(19)
(11) EP 1 099 685 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
16.05.2001  Patentblatt  2001/20

(21) Anmeldenummer: 00123322.0

(22) Anmeldetag:  27.10.2000
(51) Internationale Patentklassifikation (IPC)7C07C 205/12, C07C 201/08
(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 09.11.1999 DE 19953722

(71) Anmelder: BAYER AG
51368 Leverkusen (DE)

(72) Erfinder:
  • Zirngiebl, Eberhard, Dr.
    51061 Köln (DE)
  • König, Bernd-Michael, Dr.
    51467 Bergisch Gladbach (DE)
  • Weber, Hans-Martin, Dr.
    51373 Leverkusen (DE)
  • Linn, Thomas, Dr.
    41515 Grevenbroich (DE)
  • Raatz, Hans-Joachim
    51381 Leverkusen (DE)

   


(54) Verfahren zur adiabatischen Herstellung von 3,4-Dichlornitrobenzol


(57) 1,2-Dichlorbenzol kann unter adiabatischen Reaktionsbedingungen sehr selektiv zu 3,4-Dichlornitrobenzol umgesetzt werden, indem man 1,2-Dichlorbenzol mit Salpetersäure, Schwefelsäure und Wasser gleichzeitig oder sukzessiv in ihrer Gesamtmenge intensiv miteinander vermischt, wozu eine Mischenergie von 1-50 Watt pro Liter des gesamten Reaktionsgemisches, bevorzugt 3-30 W/1, angewandt wird, und bei der Vermischung eine Temperatur von 0 bis 60 °C einhält.


Beschreibung


[0001] Die vorliegende Erfindung betrifft ein Verfahren zur hochselektiven, abfallsäurefreien Herstellung von 3,4-Dichlornitrobenzol unter Ausnutzung der Reaktionswärme.

[0002] 3,4-Dichlornitrobenzol ist ein wichtiges Zwischenprodukt zur Herstellung von Pflanzenschutzmitteln und Farbstoffen.

[0003] 3,4-Dichlornitrobenzol wird technisch durch isotherme Nitrierung von 1,2-Dichlorbenzol bei Temperaturen zwischen 40 und 70°C hergestellt (Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Vol. A17, p. 430, 1991). Dabei fallen große Mengen verunreinigter Abfallsäure an, die kostenintensiv entsorgt oder aufgearbeitet werden müssen. Nachteilig bei diesen Verfahren ist, dass eine erhebliche Reaktionswärme sicher abgeführt werden muss, was zu hohen Anforderungen an die zu realisierende Sicherheitstechnik führt.

[0004] Um den Anfall von Abfallsäure zu vermeiden, sind Verfahren anzustreben, die eine integrierte Schwefelsäureaufkonzentrierung unter Ausnutzung der Reaktionswärme beinhalten. Dies bedingt eine Kreislaufsäure, in der sich Nebenprodukte nicht anreichern dürfen.

[0005] Die oben genannten Nachteile lassen sich dadurch umgehen, dass das Nitrierverfahren adiabatisch durchgeführt wird. Die adiabatische Mononitrierung ist bereits für verschiedene aromatische Verbindungen beschrieben.

[0006] Adiabatische Nitrierverfahren zeichnen sich dadurch aus, daß die entstehende Reaktionswärme nicht durch eine aufwendige Kühlung ständig zuverlässig abgeführt werden muss, sondern bestimmungsgemäß im Reaktionssystem verbleibt. Die oben genannten energetischen und sicherheitstechnischen Nachteile bei der isothermen Nitrierung von 1,2-Dichlorbenzol entfallen also.

[0007] Die Reaktionswärme kann zur Erhitzung der Kreislauf-Schwefelsäure und zur Erleichterung der Aufkonzentrierung der Säure benutzt werden.

[0008] Ein weiterer Vorteil der adiabatischen Reaktionsführung besteht darin, dass die Reaktionsgeschwindigkeit hoch ist: die Reaktionen sind nach deutlich unter 10 Minuten beendet.

[0009] Überdies ist es möglich, kostengünstige Schwachsäure (HNO3 ca. 60-65 %ig) einzusetzen.

[0010] In EP 668 263 A1 ist ein Verfahren zur adiabatischen Herstellung von Mononitrotoluolen beschrieben. Es wird ein Gemisch aus Toluol, Salpetersäure, Schwefelsäure und Wasser unter adiabatischen Reaktionsbedingungen umgesetzt, wobei die Reaktionskomponenten intensiv vermischt werden und die Temperatur während der Vermischung zwischen 20 und 110 °C liegt.

[0011] Auch die adiabatische Mononitrierung von 1,2-Dichlorbenzol ist bereits bekannt.

[0012] Ein adiabatisches Nitrierverfahren zur Herstellung von Mononitrohalogenbenzolen wird in US 4 453 027 beansprucht. Die dort beschriebenen Bedingungen sind für eine sinnvolle technische Herstellung von 3,4-Dichlornitrobenzol jedoch ungeeignet. Die verwendete Nitriersäure enthält 11,2 Gew.-% HNO3, 68,5 Gew.-% H2SO4 und 20,3 Gew.-% H2O. Der hohe Gehalt an HN03 bedingt bei adiabatischer Reaktionsführung eine Temperaturerhöhung während der Reaktion von ca. 100 °C, sodass die Temperatur am Ende der Reaktion 100 °C deutlich übersteigt, selbst wenn die Vermischung der Reaktionskomponenten beispielsweise bei einer Temperatur von nur 45 °C erfolgt. Dadurch wird bei der Herstellung von 3,4-Dichlornitrobenzol aus 1,2-Dichlorbenzol vermehrt das unerwünschte Nebenprodukt 2,3-Dichlomitrobenzol gebildet.

[0013] EP 675 104 A1 offenbart ein Verfahren zur adiabatischen Mononitrierung von Mononitrohalogenbenzolen, wobei die Nitrierung von 1,2-Dichlorbenzol explizit genannt ist. Die adiabatische Nitrierung wird so durchgeführt, dass die Reaktionskomponenten intensiv vermischt werden, die Temperatur während der Vermischung zwischen 60 und 160 °C liegt und die Temperatur am Ende der Reaktion 180 °C nicht übersteigt. Nach diesem Verfahren läßt sich 1,2-Dichlorbenzol zu 3,4-Dichlornitrobenzol umsetzen. Es werden jedoch über 16 Gew.-% (bezogen auf die Gesamtmenge an Dichlornitrobenzolen) des unerwüschten Nebenprodukts 2,3-Dichlornitrobenzol gebildet, das in vielen Fällen kostenintensiv entsorgt oder nicht kostendeckend verkauft werden muss.

[0014] Es bestand daher Bedarf an einem Verfahren, das die sicherheitstechnischen und ökonomischen Vorteile bezüglich Einsatzstoffen und Energieausnutzung eines adiabatischen Verfahrens mit einer hohen Selektivität bezüglich der Bildung von 3,4-Dichlornitrobenzol verbindet.

[0015] Es wurden nun Reaktionsbedingungen gefunden, bei denen sich die widersprechenden Forderungen einer niedrigen Nebenproduktbildung (2,3-Dichlornitrobenzol und Dinitrodichlorbenzole) in Verbindung mit einer für die adiabatische Reaktionsführung notwendigen hohen Reaktionsgeschwindigkeit realisieren lassen

[0016] Die Erfindung betrifft ein Verfahren zur Herstellung von 3,4-Dichlornitrobenzol durch Umsetzung von 1,2-Dichlorbenzol mit einem HNO3/H2SO4/H2O-Gemisch unter Bildung im wesentlichen der Dichlornitrobenzole und Reaktionswasser, gekennzeichnet durch die Schritte
a)
Einspeisung von 1,2-Dichlorbenzol, HNO3, H2SO4 und H2O in beliebiger Reihenfolge in einen mit Mischungsorganen ausgestatteten Reaktor, wobei
a1)
die Menge an HNO3 1 bis 5 Gew.-%, die Menge an H2SO4 70 bis 92 Gew.-% und die Menge an H2O den Rest zu 100 Gew.-% beträgt und 100 Gew.-% die Summe von HNO3 + H2SO4 + H2O darstellen,
a2)
das H2O als solches, als Verdünnungs-H2O der HNO3, als Verdünnungs-H2O der H2SO4 oder in mehreren der genannten Formen eingesetzt wird, und
a3)
das molare Verhältnis von 1,2-Dichlorbenzol zu HNO3 0,9 bis 1,5 beträgt,
b)
rasche und intensive Vermischung der Gesamtmenge der Reaktionsteilnehmer, wozu eine Mischleistung von 1 bis 50 Watt pro Liter des gesamten Reaktionsgemisches, bevorzugt 3 bis 30 W/l, angewandt wird,
c)
Durchführung der Umsetzung unter adiabatischen Bedingungen, wobei die Reaktionsteilnehmer mit solchen Temperaturen eingespeist werden, dass die Vermischung im Bereich von 0 bis 60°C erfolgt und die Temperatur am Ende der Reaktion 100°C nicht übersteigt,
d)
Trennung des Reaktionsgemisches nach Durchführung der Reaktion in eine organische und eine anorganische Phase und
e)
destillative Aufarbeitung der weitgehend HNO3-freien anorganischen Phase unter Entfernung von Wasser.


[0017] Das erfindungsgemäße Verfahren kann kontinuierlich oder diskontinuierlich, bevorzugt kontinuierlich durchgeführt werden.

[0018] Zur kontinuierlichen Durchführung kann beispielsweise so vorgegangen werden: Die Gesamtmenge der Reaktionsteilnehmer wird mit Hilfe von Mischorganen rasch vermischt und als Mischung in einen Reaktor eingespeist. Die Mischungszeit bei kontinuierlicher Durchführung beträgt in der Regel weniger als 3 sek, beispielsweise 1 msek bis 2,99 sek, bevorzugt 1 msek bis 2 sek. Der Reaktor ist gegebenenfalls isoliert, verhindert weitgehend die Rückvermischung und wird adiabatisch betrieben. Zur weitgehenden Verhinderung der Rückvermischung ist der Reaktor unterteilt oder besteht aus mehreren Kammern oder Einheiten; an den Übergängen zwischen den Reaktorteilen wird das Reaktionsgemisch redispergiert. Das ausreagierte Gemisch läuft ab und wird in einem Trenngefäß getrennt; die Trennung erfolgt rasch. Die organische Phase wird wie üblich, z.B. durch Wäsche und Destillation, aufgearbeitet oder sofort einer Zweitnitrierung zugeführt. Im Allgemeinen, insbesondere bei einem Überschuss an 1,2-Dichlorbenzol, ist die abgetrennte anorganische Phase praktisch frei von Salpetersäure. Sollte dies, insbesondere bei einem Überschuss an Salpetersäure, nicht der Fall sein, kann restliche Salpetersäure in einem Nachreaktor unter Zusatz von weiterem 1,2-Dichlorbenzol im Sinne einer Reaktiv-Extraktion verbraucht werden. Die von der Salpetersäure weitgehend befreite anorganische Säurephase wird bevorzugt unter Ausnutzung der aufgenommenen Reaktionswärme und unter vermindertem Druck einer Flash-Verdampfung zugeführt. Hierbei wird Wasser aus der Säure entfernt und die Säure dabei in bevorzugter Weise auf die Eingangskonzentration für Schritt a) gebracht. Durch diese Rückführung der aufgearbeiteten anorganischen Phase (H2SO4, H2O) in den Prozess ergibt sich eine Kreislauffahrweise für die H2SO4; es kann sinnvoll sein, einen geringen Teil dieser H2SO4 auszuschleusen, um etwaige Verunreinigungen auf einem niedrigen Niveau zu lassen. Für den Fall, dass die anorganische Phase noch 1,2-Dichlorbenzol, Dichlornitrobenzole und evtl. organische Nebenprodukte enthält, kann es sinnvoll sein, die anorganische Phase vor der Flash-Verdampfung zur Entfernung der Organika zu strippen. Das danach als Flash-Kondensat erhaltene Wasser ist dann von höherer Reinheit, und seine Entsorgung ist einfacher. Selbstverständlich kann auch das Flash-Kondensat durch Strippen von Organika befreit werden, wobei analog ein restliches Flash-Kondensat von höherer Reinheit zurückbleibt. Die bei der Nachreaktion der HNO3 mit weiterem 1,2-Dichlorbenzol sowie beim Strippen oder bei der Aufkonzentrierung der weitgehend HNO3-freien anorganischen Phase anfallenden Organika können dem Prozess an geeigneter Stelle zugesetzt werden (1,2-Dichlorbenzol, Dichlor(di)nitrobenzol) oder werden ausgeschleust und entsorgt (Verunreinigungen, Nebenprodukte).

[0019] Die Reaktionsteilnehmer können gemeinsam, jedoch auch einzeln oder als Gemische zweier oder dreier von ihnen gleichzeitig oder sukzessive dem mit Mischungsorganen ausgestatteten Reaktor zugeführt werden. Die Vermischung der Einsatzstoffe kann beispielsweise so stattfinden, dass man 1,2-Dichlorbenzol und Salpetersäure als zwei separate Ströme gleichzeitig oder sukzessive der aufkonzentrierten, gebrauchten Schwefelsäure zusetzt, wobei die Salpetersäure durch Wasser und/oder Schwefelsäure und Wasser verdünnt sein kann. Das 1,2-Dichlorbenzol kann auch mit Wasser und Schwefelsäure vorvermischt und die resultierende Emulsion mit Salpetersäure, die mit Schwefelsäure und/oder Wasser vermischt sein kann, weiter rasch und intensiv vermischt werden. Weiterhin kann auch das 1,2-Dichlorbenzol mit einer Mischsäure aus H2SO4, HNO3 und H2O intensiv vermischt werden. Noch weitere Varianten der Zuführung der Reaktionsteilnehmer, ihrer intensive Vermischung und erfindungsgemäßen Weiterbehandlung sind für den Fachmann leicht erkennbar. Dazu sind die in der Technik bekannten Mischorgane geeignet, z.B.: 1. Statische Mischer, 2. Pumpen, 3. Düsen, 4. Rührer oder Kombinationen hiervon.

[0020] Für das Gelingen der Reaktion ist es von geringerer Bedeutung, in welcher Reihenfolge und Zusammensetzung die Reaktionsteilnehmer Salpetersäure und 1,2-Dichlorbenzol sowie Schwefelsäure und Wasser miteinander vermischt werden, solange das Reaktionsgemisch nach der Gesamtvermischung die erfindungsgemäße Zusammensetzung besitzt und die Vermischung in der erfindungsgemäßen Intensität stattfindet.

[0021] Der Einspeisung und intensiven Vermischung der Reaktionsteilnehmer folgen bei kontinuierlicher Durchführung mindestens zwei Dispergierungen. Hierzu sind im Reaktor Lochbleche, Schlitzbleche, Prallbleche, Rührer oder ähnliche, dem Fachmann für diesen Zweck bekannte Einbauten bzw. Organe vorhanden.

[0022] Als kontinuierlich betriebene Reaktoren für das erfindungsgemäße Verfahren seien beispielsweise genannt: Rohrreaktoren mit Einbauten zur Redispergierung, wie Strömungsbrechern, Umlenkblechen, Statikmischern, Rührern und ähnlichen; stark gerührte Kessel in Kaskadenanordnung; Schlaufenreaktoren mit Einbauten wie oben; Kombinationen mehrerer der genannten Apparatate; weitere gleichwirkende Reaktoren, wie Kammerreaktoren mit Rührern in jeder Kammer. In bevorzugter Weise werden Rohrreaktoren mit Einbauten eingesetzt. Die Einbauten sind bevorzugt Lochbleche. Alle Einbauten stellen Unterteilungen der Gesamtapparatur dar, die gleichermaßen der Redispergierung und der weitgehenden Verhinderung der Rückvermischung dienen.

[0023] Nach dem intensiven Vermischen, nach jeder Dispergierung und nach dem Durchströmen einer gewissen Teillänge der Reaktors wird ein Koaleszieren der Dispersionströpfchen beobachtet, was durch Redispergierung rückgängig gemacht wird. Die Zahl der Dispergierungsvorgänge beträgt erfindungsgemäß 2-50, bevorzugt 3-30, besonders bevorzugt 4-20. Zur Überwindung der dabei auftretenden Druckverluste wird mit den Reaktionsteilnehmern eine Mischenergie pro Liter des gesamten Reaktionsgemisches von 1-50 Watt/Liter, bevorzugt 3-30 W/l, in das Reaktionssystem gegeben.

[0024] Die Vermischung der Reaktionsteilnehmer erfolgt im Bereich von 0 bis 60°C, bevorzugt 10 bis 50°C, besonders bevorzugt 20 bis 40°C. Es werden adiabatische Reaktionsbedingungen eingehalten. Die Endtemperatur ist abhängig von der Höhe der Mischungstemperatur, von den Mengenverhältnissen der Reaktionsteilnehmer und vom Umsatz; sie übersteigt im allgemeinen 100°C nicht, bevorzugt nicht 85°C, besonders bevorzugt nicht 70°C.

[0025] Der Gehalt an zugesetzter Salpetersäure im Reaktionsgemisch zum Zeitpunkt der Vermischung beträgt, bezogen auf die Summe von Salpetersäure, Schwefelsäure und Wasser, 1 bis 5 Gew.-%, bevorzugt 1 bis 4 Gew.-%, besonders bevorzugt 1,5 bis 3 Gew.-%. Salpetersäure kann in hochkonzentrierter oder in azeotrop siedender Form, beispielsweise als 60-98 Gew.-%ige HNO3, bevorzugt aber in Form der etwa 60-65 Gew.-% aufweisenden und billig verfügbaren "Schwachsäure" eingesetzt werden.

[0026] Der Gehalt an Schwefelsäure im Reaktionsgemisch zum Zeitpunkt der Vermischung beträgt, bezogen auf die Summe von Salpetersäure, Schwefelsäure und Wasser, 70 bis 92 Gew.-%, bevorzugt 80 bis 90 Gew.-%, besonders bevorzugt 82 bis 88 Gew.-%.

[0027] Der Rest zu 100 Gew.-% ist H2O. Dies kann als solches, als Verdünnungs-H2O der H2SO4, als Verdünnungs-H2O der HNO3 oder in mehreren der genannten Formen eingesetzt werden. In bevorzugter Form liegt H2O als Verdünnungs-H2O sowohl der H2SO4 als auch der HNO3 vor.

[0028] Das molare Verhältnis von 1,2-Dichlorbenzol zu HNO3 beträgt allgemein 0,9 bis 1,5. Um die Bildung unerwünschter Dinitrohalogenbenzole zu minimieren, beträgt das Molverhältnis von Halogenbenzol zu Salpetersäure bevorzugt 1,0 bis 1,5, besonders bevorzugt 1,01 bis 1,3, ganz besonders bevorzugt 1,05 bis 1,2.

[0029] Es werden 1,2-Dichlorbenzol und HNO3 in das Verfahren eingeführt und Dichlornitrobenzol und H2O ausgeschleust, während das beschriebene H2SO4/H2O-Gemisch das Reaktionsmedium darstellt. Da bei der technischen Realisierung vorteilhafterweise verdünnte Salpetersäuren eingesetzt werden, muss zusätzlich zum Reaktionswasser auch noch Verdünnungs-H2O der HNO3 ausgeschleust werden.

[0030] Die bei der Trennung des Reaktionsgemisches anfallende organische Phase kann auf reines 3,4-Dichlornitrobenzol aufgearbeitet werden oder der Zweitnitrierung zugeführt werden. Im ersteren Fall wird man, wie oben beschrieben, mindestens molare Mengen an 1,2-Dichlorbenzol oder einen geringen molaren Überschuss einsetzen, um sowohl die HNO3 zu verbrauchen, als auch die Zweitnitrierung zu unterdrücken; ein etwaiger 1,2-Dichlorbenzolüberschuss wird aus der organischen Phase abdestilliert. Zuvor kann die organische Phase gewaschen werden, um wasser-, säure- oder alkalilösliche Verunreinigungen abzutrennen, wie anorganische und organische Säuren und phenolische Verunreinigungen. Die Bildung von Oxidationsprodukten (Phenolkörper) ist stark unterdrückt. Ebenso ist die Bildung von Dinitrodichlorbenzolen stark unterdrückt. Diese Dinitrodichlorbenzole stören jedoch dann nicht, wenn ohnehin eine Zweitnitrierung vorgesehen ist; daher darf in solchen Fällen auch mit einem geringen 1,2-Dichlorbenzolunterschuss gearbeitet werden.

[0031] Als Modell für einen rückvermischungsfreien technischen Reaktor und zur Darstellung der diskontinuierlichen Durchführung kann im Labor ein Batch-Ansatz in einem stark gerührten, wärmeisolierten Rührkolben, z.B. in einem sogenannten Sulfierbecher, der mit Stromstörern versehen ist, dienen. Dabei werden 1,2-Dichlorbenzol, Schwefelsäure und Wasser z.B. bei 30°C vorgelegt und mit der auf die erfindungsgemäße Einsatztemperatur erwärmten Salpetersäure, die durch Wasser und/oder Schwefelsäure verdünnt sein kann, in wenigen Sekunden versetzt. Nach der Dosierung lässt man die Reaktion adiabatisch ablaufen. Die Endtemperatur wird dabei in ca. 0,5 bis 10 Minuten erreicht. Alternativ kann auch die Gesamtmenge an HNO3, H2SO4 und H2O vorgelegt und mit 1,2-Dichlorbenzol versetzt werden; noch weitere Dosiervarianten sind für den Fachmann leicht erkennbar. Der Inhalt des Reaktionsgefäßes entspricht dabei im zeitlichen Verlauf einem Volumenteil in der axialen Bewegung durch einen Rohrreaktor mit Pfropfenströmung. Was im Batch-Ansatz zeitlich nacheinander geschieht, läuft etwa in einem Rohrreaktor örtlich hintereinander ab.

[0032] Nach Erreichen der Reaktionstemperatur wird der Rührer angehalten. Die Phasen trennen sich in maximal 10 Minuten. Die Dimensionierung eines kontinuierlichen technischen Reaktors wird bevorzugt so bemessen, dass das Reaktionsgemisch die Reaktionsendtemperatur im Reaktor erreicht.

[0033] Die nach der Reaktion auf mindestens dem Niveau der jeweiligen Reaktionsendtemperatur abgetrennte Säurephase wird in der oben beschriebenen Weise aufkonzentriert, wobei die oben beschriebene Extraktion bzw. Reaktiv-Extraktion eingeschoben werden kann. Die so geführte Kreislaufsäure enthält nach dem erfindungsgemäßen Verfahren beispielsweise weniger als 0,2 Gew.-% Salpetersäure und weniger als 0,5 Gew.-% salpetrige Säure, sowie gegebenenfalls geringe Mengen an organischen Verunreinigungen.

[0034] Das erfindungsgemäße Verfahren zeichnet sich dadurch aus , dass das unerwünschte Nebenprodukt 2,3-Dichlornitrobenzol in wesentlich geringerem Umfang entsteht, als nach den bekannten Verfahren. Werden die Reaktionspartner bei der adiabatischen Nitrierung von 1,2-Dichlorbenzol erfindungsgemäß bei 30 °C vermischt, wobei die Menge an eingesetzter HNO3 3,0 Gew.-% bezogen auf die Summe von eingesetztem Wasser, Salpetersäure und Schwefelsäure beträgt, so bilden sich 12,2 Gew.-% (bezogen auf die Summe der gebildeten Dichlormononitrobenzole) des unerwünschten Nebenprodukts 2,3-Dichlornitrobenzol. Erfolgt die Vermischung der Reaktionspartner jedoch gemäß Beispiel 2 aus EP 675 104 A1 bei 110 °C, wobei die Menge an eingesetzter HNO3 unverändert 3,0 Gew.-% beträgt, so werden 16,3 Gew.-% 2,3-Dichlornitrobenzol gebildet. Gemäß dem erfindungsgemäßen Verfahren werden also fast 25 % weniger unerwünschtes Nebenprodukt gebildet. Neben der Temperatur der Reaktionspartner bei der Vermischung ist auch die Menge an eingesetzter HNO3 für das erfindungsgemäße Verfahren von entscheidender Bedeutung. Mit zunehmendem Gehalt an HNO3 in der eingesetzten Mischsäure erhöht sich auch der Temperaturanstieg während der adiabatischen Nitrierung, was wiederum eine verstärkte Nebenproduktbildung nach sich zieht. Im vorliegenden Beispiel 2 (1,5 Gew.-% HNO3) werden 11,5 Gew.-% des unerwünschten 2,3-Dichlornitrobenzol gebildet, im vorliegenden Beispiel 1 (3,0 Gew.-% HNO3) 12,2 Gew.-%. Wird eine Mischsäure mit einem Gehalt an HNO3 über 5 Gew.-% eingesetzt, so bildet sich deutlich mehr unerwünschtes Nebenprodukt.

[0035] Anhand folgender Beispiele wird das erfindungsgemäße Verfahren weiter illustriert. Diese Beispiele stellen jedoch keine Einschränkung des Erfindungsgedankens dar.

Beispiele


Beispiel 1



[0036] In einer kontinuierlich betriebenen Anlage wurde ein Strom von 188,0 kg H2SO4 (87 Gew.-%) pro Stunde mit einem Strom von 9,56 kg HNO3 (62 Gew.-%) pro Stunde vermischt. Die resultierende Mischsäure enthielt 3,0 Gew.-% HNO3. Die Mischsäure wurde mit einem Strom von 15,21 kg 1,2-Dichlorbenzol pro Stunde am Eingang eines Rohrreaktors vermischt. Die Temperatur zum Zeitpunkt der Vermischung betrug 30 °C. Das Reaktionsgemisch verließ den Rohrreaktor mit einer Temperatur von 67 °C nach 3 Minuten. Anschließend wurden die organische und die anorganische Phase des Reaktionsgemischs in einem Phasenscheider voneinander getrennt.

[0037] Es wurde erhalten:
18,60 kg/h Organische Phase

[0038] Zusammensetzung (geeichte GC):
1,2-Dichlorbenzol 7,9 Gew.-%
3,4-Dichlornitrobenzol 80,5 Gew.-%
2,3-Dichlornitrobenzol 11,5 Gew.-%
Dinitrodichlorbenzole 0,03 Gew.-%


[0039] Die Säurephase enthielt 0,84 kg/h 3,4-Dichlornitrobenzol und 0,07 kg/h 2,3-Dichlornitrobenzol.

[0040] Damit betrug der Gesamt-Anteil von 2,3-Dichlornitrobenzol bezogen auf die Summe der gebildeten Dichlormononitrobenzole 12,2 Gew.-%.

Beispiel 2



[0041] In einer kontinuierlich betriebenen Anlage wurde ein Strom von 188,0 kg H2SO4 (88 Gew.-%) pro Stunde mit einem Strom von 4,66 kg HNO3 (62 Gew.-%) pro Stunde vermischt. Die resultierende Mischsäure enthielt 1,5 Gew.-% HNO3. Die Mischsäure wurde mit einem Strom von 6,74 kg 1,2-Dichlorbenzol pro Stunde am Eingang eines Rohrreaktors vermischt. Die Temperatur zum Zeitpunkt der Vermischung betrug 30 °C. Das Reaktionsgemisch verließ den Rohrreaktor mit einer Temperatur von 48 °C nach 3 Minuten.

[0042] Nach der Phasentrennung wurde erhalten:
7,20 kg/h Organische Phase

[0043] Zusammensetzung (geeichte GC):
1,2-Dichlorbenzol 3,6 Gew.-%
3,4-Dichlornitrobenzol 84,4 Gew.-%
2,3-Dichlornitrobenzol 11,9 Gew.-%
Dinitrodichlorbenzole 0,08 Gew.-%


[0044] Die Säurephase enthielt 1,48 kg/h 3,4-Dichlornitrobenzol und 0,13 kg/h 2,3-Dichlornitrobenzol.

[0045] Damit betrug der Gesamt-Anteil von 2,3-Dichlornitrobenzol bezogen auf die Summe der gebildeten Dichlormononitrobenzole 11,5 Gew.-%.

Beispiel 3



[0046] In einer kontinuierlich betriebenen Anlage wurde ein Strom von 141,0 kg H2SO4 (86,6 Gew.-%) pro Stunde mit einem Strom von 5,31 kg HNO3 (62 Gew.-%) pro Stunde vermischt. Die resultierende Mischsäure enthielt 2,25 Gew.-% HNO3. Die Mischsäure wurde mit einem Strom von 8,45 kg 1,2-Dichlorbenzol pro Stunde am Eingang eines Rohrreaktors vermischt. Die Temperatur zum Zeitpunkt der Vermischung betrug 30 °C. Das Reaktionsgemisch verließ den Rohrreaktor mit einer Temperatur von 57 °C nach 3 Minuten.

[0047] Nach der Phasentrennung wurde erhalten:
10,04 kg/h Organische Phase

[0048] Zusammensetzung (geeichte GC):
1,2-Dichlorbenzol 8,4 Gew.-%
3,4-Dichlornitrobenzol 80,4 Gew.-%
2,3-Dichlornitrobenzol 11,2 Gew.-%
Dinitrodichlorbenzole 0,04 Gew.-%


[0049] Die Säurephase enthielt 0,75 kg/h 3,4-Dichlornitrobenzol und 0,06 kg/h 2,3-Dichlornitrobenzol.

[0050] Damit betrug der Gesamt-Anteil von 2,3-Dichlornitrobenzol bezogen auf die Summe der gebildeten Dichlormononitrobenzole 11,8 Gew.-%.

Beispiel 4



[0051] In einem wärmeisolierten Sulfierbecher (Ø 100 mm), versehen mit Stromstörern und zwei auf einer Welle sitzenden Turbinenrührern (Ø 39,9 mm) wurden 667,8 g H2SO4 (86,6 %ig) und 32,3 g (0,333 mol) HNO3 (65 %ig) bei 30 °C unter Rühren vorgelegt (eingebrachte spezifische Rührleistung 22 W/l) und in 3 Sekunden mit 49,0 g (0,333 mol) 1,2-Dichlorbenzol mit einer Temperatur von 30 °C versetzt, und man ließ ohne Kühlung reagieren. Nach 170 Sekunden hatte das Reaktionsgemisch die Endtemperatur von 67 °C erreicht und der Rührer wurde angehalten. Nach Phasentrennung wurden 58,3 g organische Phase erhalten.
1,2-Dichlorbenzol 1,2 Gew.-%
3,4- Dichlornitrobenzol 86,4 Gew.-%
2,3-Dichlornitrobenzol 12,3 Gew.-%
Dinitrodichlorbenzole 0,03 Gew.-%


[0052] Aus der Säurephase ließen sich 4,70 g 3,4-Dichlornitrobenzol und 0,49 g 2,3-Dichlornitrobenzol isolieren.

[0053] Damit betrug der Gesamt-Anteil von 2,3-Dichlornitrobenzol bezogen auf die Summe der gebildeten Dichlormononitrobenzole 12,2 Gew.-%.


Ansprüche

1. Verfahren zur Herstellung von 3,4-Dichlornitrobenzol durch Umsetzung von 1,2-Dichlorbenzol mit einem HNO3/H2SO4/H2O-Gemisch unter Bildung im wesentlichen der Dichlornitrobenzole und Reaktionswasser, gekennzeichnet durch die Schritte

a) Einspeisung von 1,2-Dichlorbenzol, HNO3, H2SO4 und H2O in beliebiger Reihenfolge in einen mit Mischungsorganen ausgestatteten Reaktor, wobei

a1) die Menge an HNO3 1 bis 5 Gew.-%, die Menge an H2SO4 70 bis 92 Gew.-% und die Menge an H2O den Rest zu 100 Gew.-% beträgt und 100 Gew.-% die Summe von HNO3 + H2SO4 + H20 darstellen,

a2) das H2O als solches, als Verdünnungs-H2O der HNO3, als Verdünnungs-H2O der H2SO4 oder in mehreren der genannten Formen eingesetzt wird, und

a3) das molare Verhältnis von 1,2-Dichlorbenzol zu HNO3 0,9 bis 1,5 beträgt,

b) rasche und intensive Vermischung der Gesamtmenge der Reaktionsteilnehmer, wozu eine Mischleistung von 1 bis 50 Watt pro Liter des gesamten Reaktionsgemisches, bevorzugt 3 bis 30 W/l, angewandt wird,

c) Durchführung der Umsetzung unter adiabatischen Bedingungen wobei die Reaktionsteilnehmer mit solchen Temperaturen eingespeist werden, dass die Vermischung im Bereich von 0 bis 60°C erfolgt und die Temperatur am Ende der Reaktion 100°C nicht übersteigt,

d) Trennung des Reaktionsgemisches nach Durchführung der Reaktion in eine organische und eine anorganische Phase und

e) destillative Aufarbeitung der weitgehend HNO3-freien anorganischen Phase unter Entfernung von Wasser.


 
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Umsetzung kontinuierlich durchgeführt wird.
 
3. Verfahren nach mindestens einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass die Reaktionsteilnehmer vor Eintritt in einen die Rückvermischung weitgehend verhindernden Reaktor mit Hilfe von Mischorganen innerhalb einer Zeit von weniger als 3 sek. intensiv gemischt werden.
 
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass im Schritt e) die infolge der adiabatischen Reaktionsführung von der anorganischen Phase aufgenommene Reaktionswärme zur destillativen Ausschleusung von Wasser unter einem Druck von 40 bis 150 mbar, bevorzugt 40 bis 120 mbar, besonders bevorzugt 50-100 mbar, ausgenutzt wird und bevorzugt dabei die Konzentration der ablaufenden H2SO4 so eingestellt wird, dass diese ablaufende H2SO4 zum Einsatz in Schritt a) geeignet ist.
 
5. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass der Gehalt an zugesetzter Salpetersäure im Reaktionsgemisch zum Zeitpunkt der Vermischung, bezogen auf die Summe von Salpetersäure, Schwefelsäure und Wasser, 1 bis 4 Gew.-% beträgt.
 
6. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, dass der Gehalt an zugesetzter Salpetersäure im Reaktionsgemisch zum Zeitpunkt der Vermischung, bezogen auf die Summe von Salpetersäure, Schwefelsäure und Wasser, 1,5 bis 3 Gew.-% beträgt.
 
7. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass der Gehalt an Schwefelsäure im Reaktionsgemisch zum Zeitpunkt der Vermischung, bezogen auf die Summe von Salpetersäure, Schwefelsäure und Wasser, 80 bis 90 Gew.-% beträgt.
 
8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass der Gehalt an Schwefelsäure im Reaktionsgemisch zum Zeitpunkt der Vermischung, bezogen auf die Summe von Salpetersäure, Schwefelsäure und Wasser, 82 bis 88 Gew.-% beträgt.
 
9. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass das Molverhältnis von 1,2-Dichlorbenzol zu Salpetersäure 1,0 bis 1,5 beträgt.
 
10. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Vermischung der Reaktionsteilnehmer bei einer Temperatur von 10 bis 50 °C durchgeführt wird.
 





Recherchenbericht