BACKGROUND OF THE INVENTION
1. Field of the invention.
[0001] The present invention relates to a pressing apparatus, and more particularly, to
a pressing apparatus for de-watering a continuous web, such as a paper web.
2. Description of the related art.
[0002] For many years attempts have been made to use external air pressure to force water
out of a paper web. Rather than compress a sheet at a press nip to the point where
hydraulic pressure drives water out, as is the case in normal wet pressing, it was
reasoned that more water could be removed, and sheet bulk could be maintained, if
air pressure could be applied to supplement or replace roller nip generated hydraulic
pressures. One such attempt involves providing a multi-roller structure forming a
closed chamber, wherein air is circulated from the chamber through the roll surface
to convect moisture out of the paper web that is wrapped over the roll.
[0003] Also, it has been recognized that conventional wet pressing methods are very inefficient
in that only a small portion of a roller's circumference is used for processing the
paper web. To overcome this limitation, some attempts have been made to adapt a solid
impermeable band to form an extended nip for pressing the paper web to de-water the
paper web. One problem with such an approach, however, is that the impermeable band
prevents the flow of a drying fluid, such as air, through the paper web.
[0004] Accordingly, a need exists for an improved pressing apparatus which provides enhanced
de-watering of a continuous web by simultaneously effecting both a predetermined fluid
flow through and a mechanical pressing force on a continuous web.
SUMMARY OF THE INVENTION
[0005] The present invention provides a pressing apparatus which provides enhanced de-watering
of a continuous web by simultaneously effecting both a predetermined fluid flow through
and a pressing force on a continuous web.
[0006] The invention comprises, in one form thereof, an apparatus for processing a continuous
web having a first side and a second side. A plurality of rollers are arranged for
cooperative rotation, wherein each of the plurality of rollers has a first circular
end, a second circular end and a cylindrical middle surface. The plurality of rollers
are positioned to define a corresponding plurality of nips. The continuous web is
processed through at least two of the plurality of nips. At least a first roller of
the plurality of rollers has at least one void formed in the cylindrical middle surface.
First and second sealing panels engage the first and second circular ends of each
of the plurality of rollers. The first and second sealing panels and the plurality
of rollers define a chamber. A first pressure source is fluidly coupled to the chamber
to pressurize the chamber. A membrane is positioned adjacent the first side of the
continuous web to separate the continuous web from direct communication with the chamber.
The membrane is structured and adapted to have a permeability which permits a predetermined
fluid flow therethrough to the continuous web, and structured and adapted for communicating
with the pressurized chamber and the at least one void to apply a mechanical pressing
force to the continuous web.
[0007] In another aspect of the invention, a pressing assembly defines a chamber having
an inlet and an outlet. A first pressure source is fluidly coupled to the chamber
to pressurize the chamber with a fluid. A membrane is positioned adjacent the first
side of the continuous web. The continuous web and the membrane enter the chamber
at the inlet and exit the chamber at the outlet. A differential pressure source is
coupled to the chamber to effect a flow of the fluid through the membrane and the
continuous web, which in turn effects a fluid flow between the chamber and the differential
pressure source. The membrane is structured and adapted to have a permeability which
permits a predetermined flow of the fluid therethrough to the continuous web, and
structured and adapted for communicating with the pressurized chamber and the differential
pressure source to apply a mechanical pressing force to the continuous web.
[0008] In still another aspect of the invention, first and second sealing panels and a plurality
of rollers define a plurality of chambers. At least a first pressure source is fluidly
coupled to each of the plurality of chambers to pressurize the plurality of chambers.
At least one semipermeable membrane is structured and adapted to engage a portion
of a plurality of inlet roller nips, to engage the cylindrical middle surface of a
portion of a plurality of main rollers and to engage a portion of the plurality of
outlet roller nips to define a plurality of expanded nips.
[0009] An advantage of the present invention is that the invention simultaneously effects
both a predetermined fluid flow through and a mechanical pressing force on a continuous
web, such as a paper web, to promote enhanced de-watering of the continuous web.
[0010] Another advantage of the present invention, when multiple chambers are defined, is
the ability to simultaneously effect both a predetermined fluid flow through and a
mechanical pressing force on a continuous web in a first direction in a first chamber,
and simultaneously effect both a predetermined fluid flow through and a mechanical
pressing force on a continuous web in a second direction opposite to the first direction
in a second chamber to effect de-watering through both major surfaces of the continuous
web.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] The above-mentioned and other features and advantages of this invention, and the
manner of attaining them, will become more apparent and the invention will be better
understood by reference to the following description of embodiments of the invention
taken in conjunction with the accompanying drawings, wherein:
Fig. 1 is a partially schematic side view of an embodiment of the present invention;
Fig. 2 is perspective side view of the roller configuration of the embodiment of Fig.
1;
Fig. 3 is a partial front view of the roller configuration of the embodiment of Fig.
1;
Fig. 4 is a schematic illustration of a variant of an end sealing panel of the present
invention;
Fig. 5 is a schematic illustration of a variant of another end sealing panel of the
present invention;
Fig. 6 is an exaggerated side view of a variant of a main roller profile of the invention;
Fig. 7 is a schematic illustration of a variant of the single chamber embodiment of
Fig. 1; and
Fig. 8 is a schematic illustration of an embodiment of the invention including two
chambers.
Fig. 9 is a schematic illustration of another embodiment of the invention.
Fig. 10 is a schematic illustration of still another embodiment of the invention.
[0012] Corresponding reference characters indicate corresponding parts throughout the several
views. The exemplifications set out herein illustrates preferred embodiments of the
invention, and such exemplifications are not to be construed as limiting the scope
of the invention in any manner.
DETAILED DESCRIPTION OF THE INVENTION
[0013] Referring now to the drawings and particularly to Fig. 1, there is shown a press
arrangement 10 which is particularly useful in paper making. Press arrangement 10
includes a frame 12, a loading cylinder 14, a press roller assembly 16, a tensioning
assembly 18, a membrane 20 and a control unit 21.
[0014] Frame 12 includes a main frame 22, an upper pivot frame 24, a lower pivot frame 26,
an upper pivot arm 28 , a lower pivot arm 30 and a pair of side frames 32, 33. Side
frame 32 is shown with a portion broken away to expose an interior portion of side
frame 33. Pivot frames 24, 26 are fixedly attached, such as by welds or bolts, to
main frame 22. Pivot arms 28, 30 are pivotally mounted to pivot frames 24, 26, respectively,
by a plurality of pivot pins 34 in a conventional manner. Each of the pivot arms 28,
30 have a first end 36, 38, respectively, adapted to mount opposing ends 40, 42 of
loading cylinder 14 via pins 44. Each of the pivot arms 28, 30 has a second end 46,
48, adapted to fixedly mount, such as by welds or bolts, bearing housings 50, 52,
respectively. First and second side frames 32, 33 are mounted to opposing sides of
main frame 22.
[0015] Pressing roller assembly 16 includes a plurality rollers 60, 62, 64, 66 (four rollers
as shown) arranged for cooperative rotation in frame 12. By cooperative rotation,
it is meant that a rotational velocity at the circumferential surface of each of the
rollers 60, 62, 64, 66 together are substantially equal, with essentially no slippage
between the roller surfaces. For convenience, sometimes rollers 60, 62 will be referred
to as main rollers and rollers 64, 66 will be referred to as cap rollers.
[0016] As shown in Figs. 2 and 3, generally, each of the rollers 60, 62, 64, 66 are closed
hollow cylinders having a first circular end 68, 70, 72, 74, respectively, a second
circular end 76, 78, 80, 82, respectively, and a cylindrical middle circumferential
surface 84, 86, 88, 90, all being radially symmetrical about an axis of rotation 92,
94, 96, 98, respectively. A set of seals 99 may be attached to first circular ends
68, 70, 72, 74 and second circular ends 76, 78, 80, 82. An axial extent of each of
the main rollers 60, 62 and cap rollers 64, 66 together are arranged in parallel.
Preferably, a circumference of either of cap rollers 64, 66 is smaller than a circumference
of either of main rollers 60, 62. As shown in Fig. 1, the rollers 60, 62, 64, 66 are
positioned to define a corresponding number of roller nips 100, 102, 104, 106.
[0017] Cap rollers 64, 66 are used to create a seal along the axial extent of main rollers
60, 62 at roller nips 100, 102, 104, 106. Each of rollers 60, 62, 64, 66 may include
an elastic coating, such as rubber, to aid in sealing at the roller nips. Sealing
at roller nips 100, 102, 104, 106 requires relatively uniform pressure along all roller
nips 100, 102, 104, 106. With the likely deflection of main rollers 60,62, due to
the exertion of force thereon by cap rollers 64, 66, some mechanism is needed to aid
in providing uniform nip pressure at roller nips 100, 102, 104, 106. Accordingly,
cap rollers 64, 66 can use hydraulic pressure and a series of pistons within the roller
shell of rollers 64, 66 to press the roller shell of rollers 64, 66 into the roller
shell of main rollers 60, 62 to provide uniform pressure at the associated nips. Alternatively,
a crowned cap roller could be used.
[0018] As shown in Fig. 3, first and second side frames 32, 33 include first and second
sealing panels 108, 110 respectively, mounted to an interior side thereof. First and
second sealing panels 108, 110 are forced by side frames 32, 33 to engage a portion
of first circular ends 68, 70, 72, 74 and a portion of second circular ends 76, 78,
80, 82 respectively, of rollers 60, 62, 64, 66 of pressing roller assembly 16 to define
a chamber 112, and to effect end sealing of chamber 112. Optionally, at least one
tension bar 113 is connected between first sealing panel 108 and second sealing panel
110 in chamber 112. In some embodiments, first and second sealing panels 108, 110
are flexible and are structured and adapted to substantially conform to the shape
of first circular ends 68, 70, 72, 74 and second circular ends 76, 78, 80, 82 , respectively,
of rollers 60, 62, 64, 66. To further aid in the sealing of chamber 112, seals are
formed between first and second sealing panels 108, 110 and first and second circular
ends 68, 70, 72, 74 and 76, 78, 80, 82, respectively. Such seals can include mechanical
seals and fluid seals.
[0019] Main rollers 60, 62 are fixedly rotatably mounted to side frames 32, 33 using conventional
bearing mounting assemblies, such as those containing roller bearings or bushings.
In this context, fixedly rotatably mounted means that the axes 92, 94 of rollers 60,
62 are not shifted in location with respect to main frame 22 and side frames 32, 33
following installation, but rotation about axes 92, 94 is permitted.
[0020] Preferably, main roller 60, which fluidly communicates with chamber 112 via membrane
20, includes at least one void in the form of a groove, a hole and a pore formed in
its middle circumferential surface to facilitate a pressure differential across membrane
20 and any intervening material, such as continuous web 140. Also, it is preferred
that main roller 62, which does not fluidly communicate with chamber 112 via membrane
20, not include any such void in its middle circumferential surface. Each of the rollers
may include an elastic coating, such as rubber over all or part of their roller surface,
to aid in the sealing of chamber 112 at roller nips 100, 102, 104, 106.
[0021] Cap rollers 64, 66 are rotatably mounted to bearing housings 50, 52, respectively.
However, the axes of rotation 96, 98 of rollers 64, 66 are moveable with respect to
main frame 22 via pivot arms 28, 30, respectively, to effect a loading of press roller
assembly 16. Since a circumference, and a corresponding diameter, of either of cap
rollers 64, 66 is preferably smaller than a circumference, and a corresponding diameter,
of either of main rollers 60, 62, the forces generated on cap rollers 64, 66 are reduced,
thus allowing smaller structures to contain the forces within chamber 112.
[0022] For example, cap rollers 64, 66, being relatively smaller, require lower actuating
force than would a relatively larger counterpart cap roller. If the diameters of cap
rollers 64, 66 are one-third the diameters of main rollers 60, 62, the forces exerted
on cap rollers 64, 66 can be reduced by 40 percent compared to the forces on main
rollers 60, 62.
[0023] In general, the closer the distance between main rollers 60 and 62, and the greater
the difference in diameters between main rollers 60, 62 and cap rollers 64,66, the
greater the difference in forces exerted on frame 12 by main rollers 60, 62 and cap
rollers 64,66. This arrangement allows the support structure, e.g. frame 12, for press
roller assembly 16 to become simpler. For example, with most of the force exerted
by the relatively larger main rollers 60,62, main rollers 60,62 are mounted on bearings
fixedly attached to side frames 32,33, which in turn are fixedly attached to main
frame 22. By structurally tying main rollers 60 and 62 together, and fixing their
relative positions, the major forces within the press arrangement 10 are contained
within a relatively simple mechanical structure.
[0024] In order to maintain membrane 20 at a proper operating tension, tensioning assembly
18 is mounted to main frame 22. Tensioning assembly 18 includes a tension cylinder
114 and a tension roller 116. Tension roller 116 is rotatably coupled to tension cylinder
114, which moves tension roller 116 in a direction transverse to an axis of rotation
of tension roller 116.
[0025] As shown in Fig. 1 in relation to Fig. 2, membrane 20 travels in the direction of
arrow 118 and is routed over a portion of circumferential surface 88 of cap roller
64, passes into inlet roller nip 100, passes over a portion of circumferential surface
84 of main roller 60 within chamber 112, passes out of outlet roller nip 102, passes
over a portion of circumferential surface 90 of cap roller 66, and passes around about
half of the circumferential surface of tension roller 116. Preferably, membrane 20
is a continuous belt made of a semipermeable material structured and adapted to have
a predetermined permeability which permits a predetermined fluid flow therethrough.
Also, preferably semipermeable membrane 20 is both gas permeable and liquid permeable
to a limited degree. Furthermore, membrane 20 is structured and adapted to aid in
the sealing of chamber 112 at inlet nip 100 and outlet nip 102. In chamber 112, after
being pressurized, the combined effect of inlet nip 100, membrane 20 passing circumferentially
around main roller 60, and outlet nip 102 is to effectively form a single expanded
nip 115 for applying a mechanical pressing force on main roller 60 and any intervening
material placed between membrane 20 and main roller 60. Thus, membrane 20 communicates
with pressurized chamber 112 and main roller 60 to simultaneously effect both a predetermined
fluid flow through and a mechanical pressing force on the intervening material.
[0026] In preferred embodiments, membrane 20 is made of a rubberized fabric about 0.1 inches
thick, or less, and is made semipermeable by forming a plurality of holes 117 (see
Fig. 6) through the fabric having a size, shape, frequency and/or pattern selected
to provide the desired permeability. Preferably, the plurality of holes are formed
by a laser. The permeability is selected to be greater than zero and less than about
five CFM per square foot as measured by TAPPI test method TIP 0404-20, and more preferably,
is selected to be greater than zero and less than about two CFM per square foot. Thus,
semipermeable membrane 20 is both gas permeable and liquid permeable to a limited
degree.
[0027] Control unit 21 includes a controller 120, a pneumatic source 122, a fluid source
124, a differential pressure source 125 and a sensor assembly 126.
[0028] Preferably, controller 120 includes a microprocessor and memory for storing and executing
a control program, and includes an I/O device for establishing input/output communications
and data transfer with external devices. Controller 120 can be, for example, an industrial
programmable controller of a type which is well known in the art.
[0029] Pneumatic source 122 includes a plurality of individually controllable outputs. Pneumatic
source 122 is fluidly coupled to loading cylinder 14 via conduit 128. Pneumatic source
122 is also fluidly coupled to tension cylinder 114 via conduit 130. While the preferred
working fluid to operate cylinders 14, 114 is compressed air, those skilled in the
art will recognize that the pneumatic system could be converted to another fluid source
using another gas, or a liquid working fluid.
[0030] Fluid source 124 is fluidly coupled to chamber 112 via conduit 132. The type of fluid
is selectable by the user depending the type of material that press arrangement 10
is processing. For example, in some applications, it may be desirable to use compressed
dry air to pressurize chamber 112 to a predefined pressure, which in preferred embodiments
of the invention, is a pressure greater than 30 p.s.i. above pressure the differential
pressure of differential pressure source 125. In other applications, it may be desirable
to use a pressurized gas, such as a heated gas, or a liquid, such as water, or a liquid
solution.
[0031] In the embodiment of Fig. 1, fluid flows into chamber 112 via conduit 132 and flows
out of chamber 112 via the voids, e.g. grooves, holes or pores, formed in middle circumferential
surface 84 of main roller 60. The voids in main roller 60 communicate with differential
pressure source 125 via a conduit 133. Differential pressure source 125 can be, for
example, a vacuum source, a pressure source operating at a pressure lower than the
pressure in chamber 112, or simply a vent to the atmosphere, which is coupled via
conduit 133 to the interior of roller 60 to effect evacuation of the voids.
[0032] Alternatively, no venting via conduit 133 may be required if main roller 60 includes
grooved voids, and the grooves communicate with atmospheric pressure. Similarly, venting
via conduit 133 may be eliminated if the roller voids, such as blind holes, are large
enough, and if they enter into the nip at a pressure lower than chamber pressure.
In this case, the voids will act like a differential pressure source until the voids
reach the chamber pressure. The void size can be selected to control the efficiency
of the de-watering process.
[0033] The pressurized chamber 112 includes an inherent pressure relief, in that excessive
pressure buildup in chamber 112 will result in one or more of rollers 60, 62, 64,
66 opening to bleed off the pressure, rather than undergoing catastrophic failure.
Controller 120 is electrically connected to pneumatic source 122 via electrical cable
134 to selectively control the fluid output thereof to independently control the operation
of loading cylinder 14 to provide loading to press roller assembly 16 and to independently
control the operation of tension cylinder 114 to provide a predetermined tension on
semipermeable membrane 20.
[0034] Controller 120 is electrically connected to fluid source 124 via electrical cable
136. Controller 120 is further electrically connected to sensor assembly 126 via electrical
cable 138. Sensor assembly 126 includes one or more sensing mechanisms to provide
to controller 120 electrical feedback signals representing one or any combination
of a pressure, a temperature or other environmental factor within chamber 112. Controller
120 processes the feedback signals to generate output signals which are supplied to
fluid source 124 to selectively control the fluid output thereof.
[0035] In operation, controller 120 processes feedback signals received from sensor assembly
126 to control a pressure of pressurized chamber 112, preferably to a pressure greater
than 30 p.s.i. above the pressure of differential pressure source 125. Rollers 60,
62, 64, 66 are rotated with little or no slip between them, and membrane 20 is driven
at the same velocity as the surface velocity of rollers 60, 62, 64, 66. A continuous
web, or paper web, 140 and a web carrying layer 142 are started into inlet roller
nip 100 in the direction of arrow 143 and is guided by membrane 20 through expanded
nip 115 to outlet roller nip 102. Membrane 20 is positioned within roller assembly
16 to be adjacent a first side 144 of continuous web 140 to effectively separate continuous
web 140 from direct communication with pressurized chamber 112. In other words, the
fluid in chamber 112 cannot act on continuous web 140 except through membrane 20.
Web carrying layer 142 is positioned to contact cylindrical middle surface 84 of main
roller 60 and to contact a second side 146 of continuous web 140.
[0036] Membrane 20 is structured and adapted to have a permeability which permits a predetermined
fluid flow therethrough to continuous web 140, and communicates with pressurized chamber
112 and at least one void of main roller 60 to generate a pressure difference across
membrane 20 and continuous web 140. This pressure drop results in a mechanical pressing
force being applied to continuous web 140, which helps to consolidate it. Thus, membrane
20 communicates with pressurized chamber 112 and main roller 60 to simultaneously
effect both a predetermined fluid flow through and a mechanical pressing force on
continuous web 140, in combination, to promote enhanced de-watering of continuous
web 140.
[0037] The invention is particularly advantageous when the dry content of continuous web
140 prior to de-watering is higher than about 6 percent and lower than about 70 percent,
and when the basis weight of continuous web 140 is higher than about 25 g/m
2.
[0038] Web carrying layer 142 preferably has a thickness of about 0.1 inches or less, and
may be a felt, or alternatively, may include a felt positioned adjacent a hydrophobic
layer, wherein the hydrophobic layer is positioned adjacent second side 146 of continuous
web 140. Preferably, web carrying layer 142 includes a felt layer 142A integral with
a hydrophobic layer 142B, wherein hydrophobic layer 142B transports water via capillary
action away from continuous web 140 to be received by felt layer 142A (see Fig. 6).
The hydrophobic layer 142B provides an anti-rewetting effect, thereby avoiding water
flowing back into continuous web 140.
[0039] The relative amounts of mechanical pressure applied to continuous web 140 is effected
by factors such as the chamber pressure in chamber 112, the permeability of semipermeable
membrane 20, and the permeability of continuous web 140. The fluid flow, preferably
air, through continuous web 140 is effected by factors such as the chamber pressure
in chamber 112, the permeability of semipermeable membrane 20, and the size (e.g.,
length) of chamber 112. The dynamic fluid pressure in pressurized chamber 112 is controlled
based upon the monitoring of the chamber pressure by sensor assembly 126. Sensor assembly
126 senses a pressure within chamber 112 and provides a pressure feedback signal to
controller 120. Controller 120 processes the pressure feedback signal to generate
a pressure output signal which is supplied to fluid source 124 to selectively control
the fluid output thereof to control a pressure of pressurized chamber 112 to a predetermined
pressure, preferably to a pressure greater than 30 p.s.i. above the pressure of differential
pressure source 125. If a temperature in relation to pressure within pressurized chamber
112 is of concern, sensor assembly 126 may be adapted to sense a temperature within
chamber 112 and provide a temperature feedback signal to controller 120. Controller
120 processes the temperature feedback signal, along with the pressure feedback signal,
to generate output signals which are supplied to fluid source 124 to regulate the
pressure and temperature in pressurized chamber 112.
[0040] Controller 120 also controls the loading of main rollers 60, 62 by cap rollers 64,
66 by controlling an amount of pressure that loading cylinder 14 applies to upper
and lower pivot arms 28, 30. Preferably, the amount loading of main rollers 60, 62
is related to a pressure in pressurized chamber 112, which is monitored by a pressure
sensor of sensor assembly 126. The loading may include a bias loading in addition
to a loading proportional to the pressure in chamber 112.
[0041] Of course, variations of the embodiment described above are possible. For example,
and referring to Fig. 4, to maintain the end sealing of chamber 112, and to prevent
wear between sealing panels 108, 110 and rollers 60, 62, 64 and 66, a lubricating
and sealing fluid like air or water, or some viscous fluid, can be forced into a plurality
of seal ports 148 via a conduit ring 150 coupled to a fluid source 152 via conduit
153. Pressurized fluid source 152 is electrically coupled to controller 120 via electrical
cable 155, and is controlled thereby. Seal ports 148 in sealing panels 108, 110 are
located to face the ends of the rollers 60, 62, 64, 66 to pass the pressurized lubricating
and sealing fluid between sealing panels 108, 110 and portions of the respective circular
ends 68, 70, 72, 74 and 76, 78, 80, 82. Thus, due to the injection of the lubricating
and sealing fluid, sealing panels 108, 110 float over the circular ends 68, 70, 72,
74 and 76, 78, 80, 82 at small controllable distances, with little or no physical
contact between sealing panels 108, 110 and the circular ends 68, 70, 72, 74 and 76,
78, 80, 82 of rollers 60, 62, 64, 66. Although there is leakage around such a seal
arrangement, the amount of leakage is controllable to be small by careful selection
of distance tolerances and the lubricating and sealing fluid.
[0042] In addition, it is contemplated that main roller 62 also include venting to a differential
source, and that continuous web 140, along with membrane 20, is routed to pass through
all of the four nips, such as for example, into nip 106, out nip 104, into nip 100
and out nip 102 to increase the dwell time that membrane 20 interacts with continuous
web 140.
[0043] Fig. 5 shows another variant of the invention, in which end sealing of chamber 112
is improved by locating fluid ports 154 in sealing panels 108, 110 to be near, but
not located to face, the ends of the rollers 60, 62, 64, 66. A conduit ring 156 is
coupled to ports 154, and is coupled to fluid source 152 via conduit 158, to supply
a lubricating and sealing fluid, such as air or water, or some other viscous fluid,
into chamber 112 through ports 154. Fluid source 152 is electrically coupled to controller
120 via electrical cable 155, and is controlled thereby. Pressure in chamber 112 forces
the added fluid between circular ends 68, 70, 72, 74 and 76, 78, 80, 82 of rollers
60, 62, 64, 66 and sealing panels 108, 110, respectively, allowing sealing panels
108, 110 to float over the circular ends. In this embodiment, leakage is controlled
by controlling the spacing between circular ends 68, 70, 72, 74 and 76, 78, 80, 82
of rollers 60, 62, 64, 66 and sealing panels 108, 110, respectively, so that excessive
leakage doesn't occur in one area, and so as to prevent excessive wear between the
sealing panels 108, 110 and rollers 60, 62, 64, 66.
[0044] Fig. 6 shows another variant of the invention, in which a main roller 160 having
the profile shown would replace main roller 60. Main roller 160 includes a first circular
end 162, a second circular end 164, a first cylindrical end surface 166 and a second
cylindrical end surface 168, a first inclined annular surface 170, a second inclined
annular surface 172 and a cylindrical middle surface 174. First cylindrical end surface
166 is located adjacent first circular end 162 and second cylindrical end surface
168 is located adjacent second circular end 164. Cylindrical middle surface 174 has
a circumference smaller than a circumference of first and second cylindrical end surfaces
166, 168. First inclined annular surface 170 provides a transition from cylindrical
middle surface 174 to first cylindrical end surface 166, and second inclined annular
surface 172 provides a transition from cylindrical middle surface 174 to second cylindrical
end surface 168.
[0045] A width of cylindrical middle surface 174 is selected to be approximately equal to
a width of membrane 20. First and second inclined annular surfaces 170, 172 define
a guide path for membrane 20, continuous web 140 and web carrying layer 142. Preferably,
each of membrane 20, and web carrying layer 142 includes a pair of tapered outer edges
which contact the first and second inclined annular surfaces 170, 172. Most preferably,
permeable membrane 20 includes a pair of tapered impermeable longitudinal outer edges
20A, 20B formed adjacent a semipermeable portion 20C to enhance sealing along inclined
annular surfaces 170, 172. Also, preferably, web carrying layer 142 includes felt
layer 142A and hydrophobic layer 142B. Optionally, web carrying layer 142 may include
a pair of impermeable longitudinal outer edges which contact first and second inclined
annular surfaces 170, 172.
[0046] Fig. 7 schematically illustrates another variant of the invention, in which a press
arrangement 200 includes a roller assembly 201 including a plurality of rollers 202,
204, 206, 208 arranged in a square pattern for cooperative rotation in processing
a first continuous web 209, such as a paper web, riding on a web carrying layer 210
and a second continuous web 212, such as a paper web, riding on a web carrying layer
214. Web carrying layers 210, 214 may be, for example, felt layers.
[0047] Each of the rollers 202, 204 are of the type previously described above as main roller
60, and each of the rollers 206, 208 are of the type described above as cap rollers
64, 66, and thus, will not be described again in detail. Also, it is to be understood
that sealing panels of the same general type as described above with respect to sealing
panels 108 and 110 would be utilized in the manner described above with respect to
Figs. 4 and 5 to define a chamber 216. Control and pressure source connections to
chamber 216, and associated operation, are as described above with respect to Figs.
1-4, and thus will not be repeated here.
[0048] For purposes of this discussion, rollers 202 and 204 will be referred to as main
rollers, and rollers 206, 208 will be referred to as cap rollers, although in the
present embodiment, rollers 202, 204, 206, 208 are of approximately the same size.
Main rollers 202, 204 and cap rollers 206, 208 are positioned to define a plurality
roller nips 220, 222, 224, 226 of which based upon a rotation of main roller 202 in
the direction depicted by arrow 230, roller nips 220, 224 constitute inlet roller
nips of press arrangement 200, and roller nips 222, 226 constitute outlet roller nips.
[0049] First continuous web 209 and first web carrying layer 210 enter input nip 220 and
are processed through chamber 216 around the circumference of main roller 202. Second
continuous web 212 and second web carrying layer 214 enter inlet nip 224 and are processed
through chamber 216 around the circumferential surface of main roller 204. First web
carrying layer 210, continuous web 209, continuous web 212 and second web carrying
layer 214 are processed through outlet nip 222 to form a laminated web 228 made up
of continuous webs 209, 212. During processing, second continuous web 212 remains
in contact with first continuous web 209 due to surface tension, or due to venting
in main roller 202 by holes, grooves or pores formed in the cylindrical surface of
main roller 202. It is contemplated that second continuous web 212 and second web
carrying layer 214 could be replaced by a coating layer which would be applied to
continuous web 209.
[0050] Fig. 8 is a schematic illustration of another embodiment of the invention in which
a press arrangement 300 includes a roller assembly 301 including a plurality of rollers
302, 304, 306, 308, 310 and 312 arranged for cooperative rotation in processing a
continuous web 314, such as a paper web. Each of the rollers 302 ,304 are of the type
previously described as main roller 60 and/or 160, and are fluidly coupled to a differential
pressure source in a manner as described above. Rollers 306, 308, 310, 312 are of
the type described above with respect to non-vented main and cap rollers, such as
main roller 62 and cap roller 64, and thus, will not be described again in detail.
Also, sealing panel 316 is of the same general type as described above with respect
to sealing panels 108 and 110, and can be utilized in the manner described above with
respect to Figs. 4 and 5.
[0051] For purposes of this discussion, rollers 302 and 304 will be referred to as main
rollers, and rollers 306, 308, 310 and 312 will be referred to as cap rollers based
upon their respective primary function within a given chamber with respect to continuous
web 314. In the present embodiment, rollers 302, 304, 306, 308, 310 and 312 are of
approximately the same size. Main rollers 302, 304 and cap rollers 306, 308, 310,
312 are positioned to define a plurality of roller nips 320, 322, 324, 326, 328, 330,
332, of which based upon a rotation of main roller 302 in the direction depicted by
arrow 334, roller nips 320, 326, 330 constitute inlet roller nips of press arrangement
300, roller nips 322, 328, 332 constitute outlet roller nips, and roller nip 324 is
a chamber dividing nip. The orientation and/or size of rollers 302, 304, 306, 308,
310 and 312 may be modified to locate the roller nips at the desired locations and
to optimize the efficiency of processing.
[0052] Sealing panels 316, together with rollers 302, 304, 306, 308, 310 and 312 define
a first chamber 336 and a second chamber 338, wherein each chamber has associated
therewith at least one inlet nip and at least one outlet nip.
[0053] A first pressure source 340 is fluidly coupled to chamber 336 via conduit 342, and
a second pressure source 344 is fluidly coupled to chamber 338 via conduit 346. Conduits
342 and 346 extend from sealing panel 316 into chambers 336 and 338, respectively,
to distribute a fluid flow therein. Controller 120 is electrically coupled to pressure
source 340 via an electrical cable 348 and is electrically coupled to pressure source
344 via an electrical cable 350. A sensor assembly 352 is electrically connected to
controller 120 via electrical cable 354. Sensor assembly 352 is adapted to monitor
the pressure and temperature of each of chambers 336, 338.
[0054] Press arrangement 300 further includes a first semipermeable membrane 360 and a second
semipermeable membrane 362. Membranes 360, 362 interact with the circumferential surfaces
of main rollers 302, 304 to define a first expanded nip 364 and a second expanded
nip 366. Expanded nip 364 is located in first chamber 336 and expanded nip 366 is
located in second chamber 338.
[0055] Continuous web 314 includes a first side 370 and a second side 372. While in chamber
336, a fluid flows through continuous web 314 in a first direction from first side
370 to second side 372 at expanded nip 364. While in chamber 338, a fluid flows through
continuous web 314 in a second direction, opposite from the first direction, from
second side 372 to first side 370 at expanded nip 364. First membrane 360 communicates
with first chamber 336 and main roller 302 to apply a mechanical pressing force to
continuous web 314 in the first direction, i.e., from first side 370 to second side
372. Second membrane 362 communicates with second chamber 338 and main roller 304
to apply a mechanical pressing force to continuous web 314 in the second direction,
i.e. from second side 372 to first side 370. Thus, membranes 360, 362 communicate
with pressurized chambers 336, 338, respectively, and main rollers 302, 304, respectively,
to simultaneously effect both a predetermined fluid flow and a mechanical pressing
force on continuous web 314, in combination, in two directions, to promote enhanced
de-watering of continuous web 314. In the present embodiment, main rollers 302, 304
each include at least one void, such as a hole, groove or pore, to effect a pressure
differential across continuous web 314.
[0056] Preferably, each of first semipermeable membrane 360 and second semipermeable membrane
362 is made of a rubberized fabric about 0.1 inches thick, or less, and is made semipermeable
by forming a plurality of holes through the fabric having a size, shape, frequency
and/or pattern selected to provide the desired permeability. Preferably, the plurality
of holes are formed by a laser. The permeability of each of first semipermeable membrane
360 and second semipermeable membrane 362 is selected to be greater than zero and
less than about five CFM per square foot as measured by TAPPI test method TIP 0404-20,
and more preferably, to be greater than zero and less than about two CFM per square
foot.
[0057] In preferred embodiments, press arrangement 300 further includes a first web support
layer 361 and a second web support layer 363 positioned, respectively, on opposing
sides of continuous web 314. As shown in Fig. 8, first web support layer 361 is positioned
between membrane 362 and rollers 302 and 312, and second web support layer 363 is
positioned between membrane 360 and rollers 306 and 304. Alternatively, first web
support layer 361 can be positioned to lie between continuous web 314 and membrane
362 and second web support layer 363 can be positioned to lie between continuous web
314 and membrane 360. Preferably, each of web support layers 361, 363 is an integral
fabric having a felt layer and a hydrophobic layer with a total thickness of about
0.1 inches or less, and is oriented such that the hydrophobic layer faces continuous
web 314.
[0058] As shown in Fig. 8, expanded nips 364 and 366 are substantially the same length.
However, the nip lengths may be of different lengths, which can be effected, for example,
by selecting main rollers with differing circumferences, and/or by changing the circumferential
size of any one or more of the cap rollers, to effectively change the location of
one or more of the roller nips 320, 324 and 328.
[0059] The internal pressure of each of first chamber 336 and second chamber 338 are individually
controlled by controller 120, and may be pressurized to different pressures. Preferably,
chamber 338 is pressurized to a greater pressure than the pressure of chamber 336.
Also, in some instances it may be desirable to charge chamber 336 with a first material
and charge chamber 338 with a second material different than the first material. Such
materials may include dry air, steam, other gas, water, or other fluid.
[0060] In addition to controlling the pressures in chambers 336, in some instances it is
desirable to control the temperatures of chambers 336, 338 to the same, or possibly
different, temperatures. Fig. 8 further shows a temperature regulation unit 374 fluidly
coupled via conduits 376, 378 to chambers 336, 338, respectively, to supply a heating
or cooling fluid, such as air, to chambers 336, 338. Temperature regulation unit 374
is electrically coupled to controller 120 via electrical cable 380. Controller 120
receives temperature signals representing the temperatures of chambers 336, 338 from
sensor assembly 352. Controller 120 then uses these temperatures to generate temperature
output signals based upon predefined target temperatures, which are supplied to temperature
regulation unit 374. Temperature regulation unit 374 then responds to the temperature
output signals to regulate the temperatures of chambers 336, 338. Preferably, the
temperature of chamber 338 is controlled to be greater than the temperature of chamber
336.
[0061] Alternatively, the temperature regulation of chambers 336, 338 can be effected by
regulating the temperature of the fluids supplied by first pressure source 340 and/or
second fluid source 344 to chambers 336, 338, respectively. In such a case, temperature
regulation unit 374 can be eliminated.
[0062] Referring now to Fig. 9, there is schematically shown a press arrangement 450 including
a a pressing assembly 452 defining a chamber 454. Chamber 454 includes an inlet 456
and an outlet 458 which guide semipermeable membrane 20, continuous web 140 and web
carrying layer 142 into and out of chamber 454.
[0063] Pressing assembly 452 includes a U-shaped housing 460 and roller 160 which is arranged
to engage U-shaped housing 460 to partially define pressurized chamber 454, and to
define inlet 456 and outlet 458. Roller 160, as more fully described above, includes
cylindrical middle surface 174 which is in fluid communication with a differential
pressure source via conduit 133. Membrane 20, continuous web 140 and web support layer
142 are processed through inlet 456 and outlet 458 of chamber 454, with continuous
web 140 being positioned between membrane 20 and web support layer 142.
[0064] A pressure source is fluidly coupled to chamber 454 via conduit 132 to pressurize
chamber 454 with a fluid, such as a gas or a liquid, which may be heated above ambient
temperature. The differential pressure source is coupled via fluid conduit 133 to
chamber 454 to effect a flow of fluid through chamber 454 to semipermeable membrane
20. Membrane 20 is positioned adjacent first side 144 of continuous web 140. As more
fully set forth above, membrane 20 is structured and adapted to have a permeability
which permits a predetermined flow of the fluid therethrough to continuous web 140,
and is structured and adapted for communicating with pressurized chamber 454 and the
differential pressure source to apply a mechanical pressing force to continuous web
140.
[0065] While in pressurized chamber 454, cylindrical middle surface 174 of roller 160 directly
supports web support layer 142, which in turn is in contact with second side 146 of
continuous web 140. Semipermeable membrane 20 is positioned to be in direct communication
with pressurized chamber 454. Cylindrical middle surface 174 includes at least one
void in communication with the differential pressure source via conduit 133. Thus,
a pressure differential acts on semipermeable membrane 20 and cylindrical middle surface
174 to effect a mechanical pressing force to continuous web 140, and simultaneously,
a predetermined flow of fluid flows through semipermeable membrane 20 to, and through,
continuous web 140.
[0066] Alternatively, no venting via conduit 133 may be required if main roller 160 includes
grooved voids, and the grooves communicate with atmospheric pressure. Similarly, venting
via conduit 133 may be eliminated if the roller voids, such as blind holes, are large
enough, and if they enter into the nip at a pressure lower than chamber pressure.
In this case, the voids will act like a differential pressure source until the voids
reach the chamber pressure. The void size can be selected to control the efficiency
of the de-watering process.
[0067] Fig. 10 shows a schematic illustration of a varient of the embodiment of Fig. 9.
Shown is a press arrangement 470 including a pressing assembly 472 defining a chamber
474. Chamber 474 includes an inlet 476 and an outlet 478 which guide semipermeable
membrane 20, continuous web 140 and web carrying layer 142 into and out of chamber
474.
[0068] Pressing assembly 472 includes U-shaped housing 460 and a support shoe 480 which
is arranged to engage U-shaped housing 460 to partially define pressurized chamber
474, and to define inlet 476 and outlet 478. Support shoe 480 includes a support surface
482, and one or more passages 484 (depicted by dashed lines) which extend from support
surface 482 to differential pressure conduit 133. Support surface 482 may be made
up of a plurality of spaced apart support plates, or vertically arranged support blades,
with passages 484 being formed between adjacent support plates, or support blades,
respectively. Alternatively, support shoe 480 may be a unitary plate member having
at least one void, and preferably a plurality of voids, such as pores, through holes,
grooves, slots, etc., which are in fluid communication with the differential pressure
source via conduit 133, or directly with the atmosphere.
[0069] A pressure source is fluidly coupled to chamber 474 via conduit 132 to pressurize
chamber 474 with a fluid, such as a gas, a liquid or solution, which may be heated
above ambient temperature. The differential pressure source is coupled via fluid conduit
133 to chamber 474 to effect a flow of fluid through chamber 474 to semipermeable
membrane 20. Membrane 20 is positioned adjacent first side 144 of continuous web 140.
As more fully set forth above, membrane 20 is structured and adapted to have a permeability
which permits a predetermined flow of the fluid therethrough to continuous web 140,
and is structured and adapted for communicating with the pressurized chamber 474 and
the differential pressure source to apply a mechanical pressing force to continuous
web 140.
[0070] Membrane 20, continuous web 140 and web support layer 142 are processed through inlet
476 and outlet 478 of chamber 474, with continuous web 140 being positioned between
membrane 20 and web support layer 142. While in pressurized chamber 474, support surface
482 directly supports web support layer 142, which in turn is in contact with second
side 146 of continuous web 140. Semipermeable membrane 20 is positioned to be in direct
communication with pressurized chamber 474. As stated above, support surface 482 includes
at least one void/passage which is in communication with the differential pressure
source via conduit 133. Thus, a pressure differential is created between chamber 474
and support surface 482 to effect a mechanical pressing force to continuous web 140
via semipermeable membrane 20, and simultaneously, a predetermined flow of the fluid
is provided through semipermeable membrane 20 to, and through, continuous web 140.
[0071] While this invention has been described as having a preferred design, the present
invention can be further modified within the spirit and scope of this disclosure.
This application is therefore intended to cover any variations, uses, or adaptations
of the invention using its general principles. Further, this application is intended
to cover such departures from the present disclosure as come within known or customary
practice in the art to which this invention pertains and which fall within the limits
of the appended claims.
1. An apparatus for processing a continuous web having a first side and a second side,
comprising:
a plurality of rollers arranged for cooperative rotation, each of said plurality of
rollers having a first circular end, a second circular end and a cylindrical middle
surface, said plurality of rollers positioned to define a corresponding plurality
of nips, said continuous web being processed through at least two of said plurality
of nips, and at least a first roller of said plurality of rollers having at least
one void formed in said cylindrical middle surface;
first and second sealing panels for engaging the first and second circular ends of
each of said plurality of rollers, said first and second sealing panels and said plurality
of rollers defining a chamber;
a first pressure source fluidly coupled to said chamber to pressurize said chamber;
and
a membrane positioned adjacent said first side of said continuous web to separate
said continuous web from direct communication said chamber, said membrane being structured
and adapted to have a permeability which permits a predetermined fluid flow therethrough
to said continuous web, and structured and adapted for communicating with the pressurized
chamber and said at least one void to apply a mechanical pressing force to said continuous
web.
2. The apparatus of claim 1, wherein said plurality of nips include an inlet nip and
an outlet nip, and wherein said membrane is structured and adapted to aid in sealing
said chamber at said inlet nip and said outlet nip, and wherein said inlet nip, said
membrane passing circumferentially around said first roller, and said outlet nip combine
to effectively form a single expanded nip for applying said mechanical pressing force
to said continuous web.
3. The apparatus of claim 1, wherein said at least one void comprises at least one of
a groove, a hole and a pore.
4. The apparatus of claim 3, further comprising a differential pressure source fluidly
coupled to said void to evacuate said void.
5. The apparatus of claim 1, wherein said membrane has a thickness of 0.1 inches or less.
6. The apparatus of claim 1, wherein said membrane has a permeability greater than zero
and less than about five CFM per square foot as measured by TAPPI test method TIP
0404-20.
7. The apparatus of claim 6, wherein said permeability is determined by at least one
of a size, a shape, a frequency and a pattern of a plurality of holes in said membrane.
8. The apparatus of claim 7, wherein said holes are laser-formed holes.
9. The apparatus of claim 1, further comprising a web support layer positioned to contact
said cylindrical middle surface of said first roller and to contact said second side
of said continuous web.
10. The apparatus of claim 9, wherein at least one of said plurality of rollers further
includes first and second cylindrical end surfaces adjacent the first and second circular
ends, respectively, said cylindrical middle surface having a circumference smaller
than a circumference of said first and second cylindrical end surfaces, said cylindrical
middle surface receiving a width of said web support layer, said continuous web and
said membrane.
11. The apparatus of claim 9, wherein said web support layer comprises a felt layer having
a thickness of 0.1 inches or less.
12. The apparatus of claim 9, wherein said web support layer comprises a hydrophobic layer
positioned adjacent a felt layer, and further positioned adjacent said second side
of said continuous web.
13. The apparatus of claim 9, wherein said web support layer comprises a felt layer integral
with a hydrophobic layer.
14. The apparatus of claim 1, wherein at least one of said plurality of rollers further
includes first and second cylindrical end surfaces adjacent the first and second circular
ends, respectively, said cylindrical middle surface having a circumference smaller
than a circumference of said first and second cylindrical end surfaces, said cylindrical
middle surface receiving a width of said membrane.
15. The apparatus of claim 14, wherein said at least two of said plurality of rollers
are cap rollers and at least two of said plurality of rollers are main rollers, wherein
a diameter of said main rollers exceeds a diameter of said cap rollers.
16. The apparatus of claim 14, wherein said at least one of said plurality of rollers
further comprises a first inclined annular surface which provides a transition from
said cylindrical middle surface to said first cylindrical end surface, and a second
inclined annular surface which provides a transition from said cylindrical middle
surface to said second cylindrical end surface, the first and second inclined annular
surfaces defining a guide path for said continuous web and said membrane.
17. The apparatus of claim 16, wherein said membrane includes a pair of tapered longitudinal
outer edges which contact the first and second inclined annular surfaces.
18. The apparatus of claim 16, further comprising a web support layer interposed between
said continuous web and said at least one of said plurality of rollers, wherein said
web support layer includes a pair of tapered outer edges which contact the first and
second inclined annular surfaces.
19. The apparatus of claim 1, wherein said plurality of rollers comprise a first main
roller, a second main roller, a first cap roller and a second cap roller, wherein
a first diameter of said first main roller and a second diameter of said second main
roller is larger than a third diameter of said first cap roller and a fourth diameter
of said second cap roller.
20. The apparatus of claim 19, further comprising a frame, wherein said first and second
main rollers are fixedly rotatably attached to said frame and positioned opposite
one another in a non-contacting relationship, and wherein said first and second cap
rollers are movably rotatably mounted to said frame, said first cap roller contacting
said first and second main rollers to define a first inlet nip and a first outlet
nip, and said second cap roller contacting said first and second main rollers to define
a second inlet nip and a second outlet nip.
21. The apparatus of claim 19, wherein an axial extent of each of said first and second
main rollers and said first and second cap rollers together are arranged in parallel,
and wherein at least one of said first and second cap rollers is movable to adjust
a loading of at least one of said first main roller and said second main roller.
22. The apparatus of claim 21, wherein an amount said loading of said first and second
main rollers is related to a pressure in said chamber.
23. The apparatus of claim 21, wherein said loading includes a bias loading and an additional
loading proportional to a pressure in said chamber.
24. The apparatus of claim 1, wherein said plurality of rollers together with said first
and second sealing panels, define a first chamber and a second chamber.
25. The apparatus of claim 24, wherein said first chamber is fluidly coupled to said first
pressure source and said second chamber is fluidly coupled to a second pressure source,
and wherein said first chamber is pressurized to a first pressure and said second
chamber is pressurized to a second pressure different than said first pressure.
26. The apparatus of claim 25, wherein said continuous web travels through said first
chamber and said second chamber in a direction from said first chamber to said second
chamber, and wherein said second pressure is greater than said first pressure.
27. The apparatus of claim 24, further comprising a temperature control device coupled
to said first chamber and said second chamber, and wherein said first chamber is controlled
to a first temperature and said second chamber is controlled to a second temperature
different than said first temperature.
28. The apparatus of claim 27, wherein said continuous web travels through said first
chamber and said second chamber in a direction from said first chamber to said second
chamber, and wherein said second temperature is greater than said first temperature.
29. The apparatus of claim 24, wherein said first chamber is charged with a first material
and said second chamber is charged with a second material different from said first
material.
30. The apparatus of claim 1, further comprising a conduit which extends from at least
one of said first and second sealing panels into said chamber to distribute said fluid
flow.
31. The apparatus of claim 1, wherein said plurality of rollers include a first main roller,
a second main roller, a first cap roller and a second cap roller which are arranged
to form four nips, and wherein said first main roller does not contact said second
main roller, and wherein said continuous web is routed to pass through all of said
four nips.
32. The apparatus of claim 1, wherein said first and second sealing panels are flexible
and conform to the shape of said first and second cylindrical ends, respectively,
of said plurality of rollers.
33. The apparatus of claim 1, further comprising a first seal positioned between said
first circular end of each of said plurality of rollers and said first sealing panel,
and a second seal positioned between said second circular end of each of said plurality
of rollers and said second sealing panel.
34. The apparatus of claim 33, wherein each of the first and second seals form mechanical
seals.
35. The apparatus of claim 33, wherein each of the first and second seals form fluid seals.
36. The apparatus of claim 33, wherein each of said first and second seals include pressurized
cavities.
37. The apparatus of claim 33 wherein said first seal is mounted on the first circular
end of each of said plurality of rollers and wherein said second seal is mounted on
the second circular end of each of said plurality of rollers.
38. The apparatus of claim 1, further comprising at least one tension bar having a first
end and a second end, said first end being connected to said first sealing panel and
said second end being connected to said second sealing panel.
39. The apparatus of claim 1, further comprising a temperature control device coupled
to said chamber for controlling chamber temperature.
40. The apparatus of claim 1, wherein said chamber is pressurized to a level greater than
30 psi.
41. An apparatus for processing a continuous web having a first side and a second side,
comprising:
a pressing assembly defining a chamber, said chamber having an inlet and an outlet;
a first pressure source fluidly coupled to said chamber to pressurize said chamber
with a fluid;
a membrane positioned adjacent said first side of said continuous web, said continuous
web and said membrane entering said chamber at said inlet and exiting said chamber
at said outlet, said membrane being structured and adapted to have a permeability
which permits a predetermined flow of said fluid therethrough to said continuous web;
a differential pressure source coupled to said chamber to effect a flow of said fluid
through said membrane and said continuous web, said membrane structured and adapted
for communicating with the pressurized chamber and said differential pressure source
to apply a mechanical pressing force to said continuous web.
42. The apparatus of claim 41, wherein said pressing assembly comprises:
a U-shaped housing fluidly coupled to said first pressure source;
a support structure arranged to engage said U-shaped housing to partially define said
chamber, and to define said inlet and said outlet, said support structure having a
surface in fluid communication with said differential pressure source, said membrane
and said continuous web being processed through said inlet and said outlet, with said
surface of said support structure supporting said second side of said continuous web.
43. The apparatus of claim 42, wherein said support structure comprises a roller, and
said surface including at least one void.
44. The apparatus of claim 42, wherein said support structure comprises a supporting shoe.
45. The apparatus of claim 44, wherein said supporting shoe comprises one of a plurality
of support blades and a plurality of support plates.
46. The apparatus of claim 44 wherein said support shoe is a unitary structure.
47. The apparatus of claim 42, further comprising a support layer interposed between said
surface of said support structure and said second side of said continuous web.
48. The apparatus of claim 41, wherein said fluid is air.
49. An apparatus for processing a continuous web having a first side and a second side,
comprising:
a plurality of rollers arranged for cooperative rotation, each of said plurality of
rollers having a first circular end, a second circular end and a cylindrical middle
surface, said plurality of rollers including a plurality of main rollers and a plurality
of cap rollers positioned to define a plurality of inlet roller nips and a plurality
of outlet roller nips, and a portion of said plurality of rollers having at least
one void formed in said cylindrical middle surface;
first and second sealing panels for engaging said first and second circular ends of
each of said plurality of rollers, said first and second sealing panels and said plurality
of rollers defining a plurality of chambers;
at least a first pressure source fluidly coupled to each of said plurality of chambers
to pressurize said plurality of chambers; and
at least one semipermeable membrane structured and adapted to engage a portion of
said plurality of inlet roller nips, to hydraulically communicate with said cylindrical
middle surface of a portion of said plurality of main rollers and to engage a portion
of said plurality of outlet roller nips to define a plurality of expanded nips.
50. The apparatus of claim 49, wherein a first expanded nip of said plurality of expanded
nips is located in a first chamber of said plurality of chambers and a second expanded
nip of said plurality of expanded nips is located in a second chamber of said plurality
of chambers.
51. The apparatus of claim 49, wherein said plurality of expanded nips include at least
two expanded nips which differ in length.
52. The apparatus of claim 49, wherein said plurality of chambers include a first chamber
and a second chamber, and wherein said first chamber is pressurized to a first pressure
and said second chamber is pressurized to a second pressure different than said first
pressure.
53. The apparatus of claim 52, wherein said at least one membrane travels through said
first chamber and said second chamber in a direction from said first chamber to said
second chamber, and wherein said second pressure is greater than said first pressure.
54. The apparatus of claim 49, wherein said plurality of chambers include a first chamber
and a second chamber, and further comprising a temperature regulator coupled to said
first chamber and said second chamber, and wherein said first chamber is controlled
to a first temperature and said second chamber is controlled to a second temperature
different than said first temperature.
55. The apparatus of claim 54, wherein said at least one membrane travels through said
first chamber and said second chamber in a direction from said first chamber to said
second chamber, and wherein said second temperature is greater than said first temperature.
56. The apparatus of claim 49, wherein said plurality of chambers include a first chamber
and a second chamber, and wherein said first chamber is charged with a first material
and said second chamber is charged with a second material different from said first
material.
57. The apparatus of claim 49, wherein said plurality of main rollers includes a first
main roller defining a portion of a first chamber and a second main roller defining
a portion of a second chamber, each of said first main roller and said second main
roller having at least one void formed in said cylindrical middle surface and wherein
said at least one semipermeable membrane includes a first membrane and a second membrane,
and said plurality of expanded nips including a first expanded nip located in said
first chamber and a second expanded nip located in said second chamber, wherein a
fluid flows through said continuous web in a first direction at said first expanded
nip and wherein said fluid flows through said continuous web in a second direction
opposite from said first direction at said second expanded nip, said first membrane
communicating with said first chamber and said first roller to apply a mechanical
pressing force to said continuous web in said first direction and said second membrane
communicating with said second chamber and said second main roller to apply a mechanical
pressing force to said continuous web in said second direction.
58. The apparatus of claim 57, wherein said continuous web is positioned between said
first membrane and said second membrane to be received in said first expanded nip
and said second expanded nip.
59. The apparatus of claim 58, further comprising a first web support layer and a second
web support layer, said first web support layer being positioned between said continuous
web and said first main roller and said second web support layer being positioned
between said continuous web and said second main roller.
60. The apparatus of claim 59, wherein said first expanded nip is associated with a first
chamber of said plurality of chambers and said second expanded nip is associated with
a second chamber of said plurality of chambers.
61. The apparatus of claim 49, wherein said at least one void comprises at least one of
a groove, a hole and pore.
62. The apparatus of claim 49, wherein said plurality of rollers comprises six rollers.