Background Of The Invention
[0001] The field of the present invention is air driven reciprocating devices.
[0002] Pumps having double diaphragms driven by compressed air directed through an actuator
valve are well known. Reference is made to U.S. Patent Nos. 5,213,485; 5,169,296;
and 4,247,264; and to U.S. Patent Nos. Des. 294,946; 294,947; and 275,858. Actuator
valves using a feedback control system are disclosed in U.S. Patent Nos. 4,242,941
and 4,549,467. The disclosures of the foregoing patents are incorporated herein by
reference.
[0003] Common to the aforementioned patents on air driven diaphragm pumps is the disclosure
of two opposed pumping cavities. The pumping cavities each include a pump chamber
housing, an air chamber housing and a diaphragm extending fully across the pumping
cavity defined by these two housings. Each pump chamber housing includes an inlet
check valve and an outlet check valve. A common shaft typically extends into each
air chamber housing to attach to the diaphragms therein.
[0004] An actuator valve receives a supply of pressurized air and operates through a feedback
control system to alternately pressurize and vent the air chamber side of each pumping
cavity through a control valve piston. Feedback to the control valve piston has been
provided by the position of the shaft attached to the diaphragms which includes one
or more passages to alternately vent the ends of the valve cylinder within which the
control valve piston reciprocates. By selectively venting one end or the other of
the cylinder, the energy stored in the form of compressed air at the unvented end
of the cylinder acts to drive the piston to the alternate end of its stroke. The pressure
builds up at both ends of the control valve piston between strokes. Pressurized air
is allowed to pass longitudinally along the piston within the cylinder to the ends
of the piston. Consequently, a clearance has typically been provided between the control
valve piston and the cylinder.
[0005] Under proper conditions, the shifting energy is more than sufficient to insure a
complete piston stroke. However, under adverse conditions, the damping or resistance
to movement of the piston may so increase relative to the pressure available that
the system may require all available potential energy for shifting of the piston.
Under such marginal conditions, all possible energy is advantageously applied to insure
operation of the actuator valve. One mechanism for providing additional energy for
shifting is presently included in the devices of the aforementioned patents. Additional
compressed air is supplied through passageways to the expanding chamber at one end
of the control valve piston. The air is gated into the passageways by the location
of the piston. Control of that energy in the control valve assembly itself is also
important. Reference is made to U.S. Patent No. 6,102,363.
[0006] Air driven systems, using the expansion of compressed gasses to convert potential
energy into work, can experience problems of icing when there is moisture in the compressed
gas. As the gas expands, it cools and is unable to retain as much moisture. The moisture
condensing from the cooled gas can collect in the passageways and ultimately form
ice. This can result in less efficient operation and stalling. Solution for this problem
may be found in U.S. Patent Nos. 5,584,666 and 5,607,290.
[0007] The control of expansion of the compressed gasses can be aided by a diffuser outlet
from the valve for self purging. The diffuser allows a distribution of expanding gases
from a constrained area with a diverging surface making ice formation difficult. One
such system is disclosed in U.S. Patent No. 5,957,670.
[0008] Relief valves controlling control valve assemblies are disclosed in U.S. Patent No.
5,927,954. The valve, independently configured, provides positive opening characteristics
through the accumulation of energy before actuation.
Summary Of The Invention
[0009] The present invention is directed to a valve and its configuration which provides
one-way flow into a chamber and a fairly direct controlled vent path from the chamber.
Actual operating parameters of the fluid state within the pump is able to control
the valve.
[0010] Accordingly, it is a first separate aspect of the present inventions to provide a
shuttle valve controlled by pressure within the system. The shuttle valve includes
one-way flow in a first direction directly through the valve body. One-way flow in
the opposite direction is routed laterally from the valve.
[0011] In a second separate aspect of the present invention, the valve of the first aspect
includes an exhaust port having a tapered path to atmosphere. The increase in cross-sectional
area of the exhaust port may be about three times the original port area.
[0012] In a third separate aspect of the present invention, the valve of the first aspect
is incorporated into an air driven diaphragm pump. Released fluid is able to pass
from the pump without going through the control valve assembly which would otherwise
cool the valve.
[0013] In a fourth separate aspect of the present invention, a relief valve having the aspects
of accumulating potential energy prior to actuation is incorporated into the housing
structure of the pump actuator. A cavity within the actuator receives a relief valve
body which has a guideway, a relief valve seat and an exhaust. A flow path from the
control valve extends from the cavity within the actuator across the relief valve
seat to the exhaust.
[0014] In a fifth separate aspect of the present invention, combinations of the foregoing
separate aspects are contemplated.
[0015] Accordingly, it is an object of the present invention to provide improved mechanisms
and systems for air driven diaphragm pumps. Other and further objects and advantages
will appear hereinafter.
Brief Description Of The Drawings
[0016]
Figure 1 is a cross-sectional side view of an air driven diaphragm pump.
Figure 2 is a side view of an actuator for the pump of Figure 1 with a valve cylinder
illustrated in cross section.
Figure 3 is a cross-sectional detail taken as indicated in Figure 1 illustrating the
detail of a relief valve.
Figure 4 is a cross-sectional view taken along line 4-4 of Figure 2.
Figure 5 is a cross-sectional view taken along line 5-5 of Figure 2 with air chambers
in place and without the valve cylinder.
Detailed Description Of The Preferred Embodiment
[0017] Turning in detail to the drawings, an air driven diaphragm pump is illustrated in
Figure 1. The pump includes a center section 10 which provides the actuator system
for the pump. Two opposed air chambers 12 and 14 are fixed to the center section 10
and face outwardly to define cavities to receive driving air from the actuator. Pump
chambers 16 and 18 are arranged to mate with the air chambers 12 and 14, respectively,
to define pumping cavities divided by diaphragms 20 and 22. The pump chambers 16 and
18 include inlet ball valves 24 and 26 and outlet ball valves 28 and 30 associated
with respective inlets and outlets. An inlet manifold 32 supplies material to be pumped
to the ball valves 24 and 26. An outlet manifold 34 discharges from the outlet ball
valves 28 and 30.
[0018] About their periphery, the diaphragms 20 and 22 include beads which are held between
the air chambers 12 and 14 and the pump chambers 16 and 18. About the inner periphery,
the diaphragms 20 and 22 are held by pistons 36 and 38. The pistons are coupled with
a shaft 40 which extends across the center section 10 and is slidable therein such
that, the pump is constrained to oscillate linearly as controlled by the shaft 40.
[0019] The center section or center block 10 includes the actuation mechanism for reciprocating
the pump. In addition to providing a physical attachment and positioning of the pump
assembly through the attachment to the air chambers 12 and 14, the center section
10 provides bearing support for the shaft 40. A passageway 42 extends through the
center section 10 to receive the shaft 40. The passageway includes two bushings 44
and 46 which are seated in both the center section 10 and in the body of the air chambers
12 and 14. Exterior O-rings 48 and interior seals 50 prevent leakage of air pressure
from the alternately pressurized chambers.
[0020] Turning to the actuator, a control valve assembly, generally designated 52, is illustrated
in Figure 2. The valve assembly 52 includes a cylinder 54. The cylinder 54 includes
an inlet passage 56 with means for coupling with a source of pressurized air. An inlet
port 58 extends from the inlet passage 56 into the cylinder 54. A series of passageways
60 through 66 extend from the cylinder 54 through the wall thereof in a position diametrically
opposed to the inlet port 58. The passageways 60 and 66 are vent passageways which
lead to exhaust while the passageways 62 and 64 are charging passageways which lead
to air chambers 12 and 14. The passageways 60 through 66 provide alternate pressurizing
and venting to these air chambers 12 and 14 by alternately coupling the charging passageways
62 and 64 with the vent passageways 60 and 66 and the inlet passage 56.
[0021] The cylinder 54 is closed at the ends by end caps 68 and 70. The end caps 68 and
70 each include an annular groove for receipt of a sealing 0-ring 72. Circular spring
clips 74, each held within an inner groove within the wall of the cylinder 54, retain
the end caps 68 and 70 in place.
[0022] A control valve piston 76 is located within the cylinder 54 and allowed to reciprocate
back and forth within the cylinder. The control valve piston 76 has an annular groove
78 which is centrally positioned about the control valve piston 76. This annular groove
78 cooperates with the inlet port 58 to convey pressurized air supplied through the
inlet passage 56 around the control valve piston 76 to one or the other of the passageways
62 and 64 for delivery to the air driven reciprocating device. Cavities 80 and 82
are cut into the bottom of the control valve piston 76. These cavities 80 and 82 are
positioned over the passageways 60 through 66 so as to provide controlled communication
between the passageway 60 and the passageway 62 and also between the passageway 64
and the passageway 66. As can be seen in Figure 2, the cavity is providing communication
between the passageways 64 and 66. This allows venting of one side of the reciprocating
device. With the control valve piston 76 in the same position, the annular groove
78 is in communication with the passageway 62 to power the other side of the reciprocating
device. The opposite configuration is provided with the control valve piston 76 at
the other end of its stroke.
[0023] To control the control valve assembly 52, valve control passages 84 and 86 are positioned
at either end of the cylinder 54. These passages 84 and 86 extend to cooperate with
pressure relief valves as part of the control valve assembly 52. To shift the control
valve piston 76, one or the other of the passages 84 and 86 is vented to atmosphere.
In between shifts, pressure is allowed to accumulate within the entire cylinder 54.
With one end vented, the accumulated pressure at the other end shifts the piston.
To increase energy for shifting, bosses 88 and 90 are provided at the ends of the
control valve piston 76. Thus, an area is provided for the accumulation of pressurized
air even with the control valve piston 76 hard against the most adjacent end cap 68
or 70.
[0024] To increase the shifting capability of the control valve piston 76, radial holes
92 and 94 extend into the control piston 76. The radial holes communicate with axial
passageways 96 and 98 which extend to the ends of the control valve piston 76. The
radial holes 92 and 94 are spaced to be slightly wider than the inlet port 58. Thus,
once the piston reaches a midpoint in its stroke, the hole most advantageously conveying
additional pressure to the expanding end of the cylinder 54 is uncovered and contributes
further to the shift. A pin 100 extends into one of the axial passageways 96 and 98
so as to orient the control valve piston 76 angularly within the cylinder 54.
[0025] To insure that enough energy for the control valve piston 76 to shift is accumulated
prior to each successive shift, the positive clearance present between the periphery
of the control valve piston 76 and the cylinder wall 54 is controlled. Excessive clearance
allows the pressurized air accumulated behind the end of the piston to escape without
transferring sufficient energy to the piston itself.
[0026] Because of the differential pressure across the cylinder 54 from the inlet port 58
to the passageways 60 through 66 and the repeated back-and-forth action of the control
valve piston 76 in the cylinder 54, wear occurs on the lower side of the control valve
piston 76. Consequently, positive clearance continues to accumulate with operation
of the actuator. With enough wear, the control valve piston 76 must be replaced.
[0027] The control valve piston 76 includes circumferential grooves located adjacent the
beveled ends of the control valve piston 76. Piston rings 108 and 110 are positioned
within the circumferential grooves. The piston rings 108 and 110 are positioned by
forcing the resilient rings over the beveled ends of the control valve piston 76 so
as to enter the circumferential grooves. The piston rings float within the grooves
in that their inner peripheral diameter is larger than the outer diameter at the bottom
of the grooves. The piston rings 108 and 110 are also preferably a bit thinner than
the grooves to enhance the floating characteristic. The cylinder 54, the control valve
piston 76 and the piston rings 108 and 110 are preferably circular in cross section.
The outer profile of each of the piston rings 108 and 110 is slightly larger than
that of the control valve piston 76. Even so, the outer circumference of the piston
rings 108 and 110 still exhibit a positive clearance with the wall of the cylinder
54. With net positive clearance, the control valve piston with the rings can move
easily within the cylinder 54.
[0028] With the floating piston rings 108 and 110, it has been found that the control valve
piston 76 may be of a self-lubricating polymeric material such as acetal polymer with
PTFE filler. The rings 108 and 110 may be of the same material. The control valve
piston 76 continues to wear at what would be an unacceptable rate. However, the piston
rings 108 and 110 are not forced against the wall of the cylinder 54 and exhibit far
less wear than the control valve piston 76. Consequently, the appropriate clearance
between the piston rings 108 and 110 of the control valve piston 76 can be maintained
with the cylinder 54.
[0029] The control valve assembly further includes pressure relief valves to control the
valve control passages 84 and 86. Two relief valve cavities 112 are arranged in the
housing constituting the center section 10. The relief valve cavities 112 are arranged
to either side of the center section 10 so that they face the air chambers 12 and
14, respectively. A bore 114 extends through each of the air chambers 12 and 14 to
accommodate a portion of the valve assemblies. The relief valves are identical and
oriented in opposite directions.
[0030] Positioned within each relief valve cavity 112 and bore 114 is a relief valve body
116. The relief valve body 116 is generally symmetrical about a centerline and includes
a first cylindrical portion 118 that fits within the bore 114. A cylindrical portion
120 of the relief valve body 116 extends from the first cylindrical portion 118 with
a shoulder to accommodate an 0-ring 122 as can be seen in Figure 3. Adjacent to the
cylindrical portion 120 is a radial flange 124 extending outwardly from the cylindrical
portion 120. The flange 124 seats within the relief valve cavity 112 and is held in
place by a snap ring 126. A final cylindrical portion 128 adjacent to the flange 124
cooperates with the relief valve cavity 112 to provide a seat with a sealing 0-ring
130. Exhaust passages 132 extend through the flange portion 124 and the cylindrical
portion 128 about the relief valve 116 in an arrangement best seen in Figure 2.
[0031] A first guideway portion 134 extends partway through the relief valve 116. A second
portion 136 of the guideway of smaller diameter than the guideway portion 134 completes
the passage thorough the relief valve 116. An 0-ring 138 and a retaining washer 140
provide sealing along the smaller guideway portion 136. An actuator pin 142 is positioned
in the smaller guideway portion 136 so as to extend from the end of the first cylindrical
portion 118 into the air chamber 12, 14. From Figure 1, it can be seen that the actuator
pins 142 will interfere with the stroke of the pistons 36 and 38. The length of the
actuator pins 142 is such that the pins provide preselected limits to the shaft stroke.
[0032] A relief valve element 144 is positioned within the relief valve cavity 112 and extends
into the guideway 134. The relief valve element 144 includes a cylindrical plate 146
which extends over the cylindrical portion 128. Thus, the cylindrical portion 128
and the 0-ring 130 operate as a relief valve seat. The relief valve element 144 includes
an actuator 148 which extends into the guideway portion 134. The actuator pin 142
includes a socket 150 which is also in the guideway portion 134. The actuator 148
provides a socket 152 facing the socket 150. The two sockets 150 and 152 accommodate
a compression spring 154. The compression spring is an elastomeric cylinder which
is closed at one end and contains a cavity. In the relaxed state, the compression
spring 154 holds the actuator 148 and the actuator pin 142 apart. Consequently, compression
of these two elements positioned within the guideways 134 and 136 is possible until
the socket portions 150 and 152 abut end to end. Potential energy can be developed
in the compression spring 154.
[0033] The relationship of the plate 146 with the relief valve element 144 creates a flow
path from the relief valve cavity 112 across the seat defined by the cylindrical portion
128 and 0-ring 130 and through the exhaust passages 132. The air is then vented from
the housing through a passage 155 to atmosphere.
[0034] A valve spring 156 of resilient material formed in a cross with a hole therethrough
to receive the end of the relief valve element 144 is placed in compression within
the relief valve cavity 112 against the relief valve element 144. The passageway 84,
86 extends to the relief valve cavity 112 at the other end thereof. A conical nozzle
158 is positioned at the end of the passageway 84, 86 to avoid icing concerns.
[0035] The cross-shaped valve spring 156 is arranged in a flattened dome shape. Because
of the shape, a spring constant is relatively small through the anticipated movement
of the valve element 144. This provides for a relatively predictable return force
in spite of manufacturing tolerances and the like. The spring constant then increases
substantially beyond this range of movement. The valve spring 156 is also preloaded
to establish a bias of the valve element 144 toward seating against the seat 128 and
O-ring 130.
[0036] At rest, the relief valve element 144 is seated against the 0-ring 130 and relief
valve seat 128 because of the preload compression in the valve spring 156. The compression
spring 154 may or may not include a preload. However, any preload is smaller than
the preload on the valve spring 156 such that the compression force of the valve spring
156 dominates even without air pressure in the valve chamber. The actuator 148 also
extends toward the restricted end of the guideway 136 to its travel limit. The actuator
148 also extends midway through the guideway 136. The compression spring 148 separates
the valve element 144 from the actuator pin 142, while engaged in the sockets 150
and 152.
[0037] As the plate 146 is against the 0-ring 130, pressure cannot be vented from the device.
As the actuator pin 142 is depressed, this motion is resisted by the pressure within
the relief valve cavity 112 exerted against the plate 146 on the side facing the cavity.
It is also resisted by the valve spring 156. A typical pump application would employ
shop air having a force exerted across the plate 146 of about 445 N (100 lbs.) A valve
spring 156 preferably has a precompression of about 156 N (35 lbs.) of force.
[0038] The force associated with depression of the actuator pin 142 is transmitted to the
valve element 144 through the compression spring 154. The compression spring 154 is
preferably designed to reach a maximum of about 356 N (80 lbs.) of force when the
socket portions 150 and 152 engage. The 356 N (80 lbs.) of force remains as no match
to the combination of the pressure force of about 445N (100 lbs.) and the valve spring
force of about 156N (35 lbs.) However, once a rigid link is established between the
socket portions 150 and 152, force increases substantially instantaneously to in excess
of the combined pressure and return spring forces. The cylindrical plate 146 then
moves from the O-ring 130 of the valve seat 128.
[0039] As pressure drops within the cavity 112, the compression force of the compression
spring 154 becomes dominant. The energy stored within the spring can, therefore, drive
the valve element 144 further open. As the compression force of the compression spring
154 reduces with expansion of the spring, it comes into equilibrium with the valve
spring 156 and remains there until the actuator pin 142 is allowed to return. The
bias force of the valve spring 156 then becomes dominant as the force from the compression
spring 154 drops toward zero. The valve element 144 can then return to a seated position.
The ranges of compression force thus operating provide for the valve spring 156 to
have a greater minimum compression force than the compression spring 154 and the compression
spring 154 to have a greater maximum force than the valve spring 156.
[0040] Two valves control air flow to and from the two air chambers 12 and 14. To this end,
the two passageways 62 and 64 lead to two shuttle valves 160 (one shown). The shuttle
valves 160 are each positioned within the center section 10 defining a valve housing.
The shuttle valves 160 are identical and the outlets therefrom are mirror images on
either side of the center section.
[0041] A valve cavity 162 is defined for each shuttle valve 160. Each cavity 162 is open
to a side of the center section 10 such that, with a hole through the wall of the
air chamber 12, 14, the valve cavity 162 is in open communication with the air chamber
12, 14. The valve cavity 162 is cylindrical and includes a first, inlet port 164 which
is at the inner end of the cylinder forming the valve cavity 162. The inlet port 164
is cut such that it is open to the passageways 62 and 64. A second, charging port
166 is simply the end of the cylindrical cavity 162 exiting the center section 10
toward the air chamber 12, 14. A third, exhaust port 168 extends from the wall of
the cylindrical valve cavity 162. As can best be seen in Figure 2, the exhaust port
168 extends with parallel walls to an outlet where conventional muffling may be employed.
In Figure 4, the exhaust port 168 associated with the cavity 162 illustrated cannot
be seen. The exhaust port 168 associated with the cavity 162 on the other side of
the center section 10 can be seen in the view. From the view in Figure 2, the walls
are seen to be parallel. However, the depth of the exhaust port passage increases
from the valve cavity 162 to the outlet at atmosphere as seen in Figure 5. Typically,
the cross-sectional area defined within the exhaust port 168 at the outlet is three
times that of the cross-sectional area at the valve cavity 162.
[0042] A shuttle valve element 170 is slidably positioned within the valve cavity 162 of
each shuttle valve 160 such that it is sealed to form a piston. A ring seal 172 in
the sidewall is positioned such that, regardless of the location of the shuttle valve
element 170 within the valve cavity 162, the ring seal 172 is between the exhaust
port 168 and the inlet port 164. Consequently, flow cannot be directed from the inlet
port 164 to the exhaust port 168 without having passed into communication with the
air chamber 12, 14.
[0043] The shuttle valve element 170 is shown in one of two extreme positions. In the position
shown in Figure 4, the exhaust port 168 is open to the charging port 166 into the
air chamber 12, 14. With the shuttle valve element 170 most adjacent the air chamber
12, 14 in the other extreme position, the exhaust port 168 is covered over by the
shuttle valve element 170 to prevent exhausting of pressurized air. The end of the
shuttle valve element 170 adjacent to the air chamber 12, 14 encounters the air chamber
and seals against the smooth surface of the air chamber, which may be of polished
metal or smooth polymeric material. The hole (not shown) through the air chamber 12,
14 is smaller than the valve cavity 162 such that a shoulder is provided for this
purpose.
[0044] The shuttle valve element 170 includes a passageway 174 therethrough. The passageway
174 has a first end adjacent to the inlet port 164 and a second end adjacent to the
charging port 166 into the air chamber 12, 14. At the first end, a seat 176 is provided
to accommodate a valve element 178. An inwardly extending flange 180 at the second
end of the shuttle valve element 170 accommodates and retains one end of a valve spring
182. The valve spring 182 is also formed of resilient material in a cross shape which
is then bent to fit within the passageway 174 in the shuttle valve element 170. With
the valve element 178 and the spring 182, a one-way valve is formed within the passageway
174. The spring 182 may be compressed in its placement such that a predetermined threshold
level of pressure is needed to force the valve element 178 away from the seat 176.
[0045] In operation, compressed air, normally shop air, is presented to the inlet passage
56 as a source of pressurized air. The air passes through the inlet port and about
the annular groove 78. The control valve piston 76 is to be found at one end or the
other of the cylinder 54 and the pressurized air flows through one of the passageways
62 and 64 to one or the other of the shuttle valves 160.
[0046] With the control valve piston 76 at the end illustrated in Figure 2, one of the shuttle
valves 160 is subjected to pressure at its first end while the other is not. Consequently,
the shuttle valve element 170 of the shuttle valve 160 subjected to pressure at its
first end moves to the extreme position within the valve cavity 162 adjacent to the
air chamber 12. This closes the outlet port 168.
[0047] As pressure builds, the valve element 178 of the one-way valve lifts from the seat
176 to allow flow through the passageway 174 and the charging port 166 into the air
chamber 12. This forces one of the pistons 36, 38 toward the associated pump chamber
16, 18. With this movement, the volume of the other air chamber 14 is reduced and
pressure builds within the cavity enough such that the shuttle valve element 170,
which does not have the incoming pressurized air acting on the valve element 178,
will move to the extreme position most distant from the air chamber 14.
[0048] To insure that residual air pressure within the nonpressurized passage 64 does not
prevent movement of the associated shuttle valve 160, the cavity 82 communicates air
through the passage 64 to the associated exhaust passageway 66 in communication with
the exhaust port 168 where it is vented to atmosphere.
[0049] With the second shuttle valve element 170 displaced from the air chamber 14, the
exhaust port 168 is open and provides for the evacuation of the air chamber 14 associated
with that shuttle valve 160.
[0050] As the shaft 40 completes its stroke, the actuator pin 142 interferes with continuing
motion of the pistons 36, 38. As the actuator pin 142 is forced into the center section
10, the valve spring 176 yields along with compression spring 154 as discussed. Ultimately,
the relief valve 116 is displaced from the relief valve seat 128 and air from one
end of the control valve piston 76 is rapidly exhausted. As this occurs, the control
valve piston 76 shifts to the other end of the cylinder 54. At this point, the process
is reversed and the shaft 40 moves in the opposite direction.
[0051] Accordingly, an improved air driven double diaphragm pump is disclosed. While embodiments
and applications of this invention have been shown and described, it would be apparent
to those skilled in the art that many more modifications are possible without departing
from the inventive concepts herein. The invention, therefore is not to be restricted
except in the spirit of the appended claims.
1. A double diaphragm pump comprising
two opposed pumping cavities (16,18);
two diaphragms (20,22), each diaphragm extending across a pumping cavity (16,18),
respectively, to define an air chamber cavity (12,14);
a shaft (40) extending between each of the diaphragms (20,22) and being slidably mounted
relative to the opposed pumping cavities (16,18);
a housing (10) between the pumping cavities (16,18) including two valve cavities (162),
two first ports (164), two second ports (166) and two third ports (168) through the
housing to each of the valve cavities (162), respectively, the second ports (166)
being in communication with the air chamber cavities (12,14), respectively, the third
ports (168) extending to atmosphere;
two shuttle valve elements (170) each including a sidewall sealably and slidably positioned
in the valve cavities (162), respectively, and a passageway (174) therethrough with
a first end, a second end and a valve seat (176) between the first end and the second
end, the first port (164) being in communication with the first end and the second
port (166) being in communication with the second end, the shuttle valve elements
(160) each having two extreme positions, the first with the sidewall covering the
third port (168) and the second with the third port (168) uncovered and in communication
with the second port (166);
two one-way valves in the passageways (174), respectively, biased against the valve
seats (176) and permitting flow from the first end to the second end of each passageway
(174), respectively, under preselected pressure;
a source of pressurized air in selective communication with the first ports (164);
a control valve assembly (52), the housing (10) further including two relief valve
cavities (112), the control valve assembly (52) including a control valve (54), control
passages (84,86) from the control valve (54) to the two relief valve cavities (112),
respectively, an Inlet passage (56), two pressure relief valves (116) in the relief
valve cavities (112), each with an actuator pin (142) extending to be alternately
depressed at preselected limits of the shaft stroke, a relief valve body (116) having
a guideway (134), a relief valve seat (128,130) and an exhaust (132), a flow path
from the respective control passage (84,86) through the respective relief valve cavity
(112) and across the relief valve seat (128,130) to the exhaust (132), an actuator
(148) slidably positioned in the guideway (134) with the actuator pin (142), a relief
valve element (144) slidably positioned in the cavity to face the guideway (134) and
the relief valve seat (128,130) and biased toward seating engagement with the valve
seat (128,130), and a compression spring (154) between the actuator pin (142) and
the valve element (144).
2. The double diaphragm pump of claim 1, the third port (168) of each of the valve cavities
(162) being tapered to increase in cross-sectional area away therefrom.
3. The double diaphragm pump of claim 2, the third port (168) of each of the valve cavities
(112) extending to atmosphere and being tapered in one cross-sectional dimension,
the cross-sectional area increasing by three times between the valve cavities (112)
and atmosphere.
4. The double diaphragm pump of claim 1, the sidewall of each of the shuttle valve elements
(160) including a sealing ring (172) between the first port (164) and the third port
(168) with the shuttle valve elements (160) in each of the two extreme positions.
5. The double diaphragm pump of claim 1, each of the one-way valves including a valve
element (178) and a spring (182), the valve elements (178) selectively seating on
the valve seats (176), respectively, the springs (182) extending in compression between
the shuttle valve elements (178), respectively, and the valve elements (178), respectively,
with the valve elements (178) being between the valve seats (176) and the springs
(182).
6. The double diaphragm pump of claim 1 further comprising
vent passageways (60,66) from the control valve (52) to atmosphere;
charging passageways (62,64) from the control valve (52) to the first ports (164);
an inlet (58) alternately coupling the charging passageways (62,64) with the vent
passageways (60,66), respectively, and the inlet passage (56).
7. The double diaphragm pump of claim 1 further comprising
vent passageways (60,66) from the control valve (52) to atmosphere;
charging passageways (62,64) from the control valve (52) to the inlet ports (164);
an inlet (58) alternately coupling the charging passageways (62,64) with the inlet
passage (56) and the vent passageways (60,66), respectively.
1. Doppelmembranpumpe mit
zwei gegenüberliegenden Pumphohlräumen (16, 18);
zwei Membranen (20, 22), wobei jede Membran quer über einen jeweiligen Pumphohlraum
(16, 18) sich erstreckt, um einen Luftkammerhohlraum (12, 14) zu definieren;
eine Welle (40), die zwischen den beiden Membranen (20, 22) sich erstreckt und relativ
zu den gegenüberliegenden Pumphohlräumen (16, 18) verschiebbar ist;
ein Gehäuse (10) zwischen den Pumphohlräumen (16, 18), das zwei Ventilhohlräume (162),
zwei erste Öffnungen (164), zwei zweite Öffnungen (166) und zwei dritte Öffnungen
(168) durch das Gehäuse zu dem jeweiligen Ventilhohlraum (162) aufweist, wobei die
zweiten Öffnungen (166) mit den jeweiligen Luftkammerhohlräumen (12, 14) in Verbindung
stehen, wobei die dritten Öffnungen (168) zur Atmosphäre sich erstrecken;
zwei Zweiwegeventilelemente (170) jeweils aufweisend eine Seitenwand, die abdichtbar
und verschiebbar positioniert in dem jeweiligen Ventilhohlraum (162) ist, und dadurch
einen Durchgang (174) mit einem ersten Ende, einem zweiten Ende und einem Ventilsitz
(176) zwischen dem ersten Ende und dem zweiten Ende, wobei die erste Öffnung (164)
mit dem ersten Ende in Verbindung steht und die zweite Öffnung (166) mit dem zweiten
Ende in Verbindung steht, wobei die Zweiwegeventilelemente (160) jeweils zwei Extrempositionen
haben, wobei bei der ersten die Seitenwand die dritte Öffnung (168) abdeckt und bei
der zweiten die dritte Öffnung (168) unbedeckt ist und mit der zweiten Öffnung (166)
in Verbindung steht;
zwei Einwegeventile im jeweiligen Durchgang (174), wobei die Einwegeventile jeweils
gegen den Ventilsitz (176) vorgespannt sind und jeweils eine Strömung von dem ersten
Ende zu dem zweiten Ende jedes Durchgangs (174) unter einem vorbestimmten Druck ermöglichen;
eine Quelle von Druckluft in wahlweiser Verbindung mit den ersten Öffnungen (164);
eine Steuerventilanordnung (52), wobei das Gehäuse (10) ferner aufweisend zwei Ablassventilhohlräume
(112), wobei die Steuerventilanordnung (52) ein Steuerventil (54), Steuerdurchgänge
(84, 86) von dem Steuerventil (54) zu den jeweiligen Ablassventilhohlräumen (112),
einen Einlassdurchgang (56) aufweist, zwei Druckablassventile (116) in den Ablassventilhohlräumen
(112), jedes mit einem Betätigungsstift (142), der vorsteht, um wechselweise bei vorbestimmtem
Limit des Wellenhubs gedrückt zu werden, einem Ablassventilkörper (116) mit einer
Führung (134), einem Ablassventilsitz (128, 130) und einem Ablass (132), einem Strömungspfad
von dem jeweiligen Steuerdurchgang (84, 86) durch den jeweiligen Ablassventilhohlraum
(112) und quer zum Ablassventilsitz (128, 130) zu dem Ablass (132), einem Betätigungsmittel
(148), das verschiebbar in der Führung (134) mit dem Betätigungsstift (142) angeordnet
ist, einem Ablassventilelement (144), das verschiebbar in dem Hohlraum angeordnet
ist, um der Führung (134) und dem Ablassventilsitz (128, 103) zugewandt zu sein und
gegen den Sitzeingriff mit dem Ventilsitz (128, 120) vorgespannt zu sein, und einer
Kommpressionsfeder (154) zwischen dem Betätigungsstift (142) und dem Ventilelement
(144).
2. Doppelmembranpumpe gemäß Anspruch 1, wobei die dritte Öffnung (168) jedes Ventilhohlraumes
(162) konisch ist, um die Querschnittsfläche davon weg zu vergrößern.
3. Doppelmembranpumpe gemäß Anspruch 2, wobei die dritte Öffnung (168) jedes Ventilhohlraumes
(112) zur Atmosphäre sich erstreckt und in einer Querschnittsdimension konusförmig
ist, wobei die Querschnittsfläche um das Dreifache zwischen den Ventilhohlräumen (112)
und der Atmosphäre sich vergrößert.
4. Doppelmembranpumpe gemäß Anspruch 1, wobei die Seitenwand jedes Zweiwegeventilelementes
(160) einen Dichtring (172) zwischen der ersten Öffnung (164) und der dritten Öffnung
(168) aufweist, wobei die Zweiwegeventilelemente (160) in beiden Extrempositionen
sind.
5. Doppelmembranpumpe gemäß Anspruch 1, wobei jedes Einwegeventil ein Ventilelement (178)
und eine Feder (182) aufweist, wobei das Ventilelement (178) wahlweise auf dem jeweiligen
Ventilsitz (176) sitzt, wobei die Feder (182) in Kompression zwischen dem jeweiligen
Zweiwegeventil (178) und dem jeweiligen Ventilelement (178) sich erstreckt, und wobei
das Ventilelement (178) zwischen dem jeweiligen Ventilsitz (176) und der jeweiligen
Feder (182) ist.
6. Doppelmembranpumpe gemäß Anspruch 1, ferner aufweisend Belüftungsdurchgänge (60, 66)
von dem Steuerventil (52) zur Atmosphäre;
Aufladedurchgänge (62, 64) von dem Steuerventil (52) zu den ersten Öffnungen (164);
einen Einlass (58), der wechselweise die Aufladedurchgänge (62, 64) mit den Belüftungsdurchgängen
(60, 66) bzw. den Einlassdurchgängen (56) verbindet.
7. Doppelmembranpumpe gemäß Anspruch 1, ferner aufweisend Belüftungsdurchgänge (60, 66)
von dem Steuerventil (52) zur Atmosphäre;
Aufladedurchgänge (62, 64) von dem Steuerventil (52) zu den Einlassöffnungen (164);
einen Einlass (58), der wechselweise die Aufladedurchgänge (62, 64) mit den Einlassdurchgängen
(56) bzw. den Belüftungsdurchgängen (60, 66) verbindet.
1. Pompe à double diaphragme comprenant :
deux cavités de pompage opposées (16,18);
deux diaphragmes (20,22), chaque diaphragme s'étendant respectivement en travers d'une
cavité de pompage (16,18) pour définir une cavité de chambre à air (12,14);
un arbre (40) s'étendant entre chacun des diaphragmes (20,22) et étant monté de manière
à pouvoir glisser par rapport aux cavités de pompage opposées (16,18);
un boîtier (10) situé entre les cavités de pompage (16,18) et incluant deux cavités
de soupape (162), deux premiers orifices (164), deux seconds orifices (166) et deux
troisièmes orifices (168) traversant le boîtier respectivement en direction de chacune
des cavités de soupape (162), les seconds orifices (166) étant en communication respectivement
avec les cavités de chambres à air (12,14), tandis que les troisièmes orifices (168)
débouchent dans l'atmosphère;
deux éléments de soupape à alternance (170) comprenant chacune une paroi latérale
disposée d'une manière étanche et de façon à pouvoir glisser respectivement dans les
cavités de soupape (162), et un passage (174) traversant cette paroi, avec une première
extrémité, une seconde extrémité et un siège de soupape (176) entre la première extrémité
et la seconde extrémité, le premier orifice (164) étant en communication avec la première
extrémité, et le second orifice (166) étant en communication avec la seconde extrémité,
les éléments de soupape à alternance (160) possédant chacun deux positions extrêmes,
la première, dans laquelle la paroi latérale recouvre le troisième orifice (168),
et la seconde, dans laquelle le troisième orifice est découvert et est en communication
avec le second orifice (166);
deux soupapes unidirectionnelles situées dans les passages respectifs (174) et sollicitées
contre les sièges de soupape (176) et permettant la circulation respectivement depuis
la première extrémité en direction de la seconde extrémité de chaque passage (174),
sous une pression présélectionnée;
une source d'air comprimé placée sélectivement en communication avec les premiers
orifices (164);
un ensemble à soupape de commande (52), le boîtier (10) comprenant en outre deux cavités
de soupape de détente (112), l'ensemble à soupape de commande (52) incluant une soupape
de commande (54), des passages de commande (84,86) s'étendant depuis la soupape de
commande (54) respectivement en direction des deux cavités de soupape de détente (112),
un passage d'entrée (56), deux soupapes de détente de pression (116) situées dans
les cavités de soupape de détente (112), chacune comportant une broche d'actionneur
(142) s'étendant de manière alternativement enfoncée au niveau de limites présélectionnées
de la course de l'arbre, un corps de soupape de détente (116) comportant un guide
(134), un siège de soupape de détente (128,130) et un échappement (132), un trajet
de circulation depuis le passage respectif de commande (84,86) à travers la cavité
de soupape respective de détente (112) et en travers du siège de soupape de détente
(128,130) en direction de l'échappement (132), un actionneur (148) positionné avec
possibilité de glissement dans le guide (134) avec la broche d'actionneur (142), un
élément de soupape de détente (144) positionné de manière à pouvoir glisser dans la
cavité de manière à être situé en vis-à-vis du guide (134) et du siège de soupape
de détente (128,130) et sollicité en direction d'un engagement d'appui contre le siège
de soupape (128,130), et un ressort de pression (154) entre la broche d'actionneur
(149) et l'élément de soupape (144).
2. Pompe à diaphragme double selon la revendication 1, dans laquelle le troisième orifice
(168) de chacune des cavités de soupape (162) possède une forme rétrécie de manière
à augmenter la surface en coupe transversale à partir de ces dernières.
3. Pompe à diaphragme double selon la revendication 2, dans laquelle le troisième orifice
(168) de chacune des cavités de soupape (112) débouche dans l'atmosphère et possède
une forme rétrécie dans une dimension en coupe transversale, la surface en coupe transversale
augmentant du triple entre les cavités de soupape (112) et l'atmosphère.
4. Pompe à diaphragme double selon la revendication 1, dans laquelle la paroi latérale
de chacun des éléments de soupape à alternance (160) inclut une bague d'étanchéité
(172) située entre le premier orifice (164) et le troisième orifice (168), les éléments
de soupape à alternance (160) étant situés dans chacune des deux positions extrêmes.
5. Pompe à diaphragme double selon la revendication 1, dans laquelle chacune des soupapes
unidirectionnelles inclut un élément de soupape (178) et un ressort (182), les éléments
de soupape (178) étant en appui sélectivement sur les sièges de soupape respectifs
(176), les ressorts (182) s'étendant à l'état comprimé entre les éléments de soupape
à alternance respectifs (178), et les éléments de soupape (178) étant disposés entre
les sièges de soupape (176) et les ressorts (182).
6. Pompe à diaphragme double selon la revendication 1, comprenant en outre
des passages d'aération (60,66) s'étendant depuis la soupape de commande (52) en direction
de l'atmosphère;
des passages de chargement (62,64) s'étendant depuis la soupape de commande (52) jusqu'aux
premiers orifices (164);
et une entrée (58) couplant d'une manière alternée les passages de chargement (62,64)
aux passages d'aération respectifs (60,66), et le passage d'entrée (56).
7. Pompe à diaphragme double selon la revendication 1, comprenant en outre
des passages d'aération (60,66) s'étendant depuis la soupape de commande (52) en direction
de l'atmosphère;
des passages de chargement (62,64) s'étendant depuis la soupape de commande (52) jusqu'aux
premiers orifices (164);
et une entrée (58) couplant d'une manière alternée les passages de chargement (62,64)
respectivement au passage d'entrée (56) et aux passages d'aération (60,66).