Field of the Invention
[0001] The present invention relates to components for internal combustion engines particularly,
although not exclusively, to a tubular component for transferring exhaust gases between
an exhaust manifold and an inlet manifold where exhaust gases are cooled during transfer
between the exhaust manifold and the inlet manifold.
Background to the Invention
[0002] It is known in the prior art to use exhaust gas re-circulation systems as part of
an internal combustion engine. An exhaust gas re-circulation system transfers exhaust
gas from an exhaust manifold, returning the exhaust gas to an inlet manifold on the
engine block allowing the returned gas to re-enter a combustion chamber. The purpose
of an exhaust gas re-circulation system is to reduce formation of NOX during the combustion
process. A cooled exhaust gas re-circulation system achieves this by taking exhaust
gas from an exhaust manifold, and cooling the gas during transfer between the exhaust
manifold and an inlet manifold thus giving a dense charge of gas returned to the inlet
manifold for introduction into an inlet charge prior to combustion.
[0003] Prior art exhaust gas re-circulation systems incorporate a multi-component system
including a plurality of tubular elements including a cooling element. Commonly the
cooling element is substantially straight and hence difficult to package around the
internal combustion engine. Fig. 1 herein illustrates a prior art exhaust gas re-circulation
system. This system incorporates a first tubular section 100 attached to an exhaust
manifold by fastening means at a first end 107 and a second tubular section 111 attached
to an inlet manifold at a second end 108. Referring to Fig. 1, exhaust gases entering
tube 100 at first end 107, the direction of exhaust gas flow being indicated by arrows,
are transferred to a cooler 102. This may occur through one or a plurality of bends
101 in tube 100 of the exhaust gas re-circulation system. Within the exhaust gas re-circulation
system there exists a cooler section 102. This is a separate component joined to the
first and second tubes 100, 111 at points 109 and 110. Cooler 102 consists of a heat
exchanger housing a plurality of tubes 105 extending the length of cooler 102. The
plurality of tubes 105 are illustrated in Fig. 1(B) which shows a section of cooler
102. Each tube 105 has a diameter in the region of 6 mm. The Cooler 102 may contain
an average of 30 such tubes although in some instances this amount may be as great
as 60. Cooler 102 further comprises an inlet 104 and outlet 103 which permit coolant
medium to enter a chamber surrounding the plurality of smaller tubes 105, thus permitting
heat exchange between the gasses passing through the tubes 105 and the surrounding
coolant medium. Inlet 104 and outlet 103 are further connected to pipework and fittings
of the internal combustion engine cooling system. Such a system commonly incorporates
a radiator. Coolant medium within the cooler 102 is not permitted to enter the first
or second tubes 100, 111, the coolant medium being restricted to the length of the
cooler 102.
[0004] In prior art exhaust gas re-circulation systems employing a cooler 102 there is a
significant loss of efficiency due to blocking of tubes 105 by sooty deposits, commonly
being acidic deposits, which are formed in the tubes 105 due to condensation of partially
or non-combusted fuel. Diesel fuel, includes sulphur based compounds which can form
highly acidic compounds on partial combustion. Such deposits may therefore corrode
and block the tubes 105. Such corrosion and blockage means that the performance of
the cooler 102 deteriorates significantly over time. A considerable loss in efficiency
is seen within the first five hours of operation of such a prior art exhaust gas re-circulation
system with up to 20% reduction in efficiency occurring in this period due to coating
and/or blockage of the tubes 105. Therefore, prior art exhaust gas re-circulation
systems lose efficiency and begin to corrode on first use. Use of higher grade materials
to counter corrosion is hampered by the cost of the solutions when applied to a prior
art multi-tube design.
[0005] A further disadvantage of prior art exhaust gas re-circulation systems is that cooler
102 is commonly of the order of 100 mm to 300 mm in length. As the levels of required
emissions from internal combustion engines, particularly those used in cars, decrease
and as the need for employing such systems on small cars to ensure low levels of emissions
increases manufacturers are commonly finding that there is not enough space to conveniently
package prior art coolers which require significant room in which to fit the long,
straight cooler 102.
Summary of the Invention
[0006] One object of the present invention is to provide a single piece component for use
as an exhaust gas re-circulation system for transferring exhaust gases from an exhaust
manifold to an inlet manifold of an internal combustion engine, whilst cooling the
exhaust gases during transfer.
[0007] A second object of the present invention is to provide an exhaust gas re-circulation
system for an internal combustion engine including a self-cleaning mechanism to prevent
blockage of tubes which are transferring exhaust gases.
[0008] A third object of the present invention is to provide an exhaust gas re-circulation
system where heat exchanged between exhaust gases and a coolant medium, occurring
indirectly through a tubular wall, can take place substantially along the entire length
of said exhaust gas re-circulation system.
[0009] A fourth object of the present invention provides for an exhaust gas re-circulation
system with a decreased number of tubular members required to provide for heat exchange
with a surrounding coolant medium, whilst providing an effective surface area for
heat exchange which provides for at least comparable cooling of exhaust gases when
compared to prior art coolers.
[0010] A fifth object of the present invention is to provide a low weight, low cost exhaust
gas re-circulation system for an internal combustion engine.
[0011] According to a first aspect of the present invention there is provided a component
for transferring gases between an inlet port and an outlet port of an internal combustion
engine said component characterized by comprising:
a substantially tubular outer member having a first end and a second end, and an outer
tubular wall extending between said first and second ends; and
a plurality of substantially tubular inner members housed in said first substantially
tubular outer member, wherein said second substantially tubular inner members are
corrugated along at least part of their length.
[0012] Preferably said plurality of substantially tubular inner members extend substantially
an entire length of said substantially tubular outer member between said first and
said second ends.
[0013] Said plurality of substantially tubular inner members may comprise a plurality of
tubular sections, each following a curved path.
[0014] Preferably said first substantially tubular outer member is corrugated throughout
at least one portion.
[0015] Preferably said first substantially tubular outer member contains apertures suitable
for inlet and outlet of a coolant medium.
[0016] Preferably said first and second ends of said outer tubular member are substantially
blocked in order to retain coolant medium within said first substantially tubular
outer member, save for apertures remaining to permit gas flow into each of said plurality
of substantially tubular inner members.
[0017] Said plurality of substantially tubular inner members may be mounted through at least
one spacer maintaining said substantially tubular inner members at substantially fixed
positions relative to each other.
[0018] Said outer tubular member may be substantially bent to a required shape.
[0019] In one embodiment, said substantially tubular outer member is manufactured from metal
tubing with a wall thickness in the region of 0.3 to 0.5 mm; and
said substantially tubular inner members are manufactured from metal tubing with
a wall thickness in the region of 0.2 to 0.3 mm.
[0020] Said first and second ends may comprise flanges with apertures for inserting fastening
means to fasten said tube to said engine, forming a gas-proof seal using a gasket.
[0021] The invention includes an internal combustion engine having an exhaust gas re-circulation
system, said system including means for cooling and transferring gases wherein said
means comprises:
a substantially tubular outer member having a first end and a second end;
a plurality of substantially tubular inner members housed in said first substantially
tubular outer member;
wherein said substantially tubular inner members are corrugated along at least a part
of their lengths.
[0022] Said first substantially tubular outer member preferably includes suitable apertures
wherein a coolant medium can be circulated externally of said substantially tubular
inner members, said coolant medium flowing in a circuit comprising:
said exhaust gas re-circulation system;
a radiator; and
a pump, coolant storage vessel, pipework and fittings associated with said radiator,
wherein said apertures connect said exhaust gas re-circulation system and said pipework
to form a coolant circuit for passage of said coolant over said plurality of inner
members.
[0023] Said first end of said substantially tubular outer member may be located at an exhaust
manifold and said second end may be located at an inlet manifold wherein in operation
of said engine coolant medium in said tube is restricted between said first and second
ends and externally of said substantially tubular inner members, inlet and outlet
of coolant medium from said tube occurring through inlet and outlet apertures.
[0024] Preferably said tube forms a single part for fitment to said engine, said tube being
pre-bent to a specific configuration to provide economy of space when fitted to said
engine.
[0025] In a preferred embodiment, said substantially tubular outer member has a metal wall
thickness in the region of 0.3 mm to 0.5 mm.
[0026] Preferably, when fitted to an internal combustion engine, said first end of said
substantially tubular outer member is fixed during operation at a vertically higher
fixed point to said second end, both of said ends comprising flanges with apertures
for inserting fastening means in order to fix said tube to said engine forming a gas-proof
seal using a gasket.
[0027] According to a second aspect of the present invention there is provided a method
of assembly of a tube for an internal combustion engine said method comprising the
steps of:
locating a plurality of plates along the length of a plurality of corrugated substantially
tubular inner members;
placing said combination of said plates and said plurality of substantially tubular
inner members within a substantially tubular outer member; and
fixing said plates in position.
[0028] Said method preferably further comprises the step of fastening said substantially
tubular outer member to an internal combustion engine and radiator system.
[0029] According to third aspect of the present invention there is provided a method of
cooling exhaust gases for an internal combustion engine exhaust gas re-circulation
system said method comprising the steps of:
directing an exhaust gas flow into a plurality of corrugated substantially tubular
members;
forming a turbulent flow of said exhaust gas within said corrugated substantially
tubular members;
wherein heat exchange occurs through at least one substantially tubular wall of
said plurality of corrugated substantially tubular members with a surrounding coolant
medium.
[0030] In use, said gas flow may experience a decrease in velocity of gas flow within said
plurality of corrugated members.
[0031] Whilst transferring said exhaust gases to an inlet manifold, small particulate matter
may be driven through said plurality of corrugated substantially tubular members.
The gases may form a turbulent flow within the corrugated tubular members.
[0032] During the passage of gases through the corrugated tubular member, heat is exchanged
from said surrounding medium through a surrounding outer tubular wall to an external
environment.
Brief Description of the Drawings
[0033] For a better understanding of the invention and to show how the same may be carried
into effect, there will now be described by way of example only, specific embodiments,
methods and processes according to the present invention with reference to the accompanying
drawings in which:
Fig. 1(A) illustrates a prior art exhaust gas re-circulation system comprising a plurality
of tubes 100, 111 connected to a cooler unit 102 through which exhaust gases are transferred
from an internal combustion engine exhaust manifold into a first end 107 of the re-circulation
system, and subsequently to an inlet manifold of said engine at a second end 108 of
said exhaust gas re-circulation system. Fig. 1 (B) illustrates a cross-section along
line I-I of the prior art cooler unit 102;
Fig. 2(A) illustrates an exhaust gas re-circulation system according to a specific
embodiment of the present invention showing an external view of the overall system;
Fig. 2(B) illustrates the exhaust gas re-circulation system of Fig. 2(B) showing an
external view looking at first and second flanges 206 and 207 for connecting to an
exhaust manifold and inlet manifold respectively of an internal combustion engine;
and
Fig. 3 illustrates a close up of a bend portion of the exhaust gas re-circulation
system shown in Fig. 2.
Detailed Description of the Best Mode for Carrying Out the Invention
[0034] There will now be described by way of example the best mode contemplated by the inventors
for carrying out the invention. In the following description numerous specific details
are set forth in order to provide a thorough understanding of the present invention.
It will be apparent however, to one skilled in the art, that the present invention
may be practiced without limitation to these specific details. In other instances,
well known methods and structures have not been described in detail so as not to unnecessarily
obscure the present invention.
[0035] Fig. 2 herein illustrates an exhaust gas re-circulation system component according
to a first specific embodiment of the present invention. In this embodiment there
is provided an exhaust gas re-circulation system for an internal combustion engine
said internal combustion engine being configured for use in powering a motor vehicle.
The invention however, is applicable to internal combustion engines used in many applications,
e.g. in powering boats and planes. The exhaust gas re-circulation system comprises
a first substantially tubular outer member 200 having a first end 206 and a second
end 207, the outer member being made of stainless steel of an austenitic composition,
and a plurality of tubular inner members 209, 210, 211 extending within the outer
member 200 along its length between the first and second ends 206, 207 respectively,
such that gases may enter the plurality of smaller inner tubular members at the first
end 206 and exit the plurality of inner tubular members at the second end 207. Outer
tubular member 200 comprises a tubular wall extends between first end 206 and second
end 207 which may traverse one or a plurality of bends 201. At each bend there is
provided a corrugated portion in the tubular wall. These corrugated portions provide
for a change of direction of said first substantially tubular outer member, and further
provide for absorption of engine vibrations, thermal expansion or other movements.
The tubular wall of outer member 200 has a substantially circular tubular cross-section
in the specific embodiment shown herein. However, it is to be understood that said
tubular cross-section may be square or oval in shape. The precise shape of the tubular
cross-section is not to be construed as limiting the invention.
[0036] In a typical automotive application, a diameter of the tubular outer member 200 may
be of the order of 30mm to 50mm, and a diameter of each inner tubular member may be
of the order of 6mm to 15mm, although the invention is not limited to these dimensions
and a wider range of diameter dimensions are possible in different applications.
[0037] In the first specific embodiment of the present invention said first end 206 comprises
a first flange portion 212 including a plurality of apertures 208 for insertion of
screw fastening means. Said flange portion provides for location of said first end
206 to an exhaust manifold on the engine block of an internal combustion engine. Apertures
208 further provide for insertion of fastening means for example screw fastening means
for attachment of said first end 206 to said exhaust manifold. At said second end
207 a similar second flange portion 213 exists, also with apertures for insertion
of screw fastening means. This second flange portion at said second end allows for
location of the re-circulation system component at an inlet manifold on the engine
block of said internal combustion engine, said apertures allowing for insertion of
fastening means for example screw fastening means to firmly attach said second end
to said inlet manifold. Suitable gaskets may be used at both first and second ends
to form a gas-proof seal in addition to the mechanically reliable seal formed by said
flange portions and fastening means.
[0038] Said exhaust manifold provides for transfer of exhaust gases away from the engine
block, hence in operation exhaust gases entering said exhaust gas re-circulation system
comprise fully combusted, partially combusted and non-combusted vaporized fuel gases
including any particulate matter and solid compounds produced during combustion. Hence
said exhaust gases incorporate gas used as a relatively inert gas included in the
burn mix to reduce cylinder temperature, and the presence of which reduces NOX emissions.
Said exhaust gas re-circulation system provides a means of increasing the density
of said exhaust gases by cooling and reducing the speed of flow of said exhaust gases
before returning said exhaust gases to an inlet manifold and subsequently a combustion
chamber of the engine. This provides for an increased quality of emissions from the
internal combustion engine and therefore from the motor car, whilst also increasing
the efficiency of the combustion process. The inlet manifold provides for transfer
of vaporized fuel and re-circulated exhaust gases to the combustion chamber in the
engine block.
[0039] In the first specific embodiment of the present invention the first substantially
tubular outer member further comprises an inlet port 203 and an outlet port 202 for
attachment of pipes or hoses connecting said exhaust gas re-circulation system to
a suitable cooling system. Such a suitable cooling system typically includes a radiator,
pipes and hoses, coolant medium pump, and a coolant medium storage vessel/reservoir.
The inlet port 202 and outlet port 203 comprise cylindrical projections projecting
perpendicularly from said first substantially tubular outer member, each of said inlet
202 and outlet 203 being an integral part of said first substantially tubular outer
member. Thus, said outer member 200 is maintained as a single piece component. It
should be understood however, that the incorporation of a separate inlet or separate
outlet by for example a welded fixment is not limiting of the invention. The Inlet
203 and outlet 202 ports provide for attachment of hoses by commonly known prior art
means of fixing. For instance said means of fixing may include a jubilee clip to fasten
a rubber hose over either inlet port 203 or outlet port 202. Thus when in connection
with a suitable cooling system, coolant medium may be pumped into said outer member
at the inlet port 203, being removed from the exhaust gas re-circulation system through
outlet port 202. The direction of coolant flow is indicated by arrows at inlet port
203 and outlet port 202 on Fig. 2(A). Coolant medium is restricted from leaving the
exhaust gas re-circulation system at either said first end 206 or second end 207 by
metal plates blocking any potential leak pathway.
[0040] In the first specific embodiment of the present invention and further referring to
Fig. 2(A) and Fig. 2 (B) herein, within said first substantially tubular outer member
there is provided one or a plurality of second substantially tubular inner members,
one or each of said inner members being corrugated. Said inner members 204 are illustrated
in a cut-away section of Fig. 2(A). Said inner members are further illustrated at
said flange portions at said first end and said second end. Here, said inner members
are shown to have a hollow central portion providing for apertures 209 at said flange
portions. Each of the inner members are preferably made of stainless steel of an austenitic
composition.
[0041] In the first specific embodiment there are provided three of said second substantially
tubular inner members within said first substantially tubular outer member. Each of
said inner members extends the full length of the outer member 200 between said first
end 206 and said second end 207. Said inner members may be maintained in position
by a plurality of plate spacers within said outer member as shown in this example.
However, in the general case the metal spacers are not essential. One of said spacers
205 is illustrated in Fig. 2(A). Each of said spacers includes apertures to allow
each of said inner members to pass through said spacers. Each of said spacers may
be fixed at said tubular wall of said tubular outer member. The spacers maintain the
inner members in a substantially constant position but do not significantly restrict
the flow of coolant medium around the inner members.
[0042] Although in the first specific embodiment of the present invention each of said inner
members is corrugated throughout its entire length between said first end 206 and
second end 207 of said outer member it is understood that portions of said inner members
may not be corrugated if this is necessary to facilitate the working of the invention.
Further referring to Fig. 2 herein, the first substantially tubular outer member
is manufactured from metal tubing, for instance stainless steel metal tubing with
a wall thickness in the region of 0.3 to 0.5mm, and typically 0.4mm. This may be compared
to a prior art wall thickness of 0.7mm to 1.0 mm. This provides for a better release
of heat by heat exchange from coolant medium within said first substantially tubular
outer member to the surrounding external environment outside the outer member, this
being the air surrounding the internal combustion engine. The external environment
thus includes the surrounding atmosphere. Corrugated portions existing at bends 201
in said outer member further provide for an increased surface area for heat exchange
with the external environment.
[0043] Said inner members are manufactured from a corrugated metal tube, for instance corrugated
stainless steel tube of an austenitic composition, with a wall thickness in the region
0.2 to 0.3mm, typically 0.25mm. This may be compared to a prior art wall thickness
in the region of 0.4mm to 1.0mm. The thin walls of said inner members provide for
improved thermal transfer and hence heat exchange with a surrounding coolant medium.
Corrugations on said inner members provide for a large surface area for heat exchange
with the surrounding coolant medium. Hence, heat exchange between exhaust gases within
said inner members and the coolant medium in said outer member is optimized. The corrugations
comprise shaping of the continuous tubular wall of a said inner member into an outer
helical ridge portion having a first diameter, and an inner helical trough portion
having a second diameter, wherein the first diameter is greater than the second diameter,
the outer helical ridge running parallel with the inner helical trough, such that
in a direction along a main central axis of the inner member, gas flowing through
a central passage of the inner member experiences alternatively, the helical trough
wall of the inner member, followed by an inner surface of the outer ridge portion
of the wall followed by an inner surface of the trough portion of the wall, followed
by an inner surface of the outer ridge portion of the wall and so on, along the length
of the corrugated portion of the inner member.
[0044] In other embodiments, the corrugations may not form the wall of the inner member
into a helical ridge, but may comprise a series of annular ridges and troughs alternating
sequentially along a length of the inner member.
[0045] Said inner members are manufactured from a relatively thin metal tube. However, the
strength of said inner members is not compromised as the corrugations of said inner
members provide for strength. Thus the exhaust gas re-circulation system may be sufficiently
robust to withstand the rigors of operation as part of an internal combustion engine
in a motor vehicle.
[0046] As the exhaust gas re-circulation system comprises a single component, the tubular
inner and outer members may be manufactured to a specific shape to package efficiently
around an internal combustion engine. Many bends may be incorporated in the exhaust
gas re-circulation system as no single straight section in which to incorporate a
separate prior art cooler 102 is required. That is, cooling may occur over the entire
path length of the exhaust gas re-circulation system, the path length being the distance
between said first end 206 and second end 207. Further, the fact that the specific
embodiments of the present invention provide for a single component for an internal
combustion engine as an exhaust gas re-circulation system, means there is a reduced
cost of manufacture and a reduction in the weight of the exhaust gas re-circulation
system. This is largely due to the fact that heavy prior art cooler units eg cooler
102 are not required. Further, the lightweight nature of the system is facilitated
by the use of thin walled tube and the use of corrugated tubes to provide an increased
surface area for heat exchange without the need for long lengths of straight tube
as is required in prior art coolers.
[0047] The coolant medium which is inlet to the interior of said outer member and thus the
exterior surface of said inner members is substantially the same as a standard coolant
medium used in an internal combustion cooling system eg a radiator system used with
the internal combustion engine of a car. Thus, the coolant medium may be a mixture
of water and specific additives to facilitate anticorrosion, anti-freeze and efficient
cooling, as will be known to those knowledgeable in the art.
[0048] In order to provide that a minimum efficiency of the exhaust gas re-circulation system
of the present specific embodiment is at least as efficient as prior art exhaust gas
re-circulation systems, the total cross-sectional area for both exhaust gas flow through
the exhaust gas re-circulation system and coolant flow around the tubular members
where heat exchange is occuring is designed to be maintained at a level which provides
better cooling than an equivalent external length dimensioned prior art cooler. In
the first specific embodiment this has been achieved by using three of said inner
members each of approximately 15 mm in diameter, with said outer member having a diameter
of typically 50 mm. Said inner members thus have a significantly larger diameter when
compared to prior art cooler heat exchanging tubes eg prior art, heat exchanging tubes
105. Therefore, blockage of said inner members due to deposit of small particulate
matter including sooty deposits is unlikely, and the functional operation of said
inner members is maintained. It is to be understood that for some applications where
the path length may be increased or decreased the number of said inner members may
decrease or increase respectively. Further, the diameter of said outer member may
decrease or increase respectively. The inner member and outer member tube diameters
may also be required to vary depending on the specific application.
[0049] In operation of the first embodiment of the present invention, said first end 206
is fastened using screw fastening means placed through aperture 208 to connect a flange
portion of first end 206 to an exhaust manifold. A gas proof seal may be obtained
using an appropriate gasket between said flange portion and said exhaust manifold.
Said second end 207 of said outer member is likewise fastened to an inlet manifold
of said engine. Exhaust gases emitted from said engine during operation of said engine
pass through said exhaust manifold and enter any one of three apertures 209 formed
by said inner members 204. Thus exhaust gas comprising a mixture of combusted, non-combusted
and partially combusted gas and fuel enters the exhaust gas re-circulation system.
Direction of exhaust gas flow is indicated by arrows at first end 206 and second end
207 on Fig. 2(A). Exhaust gases entering said exhaust gas re-circulation system are
at an high temperature in the region of 300 to 700°C. Further, exhaust gases entering
said exhaust gas re-circulation system at said first end 206 have a high velocity.
Velocity and amount of exhaust gas flow will depend on the rate of drive cycle of
said engine at a particular time. As exhaust gases enter said inner tube 204 they
are forced to slow down.
[0050] Referring to Fig. 3 herein there is shown said inner members at a bend portion of
said outer member 201 and there is further shown in a cut-away section a detailed
section of the corrugations 301 of said inner members. The corrugations 301 provide
a turbulent non-laminar flow path for said exhaust gases. Forcing said exhaust gases
to adopt a turbulent flow path results in a decrease in velocity of the exhaust gases.
Further, adopting the turbulent flow path ensures that hot exhaust gases having a
decreased velocity compared to that on entry to the exhaust gas re-circulation system
enter into efficient heat exchange with the surrounding coolant medium by contacting
the extremities of troughs formed by corrugations of said inner members. The turbulent
flow path further provides for a self-cleaning mechanism. To facilitate said self-cleaning
mechanism, when incorporating said exhaust gas re-circulation system in an internal
combustion engine said first end 206 is preferred to be installed at a higher vertical
point than said second end 207. Hence said exhaust gas travels down a descending incline
whilst being transferred through said exhaust gas re-circulation system. The combination
of said incline and said turbulent flow path results in any sooty deposits including
small particulate matter within the exhaust gas, or having been previously deposited,
being driven through the exhaust gas re-circulation system. This overcomes the problem
of prior art systems in which heat exchange tubes 105 became blocked with sooty deposits
often being acidic in nature enhancing corrosion and causing blockage of the heat
exchanging tubes. Hence, the exhaust gas re-circulation system of the present specific
embodiment is self-maintaining.
[0051] Coolant medium is pumped into the exhaust gas re-circulation system through inlet
203 and surrounds said inner members over substantially the entire path length of
said exhaust gas re-circulation system. Hence, heat exchange between exhaust gas and
said inner members and subsequently between said inner members and said surrounding
coolant medium is occuring over a majority of the whole path length of the exhaust
gas re-circulation system component. At optimum configuration, the whole path length
of said exhaust gas re-circulation system will be in operation for heat exchange.
This provides a significant advantage over prior art coolers wherein the length of
tubular members employed in cooling is less than an entire length of a prior art cooler.
Thus, for a given length of exhaust gas re-circulation system the present invention
provides for an increased cooling capability. Exhaust gas being returned to an inlet
manifold at second end 207 is thus cooler and flowing at decreased speed compared
to exhaust gas entering said exhaust gas re-circulation system at first end 206.
[0052] As coolant medium is pumped around the exhaust gas re-circulation system, typically
at a rate of the order of 130 liters per hour, it will be pumped through outlet 202
and through associated hoses and pipes to said radiator via a cooling system. Here,
said coolant medium may be cooled. However some cooling will occur between said coolant
medium and the external environment by heat exchange between said coolant medium and
the tubular wall of said outer member and between the tubular wall of said outer member
and said external environment. Again, due to the fact that cooling is occuring over
the entire path length of said exhaust gas re-circulation system then cooling between
said outer member and the external environment is significantly greater than that
provided between the tubular wall of prior art coolers eg cooler 102 and the external
environment.
[0053] Further referring to Fig. 3 herein the first specific embodiment of the present invention
provides for a plurality of bend portions 201, 204 in said outer and inner members
wherein each bend portion includes corrugated portions. As exhaust gas passes through
said inner members at bend portions such as that illustrated in Fig. 3, a turbulent
flow of exhaust gas is set up within said inner members which aids the release of
heat by slowing down said exhaust gas and enabling it to reach the extremities of
the corrugations of said inner members providing for increased heat exchange efficiency.
Thus, the fact that cooling occurs over the entire path length of said exhaust gas
re-circulation system and the fact that said exhaust gas re-circulation system may
include a plurality of bend portions without the need for a straight section to include
a prior art type cooler means that the bend portions may actually provide an advantage
to heat exchange and exhaust gas cooling, exhaust gas reduction in speed and increase
in the density of charge of exhaust gases through the production of a turbulent flow
of exhaust gas at said bend portions resulting in increased heat exchange.
[0054] The present embodiment therefore provides an improved means of cooling exhaust gases
for re-combustion in an internal combustion engine via an exhaust gas re-circulation
system. It is an inherent feature of transfer of exhaust gases through said exhaust
gas re-circulation system that cooling of exhaust gases will occur. The use of corrugated
tubes as inner members 205 results in a decreased speed of exhaust gas flow and increased
surface area for heat exchange and thus cooling of exhaust gases via heat exchange
with a surrounding coolant medium. The cooling of exhaust gases thus results in a
denser charge of gas reaching said second end and thus the inlet manifold. This provides
for complete combustion of re-circulated exhaust gases and therefore decreased emission.
Corrugations provided by said inner members not only provide for an increased surface
area but provide for a turbulent flow path which by varying the angle of pitch of
the corrugations and also by varying the angle of incline of the exhaust gas re-circulation
system may be enhanced to provide a means of self-cleaning and self-maintenance of
the exhaust gas re-circulation system as sooty deposits or other small particulate
matter and acidic material is driven through the system by exhaust gases entering
the system. Thus the life span and efficiency of the exhaust gas re-circulation system
is maintained. The exhaust gas re-circulation system can be fitted to an internal
combustion engine as a single component making said system quickly and easily installable.
1. A component for transferring gases between an inlet port and an outlet port of an
internal combustion engine said component characterized by comprising:
a substantially tubular outer member having a first end and a second end, and an outer
tubular wall extending between said first and second ends; and
a plurality of substantially tubular inner members housed in said first substantially
tubular outer member, wherein said second substantially tubular inner members are
corrugated along at least part of their length.
2. A component as claimed in claim 1, wherein each of said plurality of substantially
tubular inner members extend substantially an entire length of said substantially
tubular outer member between said first and said second ends.
3. A component as claimed in claim 1 or 2, wherein each of said plurality of substantially
tubular inner members comprises a plurality of tubular sections, each following a
curved path.
4. A component as claimed in any one of the preceding claims, wherein said substantially
tubular outer member is corrugated throughout at least one portion.
5. A component as claimed in any one of the preceding claims, wherein said substantially
tubular outer member contains apertures suitable for inlet and outlet of a coolant
medium.
6. A component as claimed in any one of the preceding claims, wherein said first and
second ends of said outer tubular member are substantially blocked in order to retain
coolant medium within said first substantially tubular outer member, save for apertures
remaining to permit gas flow into each of said plurality of substantially tubular
inner members.
7. A component as claimed in any one of the preceding claims, wherein said plurality
of substantially tubular inner members are mounted through at least one spacer maintaining
said substantially tubular inner members at substantially fixed positions relative
to each other.
8. A component as claimed in any one of the preceding claims, wherein said outer tubular
member is substantially bent to a required shape.
9. A component as claimed in any one of the preceding claims, wherein:
said substantially tubular outer member is manufactured from metal tubing with a wall
thickness in the region of 0.3 to 0.5 mm;
said substantially tubular inner members are manufactured from metal tubing with a
wall thickness in the region of 0.2 to 0.3 mm.
10. A component as claimed in any one of the preceding claims, wherein said first and
second ends comprise flanges with apertures for inserting fastening means to fasten
said tube to said engine using said fastening means forming a gas-proof seal using
a gasket.
11. A component as claimed in any one of the preceding claims, for cooling exhaust gases
in an internal combustion engine, having an exhaust gas recirculation system.
12. An internal combustion engine having an exhaust gas recirculation system, said system
including means for cooling and transferring gases wherein said means comprises:
a substantially tubular outer member having a first end and a second end;
a plurality of substantially tubular inner members housed in said first substantially
tubular outer member;
wherein said substantially tubular inner members are corrugated along at least a part
of their lengths.
13. An internal combustion engine as claimed in claim 12, wherein said substantially tubular
outer member includes suitable apertures wherein a coolant medium can be circulated
externally of said substantially tubular inner members, said coolant medium flowing
in a circuit comprising:
said exhaust gas recirculation system;
a radiator; and
a pump, coolant storage vessel, pipework and fittings associated with said radiator,
wherein said apertures connect said exhaust gas recirculation system and said pipework
to form a coolant circuit for passage of said coolant over said plurality of inner
members.
14. An internal combustion engine as claimed in claim 12 or 13, wherein said first end
of said substantially tubular outer member is located at an exhaust manifold and said
second end being located at an inlet manifold wherein in operation of said engine
coolant medium in said tube is restricted between said first and second ends and externally
of said substantially tubular inner members, inlet and outlet of coolant medium from
said tube occurring through inlet and outlet apertures.
15. An internal combustion engine as claimed in any one of claims 12 to 14, wherein said
tube forms a single part for fitment to said engine, said tube being pre-bent to a
specific configuration to provide economy of space when fitted to said engine.
16. An internal combustion engine as claimed in any one of claims 12 to 15, wherein said
substantially tubular outer member has a metal wall thickness in the region of 0.3
mm to 0.5 mm.
17. An internal combustion engine as claimed in any one of claims 12 to 16, wherein said
first end of said substantially tubular outer member is fixed during operation at
a vertically higher fixed point to said second end, both of said ends comprising flanges
with apertures for inserting fastening means in order to fix said tube to said engine
forming a gas-proof seal using a gasket.
18. A method of assembly of a tube for an internal combustion engine said method comprising
the steps of:
locating a plurality of plates along the length of a plurality of corrugated substantially
tubular inner members;
placing said combination of said plates and said plurality of substantially tubular
inner members within a substantially tubular outer member; and
fixing said plates in position.
19. A method as claimed in claim 18, further comprising the step of:
fastening said substantially tubular outer member to an internal combustion engine
and radiator system.
20. A method of cooling exhaust gases for an internal combustion engine exhaust gas recirculation
system said method comprising the steps of:
directing an exhaust gas flow into a plurality of corrugated substantially tubular
members;
forming a turbulent flow of said exhaust gas within said corrugated substantially
tubular members;
wherein heat exchange occurs through at least one substantially tubular wall of said
plurality of corrugated substantially tubular members with a surrounding coolant medium.
21. A method as claimed in claim 20, wherein said gas flow experiences a decrease in velocity
of gas flow within said plurality of corrugated members.
22. A method as claimed in claim 20 or 21, further comprising the step of transferring
said exhaust gases to an inlet manifold.
23. A method as claimed in any one of claims 20 to 22 wherein small particulate matter
is driven through said plurality of corrugated substantially tubular members.
24. A method as claimed in any one of claims 20 to 23, comprising forming a turbulent
flow of exhaust gases.
25. A method as claimed in any one of claims 20 to 24 wherein heat is exchanged from said
surrounding medium through a surrounding outer tubular wall to an external environment.