendungen kann es erwünscht sein, die Fluidhohlräume 418 miteinander zu verbinden
oder die Fluidhohlräume 438 miteinander zu verbinden. Das Verbinden der Hohlräume
bildet effektiv einen einzigen Hohlraum, um jegliche von außen aufgebrachten Kräfte
innerhalb des gebildeten einzigen Hohlraums zu verteilen.
Ausführungsbeispiele insbesondere zum zweiten Aspekt der Erfindung (vgl. die Figuren
1 bis 13)
[0119] In den Figuren 1 bis 10 ist die betreffende Membran jeweils zu erkennen. Eine solche
Membran kann jedoch insbesondere auch bei den Ausführungsformen gemäß den Figuren
12 und 13 vorgesehen sein. Auch hier ist die Membran zweckmäßigerweise wieder auf
der den höheren Druck aufweisenden Seite der Faserstoffbahn angeordnet.
[0120] Gemäß einem zweiten Aspekt der Erfindung ergibt sich somit ein Verfahren zur Entwässerung
einer Faserstoffbahn, insbesondere einer Papier- oder Kartonbahn, bei dem die Faserstoffbahn
durch eine Entwässerungszone geführt wird, in der sie zumindest teilweise durch eine
Beaufschlagung mit unter Druck stehendem Verdrängungsfluid, insbesondere Verdrängungsgas,
entwässert wird, wobei die Faserstoffbahn zusammen mit einer porösen Membran durch
die Entwässerungszone geführt und durch die Membran hindurch mit dem Verdrängungsfluid
beaufschlagt wird.
[0121] Als Membran kann beispielsweise eine aus Folienmaterial mit Durchgangslöchern bestehende
Membran verwendet werden.
[0122] Der Druck des die Membran beaufschlagenden Verdrängungsfluids ist vorzugsweise größer
als der Umgebungsdruck.
[0123] Es kann insbesondere wieder auch eine Membran verwendet werden, wie sie im Zusammenhang
mit dem ersten Aspekt der Erfindung beschrieben wurde.
[0124] Die Membran kann insbesondere mit zusammenhängenden Poren versehen sein.
Ausführungsbeispiele insbesondere zum dritten Aspekt der Erfindung (vgl. die Figuren
10 und 11)
[0125] Fig. 10 zeigt in schematischer Darstellung eine beispielhafte Ausführungsform einer
Vorrichtung 10 zur Entwässerung einer Faserstoffbahn 12. Bei der Faserstoffbahn 12
kann es sich insbesondere um eine Papier- oder Kartonbahn handeln.
[0126] Die Entwässerungsvorrichtung 10 umfaßt eine Entwässerungszone E, in der die Faserstoffbahn
13 zumindest teilweise durch eine Beaufschlagung mit unter Druck stehendem Verdrängungsfluid,
insbesondere Verdrängungsgas 14, entwässert wird. Dabei wird die Faserstoffbahn 12
zusammen mit einer Membran 16 und einem Sieb- oder Filzband 18 durch die Entwässerungsvorrichtung
10 geführt, wobei die Faserstoffbahn 12 durch die Membran 16 hindurch mit dem Verdrängungsgas
14 beaufschlagt wird. Das Sieb- oder Filzband 18 liegt auf der gegenüberliegenden
Seite der Faserstoffbahn 12. Die Faserstoffbahn 12 wird somit zwischen der mit Gasdruck
beaufschlagten Membran 16 und dem Sieb- oder Filzband 18 durch die Entwässerungszone
E geführt.
[0127] Beim vorliegenden Ausführungsbeispiel umfaßt die Entwässerungszone E eine den Gasdruck
liefernde Verdrängungsentwässerungseinheit 20, die mit ihrer Gasaustrittsseite 25
einer beispielsweise durch eine Walze gebildeten Gegenfläche 24 gegenüberliegt, um
mit dieser einen in Bahnlaufrichtung L verlängerten Spalt 26 zu bilden, durch den
die Membran 16, das Sieb- oder Filzband 18 und die dazwischenliegende Faserstoffbahn
12 hindurchgeführt sind.
[0128] Wie anhand der Fig. 10 zu erkennen ist, ist die Entwässerungszone E in mehrere Sektionen
unterteilt, in denen der angelegte Gasdruck individuell einstellbar ist. Im vorliegenden
Fall sind z.B. drei solche Sektionen E1, E2 und E3 vorgesehen. Grundsätzlich ist auch
eine beliebige andere Anzahl von Sektionen möglich. So sind insbesondere auch vier
oder mehr Sektionen denkbar. Die in den verschiedenen Sektionen E1, E2 und E3 vorherrschenden
Drücke sind in der Fig. 10 mit p
1, p
2 und p
3 gekennzeichnet.
[0129] Die verschiedenen Sektionen Ei, d.h. beim vorliegenden Ausführungsbeispiel die Sektionen
E1, E2 und E3, können über die Breite sektioniert sein, d.h. es können über die Breite
unterschiedliche Drücke vorgesehen sein.
[0130] Die Gegenfläche 24 kann geschlossen, offen (gerillt, . . .) oder durchlässig sein.
[0131] Wie sich aus der Fig. 11 ergibt, kann in Entwässerungsrichtung betrachtet hinter
der Gegenfläche 24 ein Kasten 28 angeordnet sein, der die Flüssigkeit und / oder das
Gas aufnimmt. Der Kasten 28 kann besaugt, d.h. als Saugkasten vorgesehen sein. Auch
hier können in Bahnlaufrichtung L wieder mehrere Zonen Si vorgesehen sein, die mit
unterschiedlichen Drücken (z.B. Überdrücken und/oder Unterdrücken) beaufschlagt werden
können. Im vorliegenden Fall sind beispielsweise wieder drei Zonen S1, S2 und S3 vorgesehen.
Grundsätzlich ist jedoch auch hier wieder jede beliebige andere Anzahl von Zonen möglich.
An den Stellen 30 ist beispielsweise eine Abfuhr von Flüssigkeit oder Gas möglich.
[0132] Im übrigen besitzt die Ausführungsform gemäß Fig. 11 zumindest im wesentlichen wieder
den gleichen Aufbau wie die der Fig. 10. Einander entsprechenden Teilen sind gleiche
Bezugszeichen zugeordnet.
[0133] Mit diesen Entwässerungsvorrichtungen 10 kann das Ergebnis des Verdrängungsentwässerungsprozesses
in bezug auf den endgültigen Trockengehalt und papiertechnische Eigenschaften der
fertigen Faserstoffbahn 12 wie beispielsweise das spezifische Volumen, die Porosität,
die Oberflächenrauhigkeit und/oder dergleichen gezielt gesteuert werden. Zur Steuerung
des Entwässerungsverdrängungsprozesses kann der angelegte Gasdruck längs der Entwässerungszone
in der gewünschten Weise variiert werden. Somit kann der Entwässerungsprozeß direkt
während des Betriebs eingestellt werden. Dabei kann beispielsweise eine schonende
Anfangsentwässerung bei einem niedrigen Gasdruck erfolgen. Wird ein hoher Endtrockengehalt
gefordert, so daß kann der Gasdruck in den hinteren Sektionen der Entwässerungszone
E entsprechend erhöht werden. Wird dagegen ein hohes Volumen für die fertige Faserstoffbahn
12 gefordert, so kann der Gasdruck in den hinteren Sektionen der Entwässerungszone
E entsprechend niedrig eingestellt werden. Es ist somit insbesondere auch ein jeweiliges
Druckprofil beispielsweise in Maschinenrichtung einstellbar.
[0134] Auch hier kann insbesondere wieder eine Membran verwendet werden, wie sie im Zusammenhang
mit dem ersten Aspekt der Erfindung beschrieben wurde. Dabei kann die Membran insbesondere
auch wieder mit zusammenhängenden Poren versehen sein.
Ausführungsbeispiele insbesondere zum vierten Aspekt der Erfindung (vgl. die Figuren 12 und 13)
[0135] Fig. 12 zeigt in schematischer Darstellung eine erste Ausführungsform einer Vorrichtung
10 zur Entwässerung einer Faserstoffbahn 12. Bei der Faserstoffbahn 12 kann es sich
insbesondere um eine Papier- oder Kartonbahn handeln.
[0136] Die Entwässerungsvorrichtung 10 umfaßt eine Verdrängungsentwässerungszone E, in der
die Faserstoffbahn 12 zumindest teilweise durch eine Beaufschlagung mit Verdrängungsfluid,
hier z.B. Verdrängungsgas 14, entwässert wird.
[0137] Der Verdrängungsentwässerungszone E ist eine Presse 16 vorgeschaltet. Dabei wird
die Faserstoffbahn 12 zunächst durch die vorgeschaltete Presse 16 und daraufhin durch
die Verdrängungsentwässerungszone E geführt.
[0138] Beim vorliegenden Ausführungsbeispiel ist die vorgeschaltete Presse 16 durch eine
Schuhpresse gebildet.
[0139] Die Faserstoffbahn 12 ist beim vorliegenden Ausführungsbeispiel zusammen mit einem
Sieb- oder Filzband 18 durch die Presse 16 und die Verdrängungsentwässerungszone E
geführt.
Die Entwässerungszone E umfaßt beim vorliegenden Ausführungsbeispiel eine Verdrängungsentwässerungseinheit
20, die mit ihrer Gasaustrittsseite einer Gegenwalze 22 gegenüberliegt, über die die
mit Verdrängungsgas 14 beaufschlagte Faserstoffbahn 12 und das Sieb- oder Filzband
18 geführt sind.
[0140] Die Ausführungsform gemäß Fig. 13 unterscheidet sich von der der Fig. 12 lediglich
dadurch, daß als der Verdrängungsentwässerungszone E vorgeschaltete Presse 16' eine
Walzenpresse vorgesehen ist. Im übrigen besitzt diese Entwässerungsvorrichtung 10
den gleichen Aufbau wie die in der Fig. 12 dargestellte Vorrichtung. Einander entsprechenden
Teilen sind gleiche Bezugszeichen zugeordnet.
[0141] Grundsätzlich kann auch eine nachgeschaltete mechanische Presse vorgesehen sein.
[0142] Bei den dargestellten Entwässerungsvorrichtungen können das Ausmaß der Blattkompression
und die Höhe des angelegten Gasdruckes getrennt gesteuert werden. Dabei ist es insbesondere
möglich, das Ergebnis des Verdrängungsentwässerungsprozesses in bezug auf den endgültigen
Trockengehalt und papiertechnische Eigenschaften der fertigen Faserstoffbahn wie spezifisches
Volumen, Porosität, Oberflächenrauhigkeit und/oder der dergleichen gezielt zu steuern.
Durch die der Verdrängungsentwässerungszone vorgeschaltete Presse kann das Faservlies
auf das gewünschte Maß vorkompaktiert werden. Hierdurch kann die Permeabilität des
Faservlieses in der gewünschten Weise eingestellt werden. Durch die Entkopplung des
Entwässerungs- und Komptaktierungsprozesses können somit die Eigenschaften des fertigen
Papiers gezielt eingestellt werden. Wird das Vlies stark vorkompaktiert, so kann mehr
Wasser aus dem Vlies entfernt werden. Dies ist insbesondere bei solchen Papiersorten
erforderlich, bei denen in erster Linie ein hoher Trockengehalt nach der Presse gefordert
wird.
[0143] Auch hier kann insbesondere wieder eine Membran verwendet werden, wie sie im Zusammenhang
mit dem ersten Aspekt der Erfindung beschrieben wurde. Dabei kann die Membran insbesondere
auch wieder mit zusammenhängenden Poren versehen sein.
[0144] Grundsätzlich sind beliebige Kombinationen der verschiedenen Aspekte der Erfindung
möglich.
1. Einheitliche Membran zur Verwendung in einer Preßvorrichtung mit:
zwei sich in Längsrichtung erstreckenden Randabschnitten, und
einem semipermeablen Abschnitt mit mehreren miteinander in Verbindung stehenden Poren,
wobei der semipermeable Abschnitt zwischen den beiden sich in Längsrichtung erstreckenden
Randabschnitten angeordnet ist,
wobei die einheitliche Membran ein Formgewebe umfaßt, die einheitliche Membran eine
Dicke von weniger als ungefähr 2,54 mm (0,1 Zoll) aufweist und der semipermeable Abschnitt
eine Permeabilität aufweist, die größer als Null und kleiner als ungefähr 0,025 m/s
(fünf CFM pro Quadratfuß) ist, wie durch das TAPPI-Testverfahren TIP 0404-20 gemessen.
2. Einheitliche Membran nach Anspruch 1,
dadurch gekennzeichnet, daß
der semipermeable Abschnitt eine Permeabilität aufweist, die größer als Null und kleiner
als ungefähr 0,01 m/s (zwei CFM pro Quadratfuß) ist, wie durch das TAPPI-Testverfahren
TIP 0404-20 gemessen.
3. Einheitliche Membran nach Anspruch 1,
dadurch gekennzeichnet, daß
die Permeabilität durch mindestens einen Faktor der Faktoren Größe, Form, Häufigkeit
und Muster einer Vielzahl von Poren in dem semipermeablen Abschnitt bestimmt ist.
4. Einheitliche Membran nach Anspruch 1,
dadurch gekennzeichnet, daß
die beiden sich in Längsrichtung erstreckenden Randabschnitte derart verjüngt sind,
daß der Querschnitt der einheitlichen Membran trapezförmig ist.
5. Einheitliche Membran nach Anspruch 1,
dadurch gekennzeichnet, daß
die beiden sich in Längsrichtung erstreckenden Randabschnitte undurchlässig sind.
6. Einheitliche Membran nach Anspruch 1,
dadurch gekennzeichnet, daß
das Formgewebe eine Strömungswiderstandsschicht in der Nähe einer Oberfläche der einheitlichen
Membran bildet.
7. Einheitliche Membran nach Anspruch 6,
dadurch gekennzeichnet, daß
die einheitliche Membran eine Fluidverteilungsschicht neben der Strömungswiderstandsschicht
umfaßt.
8. Einheitliche Membran nach Anspruch 1,
dadurch gekennzeichnet, daß
sie eine abriebbeständige Oberfläche umfaßt.
9. Einheitliche Membran nach Anspruch 1,
dadurch gekennzeichnet, daß
der semipermeable Abschnitt einen Leerraumprozentsatz von weniger als 40 Prozent aufweist.
10. Verfahren zum Herstellen einer einheitlichen Membran zur Verwendung in einer Preßvorrichtung
mit den Schritten, daß:
ein Trägergewebe bereitgestellt wird, das sehr permeabel ist, und
mehrere miteinander in Verbindung stehende Poren in dem Trägergewebe gebildet werden.
11. Verfahren nach Anspruch 10,
dadurch
gekennzeichnet, daß
der Bildungsschritt die Schritte umfaßt, daß:
über Wärme schmelzbare und nicht über Wärme schmelzbare Fasern gemischt werden,
die Fasermischung in das Trägergewebe eingenäht wird, und Wärme aufgebracht wird,
um die über Wärme schmelzbaren Fasern zu schmelzen, die Leerräume in der Form von
miteinander in Verbindung stehenden Poren zurücklassen.
12. Verfahren nach Anspruch 11,
dadurch
gekennzeichnet, daß
der Nähschritt den Schritt umfaßt, daß:
die Fasermischung innerhalb des Gewebeträgers in der Nähe seiner Oberfläche aufgebracht
wird, um eine Strömungswiderstandsschicht in der Nähe der Oberfläche der einheitlichen
Membran zu bilden.
13. Verfahren nach Anspruch 12,
dadurch gekennzeichnet, daß
es den Schritt umfaßt, daß eine Strömungsverteilungsschicht in der einheitlichen Membran
definiert wird, die die von der Widerstandsschicht aufgenommene Fluidströmung verteilt.
14. Verfahren nach Anspruch 10,
dadurch gekennzeichnet, daß
es den Schritt umfaßt, daß zwei undurchlässige, sich in Längsrichtung erstreckende
Randabschnitte gebildet werden.
15. Verfahren nach Anspruch 10,
dadurch gekennzeichnet, daß
der Bildungsschritt die Schritte umfaßt, daß: eine Widerstandsschicht gebildet wird,
und eine Fluidverteilungsschicht gebildet wird.
16. Verfahren nach Anspruch 10,
dadurch gekennzeichnet, daß
der Bildungsschritt den Schritt umfaßt, daß nacheinander eine Beschichtung auf das
Trägergewebe aufgebracht wird, bis die gewünschte Permeabilität erreicht ist.
17. Verfahren nach Anspruch 16,
dadurch gekennzeichnet, daß
es den Schritt umfaßt, daß die Beschichtungsart verändert wird, um die Permeabiität
einzustellen.
18. Verfahren nach Anspruch 16,
dadurch gekennzeichnet, daß
es den Schritt umfaßt, daß Luft in die Beschichtung hinein mitgerissen wird, um die
Permeabilität einzustellen.
19. Verfahren nach Anspruch 16,
dadurch gekennzeichnet, daß
es den Schritt umfaßt, daß der Feststoffgehalt der Beschichtung eingestellt wird,
um die Permeabilität einzustellen.
20. Verfahren zur Entwässerung einer Faserstoffbahn, insbesondere einer Papier- oder Kartonbahn,
bei dem die Faserstoffbahn durch eine Entwässerungszone geführt wird, in der sie zumindest
teilweise durch eine Beaufschlagung mit unter Druck stehendem Verdrängungsfluid, insbesondere
Verdrängungsgas, entwässert wird, wobei die Faserstoffbahn zusammen mit einer porösen
Membran durch die Entwässerungszone geführt und durch die Membran hindurch mit dem
Verdrängungsfluid beaufschlagt wird.
21. Verfahren nach Anspruch 20,
dadurch gekennzeichnet,
daß als Membran eine aus Folienmaterial mit Durchgangslöchern bestehende Membran verwendet
wird.
22. Verfahren nach Anspruch 20 oder 21,
dadurch gekennzeichnet,
daß der Druck des die Membran beaufschlagenden Verdrängungsfluids größer ist als der
Umgebungsdruck.
23. Verfahren nach einem der Ansprüche 20 bis 22,
dadurch gekennzeichnet,
daß als Membran eine Membran gemäß einem der Ansprüche 1 bis 9 verwendet wird.
24. Verfahren nach einem der Ansprüche 20 bis 22,
dadurch gekennzeichnet,
daß als Membran eine gemäß dem Verfahren nach einem der Ansprüche 10 bis 19 hergestellte
Membran verwendet wird.
25. Verfahren zur Entwässerung einer Faserstoffbahn (12), insbesondere einer Papier- oder
Kartonbahn, bei dem die Faserstoffbahn (12) durch eine Entwässerungszone (E) geführt
wird, in der sie zumindest teilweise durch eine Beaufschlagung mit unter Druck stehendem
Verdrängungsfluid (14), insbesondere Verdrängungsgas, entwässert wird,
dadurch gekennzeichnet,
daß die Entwässerungszone (E) in mehrere Sektionen (E1, E2, E3) unterteilt wird, in
denen der angelegte Fluid- bzw. Gasdruck individuell einstellbar ist.
26. Verfahren nach Anspruch 25,
dadurch gekennzeichnet,
daß die Faserstoffbahn (12) zusammen mit einer Membran (16) durch die Entwässerungszone
(E) geführt wird und daß die Faserstoffbahn (12) durch die Membran (12) hindurch mit
dem Verdrängungsfluid bzw. -gas (14) beaufschlagt wird.
27. Verfahren nach Anspruch 25 oder 26,
dadurch gekennzeichnet,
daß die Entwässerungszone (E) in mehrere in Bahnlaufrichtung (L) hintereinander liegende
Sektionen (E1, E2, E3) unterteilt wird, in denen der angelegte Fluid- bzw. Gasdruck
individuell einstellbar ist.
28. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die von einer Seite her mit Verdrängungsfluid bzw. -gas (14) beaufschlagte Faserstoffbahn
(12) zusammen mit wenigstens einem Sieb- oder Filzband (18) durch die Entwässerungszone
(E) geführt wird, das auf der anderen Bahnseite angeordnet ist.
29. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß in einer in Bahnlaufrichtung (L) betrachtet vorderen Sektion der Entwässerungszone
(E) ein geringerer Fluid- bzw. Gasdruck angelegt wird als in einer in Bahnlaufrichtung
(L) betrachtet weiter hinten liegenden Sektion.
30. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß in wenigstens einer in Bahnlaufrichtung (L) betrachtet weiter hinten liegenden
Sektion der Entwässerungszone (E) ein höherer Fluid- bzw. Gasdruck angelegt wird als
in einer in Bahnlaufrichtung (L) betrachtet vorderen Sektion.
31. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß zur Erzielung eines relativ hohen Volumens der fertigen Faserstoffbahn (12) in
wenigstens einer in Bahnlaufrichtung (L) betrachtet weiter hinten liegenden Sektion
der Entwässerungszone (E) ein entsprechend niedriger Fluid- bzw. Gasdruck angelegt
wird.
32. Verfahren nach einem der Ansprüche 25 bis 31,
dadurch gekennzeichnet,
daß als Membran (16) eine Membran gemäß einem der Ansprüche 1 bis 9 verwendet wird.
33. Verfahren nach einem der Ansprüche 25 bis 31,
dadurch gekennzeichnet,
daß als Membran (16) eine gemäß dem Verfahren nach einem der Ansprüche 10 bis 19 hergestellte
Membran verwendet wird.
34. Vorrichtung (10) zur Entwässerung einer Faserstoffbahn (12), insbesondere einer Papier-
oder Kartonbahn, mit einer Entwässerungszone (E), in der die Faserstoffbahn zumindest
teilweise durch eine Beaufschlagung mit unter Druck stehendem Verdrängungsfluid (14),
insbesondere Verdrängungsgas, entwässert wird, insbesondere zur Durchführung des Verfahrens
nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Entwässerungszone in mehrere Sektionen (E1, E2, E3) unterteilt ist, in denen
der angelegte Fluid- bzw. Gasdruck individuell einstellbar ist.
35. Vorrichtung nach Anspruch 34,
dadurch gekennzeichnet,
daß die Faserstoffbahn (12) zusammen mit einer Membran (16) durch die Entwässerungszone
(E) geführt ist, wobei die Faserstoffbahn (12) durch die Membran (16) hindurch mit
dem Verdrängungsfluid bzw. - gas (14) beaufschlagbar ist.
36. Vorrichtung nach Anspruch 34 oder 35,
dadurch gekennzeichnet,
daß die Entwässerungszone (E) in mehrere in Bahnlaufrichtung (L) hintereinander liegende
Sektionen (E1, E2, E3) unterteilt ist, in denen der angelegte Fluid- bzw. Gasdruck
(14) individuell einstellbar ist.
37. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die von einer Seite her mit Verdrängungsfluid bzw. -gas (14) beaufschlagte Faserstoffbahn
(12) zusammen mit wenigstens einem Sieb- oder Filzband (18) durch die Entwässerungszone
(E) geführt ist, das auf der anderen Bahnseite angeordnet ist.
38. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß in einer in Bahnlaufrichtung (L) betrachtet vorderen Sektion der Entwässerungszone
(E) ein geringerer Fluid- bzw. Gasdruck anlegbar ist als in einer in Bahnlaufrichtung
(L) betrachtet weiter hinten liegenden Sektion.
39. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß in wenigstens einer in Bahnlaufrichtung (L) betrachtet weiter hinten liegenden
Sektion der Entwässerungszone (E) ein höherer Fluid- bzw. Gasdruck anlegbar ist als
in einer in Bahnlaufrichtung (L) betrachtet vorderen Sektion.
40. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß zur Erzielung eines relativ hohen Volumens der fertigen Faserstoffbahn (12) in
wenigstens einer in Bahnlaufrichtung (L) betrachtet weiter hinten liegenden Sektion
der Entwässerungszone (E) ein entsprechend niedriger Fluid- bzw. Gasdruck anlegbar
ist.
41. Vorrichtung nach einem der Ansprüche 34 bis 40,
dadurch gekennzeichnet,
daß als Membran (16) eine Membran gemäß einem der Ansprüche 1 bis 9 vorgesehen ist.
42. Vorrichtung nach einem der Ansprüche 34 bis 40,
dadurch gekennzeichnet,
daß als Membran (16) eine gemäß dem Verfahren nach einem der Ansprüche 10 bis 19 hergestellte
Membran vorgesehen ist.
43. Verfahren zur Entwässerung einer Faserstoffbahn (12), insbesondere einer Papier- oder
Kartonbahn, bei dem die Faserstoffbahn (12) durch eine Verdrängungsentwässerungszone
(E) geführt wird, in der sie zumindest teilweise durch eine Beaufschlagung mit Verdrängungsfluid
(14), insbesondere Verdrängungsgas, entwässert wird,
dadurch gekennzeichnet,
daß die Faserstoffbahn (12) überdies durch eine der Verdrängungsentwässerungszone
(E) vorgeschaltete Presse (16, 16') geführt wird.
44. Verfahren nach Anspruch 43,
dadurch gekennzeichnet,
daß als vorgeschaltete Presse eine Schuhpresse (16) verwendet wird.
45. Verfahren nach Anspruch 43,
dadurch gekennzeichnet,
daß als vorgeschaltete Presse eine Walzenpresse (16') verwendet wird.
46. Verfahren nach einem der Ansprüche 43 bis 45,
dadurch gekennzeichnet,
daß die Faserstoffbahn (12) zusammen mit einer porösen Membran durch die Verdrängungsentwässerungszone
(E) geführt und durch die Membran hindurch mit dem Verdrängungsfluid bzw. -gas beaufschlagt
wird.
47. Verfahren nach Anspruch 46,
dadurch gekennzeichnet,
daß als Membran eine Membran gemäß einem der Ansprüche 1 bis 9 verwendet wird.
48. Verfahren nach Anspruch 46,
dadurch gekennzeichnet,
daß als Membran eine gemäß dem Verfahren nach einem der Ansprüche 10 bis 19 hergestellte
Membran verwendet wird.
49. Vorrichtung (10) zur Entwässerung einer Faserstoffbahn (12), insbesondere einer Papier-
oder Kartonbahn, mit einer Verdrängungsentwässerungszone (E), in der die Faserstoffbahn
(12) zumindest teilweise durch eine Beaufschlagung mit Verdrängungsfluid (14), insbesondere
Verdrängungsgas, entwässert wird, insbesondere zur Durchführung des Verfahrens nach
einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß der Verdrängungsentwässerungszone (E) eine insbesondere mechanische Presse (16,
16') vorgeschaltet ist und daß die Faserstoffbahn (12) zunächst durch die vorgeschaltete
Presse (16, 16') und daraufhin durch die Verdrängungsentwässerungszone (E) geführt
ist.
50. Vorrichtung nach Anspruch 49,
dadurch gekennzeichnet,
daß als vorgeschaltete Presse eine Schuhpresse (16) vorgesehen ist.
51. Vorrichtung nach Anspruch 49,
dadurch gekennzeichnet,
daß als vorgeschaltete Presse eine Walzenpresse (16') vorgesehen ist.
52. Vorrichtung nach einem der Ansprüche 49 bis 51,
dadurch gekennzeichnet,
daß die Faserstoffbahn (12) zusammen mit einer porösen Membran durch die Verdrängungsentwässerungszone
(E) geführt und durch die Membran hindurch mit dem Verdrängungsfluid bzw. -gas beaufschlagbar
ist.
53. Vorrichtung nach Anspruch 52,
dadurch gekennzeichnet,
daß als Membran eine Membran gemäß einem der Ansprüche 1 bis 9 vorgesehen ist.
54. Vorrichtung nach Anspruch 52,
dadurch gekennzeichnet,
daß als Membran eine gemäß dem Verfahren nach einem der Ansprüche 10 bis 19 hergestellte
Membran verwendet wird.