(11) EP 1 099 745 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

16.05.2001 Bulletin 2001/20

(51) Int Cl.7: C10G 32/02

(21) Application number: 99600021.2

(22) Date of filing: 09.11.1999

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

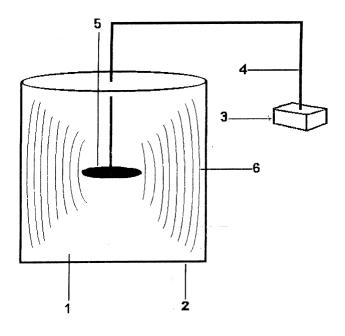
Designated Extension States:

AL LT LV MK RO SI

(71) Applicant: Nikolaou, Athanasios 19100 Megara (Attikis) (GR) (72) Inventor: Nikolaou, Athanasios 19100 Megara (Attikis) (GR)

(74) Representative: Panagiotidou, Effimia 41 Mitropoleos Street 546 23 Thessaloniki (GR)

(54) Method for qualitative improvement of refined products of crude oil


(57) A method for the qualitative improvement of the refined products of crude oil.

The method belongs to the field of electronic science. It is applied to generally all the refined products of crude oil, liquid or gaseous. The qualitative improvement is achieved with the pulsatory emission of electromagnetic waves (6) towards the products of crude oil, which are produced by electromechanical or electronic devices (3), are pre-programmed, cover wide ranges of

wavelengths from 1 mm to 11,000 Km, together with their harmonic frequencies, which are produced by the device and which are emitted either at all wavelengths from 1 mm to 11,000 Km, or at one or more parts of particular areas, with controlled potency, controlled application time and controlled application result.

It is applied in industries and commercial enterprises of products of crude oil. It can also be applied during the ground, marine or air transportation of the products.

Drawing 1

Description

[0001] The invention belongs in the field of electronic science and its applications in the field of the industrially manufactured products deriving from the refinement of all qualities of crude oil.

[0002] More specifically, the invention concerns the qualitative improvement of the products derived from the separation of oil, through the various processes of industrial production, such as petrol, motor oil, heating oil, paraffin, lubricants, kerosene, jet fuel, volatile gasses, tar, grease, wax, paint solvents, gasses in liquid or gaseous state such as propane and butane and, generally, all the fractions of crude oil, gas or liquid products. [0003] The canalization to the environment of heavy metals, such as lead, arsenic, cadmium and mercury, caused by the burning of carbohydrates, pollutes and poisons daily the environment and leads slowly and steadily to ecological catastrophe. With regard to the problem of atmospheric pollution caused especially by the burning of petrol, in order to reinforce the antiknocking values of petrol, people initially used the addition of lead compounds to the final product of petrol. However, this technicque resulted in new pollution and additional

[0004] Despite the strict legislative status in effect both in the European Union and in the USA, as well as in the other continents, and despite the International Treaties signed and ratified at various times by almost all the nations on the planet, the pollution of the atmosphere, then of the hydrosphere, next of the lithosphere and, finally, of the biosphere, is the most serious problem contemporary human civilization faces.

damage to the environment.

[0005] The research to counter and contain the pollution of the atmosphere was aimed mainly at the improvement of the quality of the petrol during the stage of its production. Thus, for its improvement are used the methods of pyrolysis and hydro-pyrolysis, as well as the process of reclamation where the reactions of isomerism and alkyliosis take place. All these methods lead to the production of a better quality petrol. According, then, to the state-of-the-art technology, the unleaded petrol is considered the best, qualitatively, fuel and the less harmful to the environment.

[0006] With regard to countering the problem of the pollution of the atmosphere caused especially by lubricants, for the improvement of their quality, according to the state-of-the-art technology, several methods are used, such as the distillation of the oils using reduced pressure on the residue of the first distillation, which in turn are submitted to further processing for the removal of unwanted compounds, such as the asphaltic and the aromatic compounds, etc. Also, for their improvement, additives are used.

[0007] To-date there exists no method or product which is applied on the products of crude oil and acts on the toxic substances these contain, limiting satisfactorily their toxic action and upgrading their quality to a

great extent, regardless of the production stage in which they are, and which is particularly applied before the use of the product, that is, before the product reaches the final consumer.

[0008] The aim of the present invention is to bring a solution to the above-mentioned problem of the reduction of the harmful effects caused by the use of the products of crude oil, to the atmosphere, the hydrosphere. the lithosphere and the biosphere.

[0009] The present method applies to all the products of all qualities of crude oil. This means: The products which are sent from the refineries directly to the final user, as well as the products which, after their production in the refineries, are forwarded to processing industries for further processing. It also applies to the products which, after their processing in the processing industries, are forwarded to the final user. In addition, the present method can also apply to the final products, in the storage areas of the gas stations, as well as to the final products even after their packaging, immediately before they are sent for consumption (like, for example, petrol or oil tanks, drums of motor oil or heating oil.) Finally, it also applies to the products transported by boat, container, tanker, etc.

[0010] The method, applied to the refined products of crude oil, acting on the toxic substances they contain, purifies and balances their chemical compounds, improving them qualitatively, so that the final product used by the consumer produces fewer toxic substances. It constitutes a new, original method of qualitative improvement of all the refined products of crude oil. The qualitative improvement is achieved with the emission towards the products of crude oil of electromagnetic waves covering wide wavelengths, which are produced by electromechanicalal or electronic devices, the emission of which is preprogrammed, has controlled power, control application time and control quality result.

[0011] Therefore, the main advantage of the present method is that, in whatever stage of the processing of the products the method is applied, whether immediately after the products leave the refinery or after the products leave the processing industries, it reduces the toxic substances contained in them, which has as a result that when the products reach the market, they are already products of improved quality and, consequently, when they burn they produce less pollution and so damage the environment a lot less.

[0012] An extremely serious advantage of this method is that the beginning of the improvement is achieved with the beginning of the application of the method, while its required application time for the achievement of substantial improvement is short, not more than a few hours. Another advantage of this method is that it admits wide industrial application and, moreover, it does not require changes in the working specifications of the existing industrial or manufacturing facilities, either during the stage of the refining of the crude oil and its products or during the stage of the creation of the final product

which is, after selection, ready to be sent to the market. Another advantage of this method is that it is not applied only at the processing stage of the crude oil and its final products but also directly on the final product, even after its packaging (oil tanks, petrol and oil containers, etc.,) or while it is in storage areas such as refineries or gas stations reservoirs. Another advantage of this method is that for its application it is not necessary for the products of crude oil to be stationary, nor for the device used for the application of the method. Thus, the method can be applied inside ships or transport containers, so as to achieve the qualitative improvement of the products in the time that traspires from their loading on the ships or the containers until their arrival in their destination points. Another advantage of this method is that it is financially expedient, as it requires very low operational costs, not to mention the fact that the labour cost required for the application of the method is virtually nonexistent.

[0013] The invention is described below, with the aid of non-restrictive examples and with reference to the attached drawing, which illustrates one application form of the method which constitutes the object of the present invention.

[0014] The drawing illustrates one application way of the invention, on final or not products of crude oil and in packaged final products.

[0015] One application way of the invention is desribed with reference to the drawing. The products of crude oil (1) are placed in the customary storage areas (2) (reservoirs), or packaged in the customary way (tanks), or are ready for transportation (ships, tankers, etc.) at the customary temperature. Near them is placed an electromechanical or electronic device (3) of programmed operation, which emits electromagnetic waves (6) and from which extends a tube (4) which ends in their emitting antenna (5). The electromagnetic waves (6) are emitted towards the refined products (1). The emitting antenna (5) may constitute an integral part of the emitting device (3) or be connected to it with a tube (4).

[0016] The electromechanical or electronic device (3) produces electromagnetic waves (6) which cover wide wavelength ranges, from 1 mm to 11,000km, together with their harmonic frequencies, which are produced by the device and which are emitted either in all the wavelengths from 1mm to 11,000km or in one or more parts of particular areas, so as to achieve a resonance of all the elements of the products of crude oil. The areas of the frequencies to which these electromagnetic waves belong are characterized by the international names EHL (extremely high frequencies), SHF (super high frequencies), UHF (ultra high frquencies), VHF (very high frequencies), HF (high frequencies), MF (medium frequencies), LF (low frequencies), VLF (very low frequencies). The emission of the electromagnetic waves (6) is programmed with the electromechanical or electronic circuit of the device (3) so as not to be continuous but

pulsatory. The length between the emitted pulses may be of constant or variable time. The length between the pauses of the emitted pulses may be of constant or variable time.

[0017] The emission of the electromagnetic waves (6) may be modulated in any way, or it may not be modulated at all.

[0018] The emission potency of the electromagnetic waves (6) increases with each augmentative alteration of the distance between the source of the emission (5) of the electromagnetic waves (6) and the products of crude oil (1), or even with each augmentative alteration of the volume of the products of crude oil (1), to which the method is applied, in order to achieve the same qualitative improvement at the same time, as well as the reverse. Also, with each augmentative alteration of the distance between the source of the emission (5) of the electromagnetic waves (6) and the products of crude oil (1), or even with each augmentative alteration of the volume of the products of crude oil (1), to which the method is applied, the application duration time of the method must be increased in order to achieve the same qualitative improvement with the same potency, as well as the reverse.

[0019] Furthermore, there exists the possibility of electromagnetic waves (6) being emitted from more than one device, simultaneously, in the same place. The total simultaneous emission potency provided must always be low, in order to achieve the desired result, but without causing any substantial increase in the temperature of the products of crude oil to which the present method is applied, without the potency descending below 0.0001 mWatt, whether one device is used or more than one devices.

[0020] The user of the method is able to decrease the time required for the achievement of the selected level of qualitative improvement by increasing the total simultaneous emission potency provided by the electromagnetic waves (6), which must be maintained in low levels, so as not to cause a substantial increase in the temperature of the products of crude oil, as well as the reverse, but without the emission potency descending below 0.0001 mWatt.

[0021] The initiation of the qualitative improvement of the products of crude oil occurs with the initiation of the application of the method, while the required application time for the occurance of a substantial improvement is short, not more than a few hours.

[0022] The duration period of the application of the method is dependent on the type of the products of crude oil to which the method is applied and is proportional to the desirable qualitative result. Thus, the longer the duration period of the application of the method the greater the qualitative improvement of the products of crude oil to which the method is applied.

[0023] Also, the method may be applied even if between the source of the pulsatory emission of electromagnetic waves and the products of crude oil there exist

20

25

40

materials such as cardboard, wooden boxes, concrete and metals, with the exception of conductible materials which are grounded.

[0024] The present method can be widely used by industries and commercial enterprises of crude oil, as well as gas stations, and it can also be applied even to the final products of crude oil during their storage in the places they are customarily stored (like reservoirs). Also, the method can be applied to the products of crude oil even after their packaging in the form and the materials they are customarily packaged (such as barrels, drums, boxes and containers of drums, etc.). Finally, the method can be applied to the products of crude oil during their ground, marine or air transportation, as the proper application of the method does not require that the products be stationary.

[0025] The method results in a substantial qualitative improvement of the products of crude oil, as it counters the toxic substances they have and contains their toxic action, thus achieving a significant qualitative improvement of the products of crude oil, so that the final product which reaches the consumer and is used by him is less toxic and less polluting to the environment.

Claims

- 1. A method of qualitative improvement of the products of crude oil (1), through the use of electromagnetic waves (6), which cover wide ranges of wavelengths, which are produced by electromechanical or electronic devices (3), the emission of which is pre-programmed, its potency is controlled, has a controlled application time and a controlled qualitative result, which are emitted towards the products of crude oil (1), which method is characterized by the fact that the emission of the electromagnetic waves (6) towards the products of crude oil (1) is programmed through an electromechanic or electronic device circuit (3), so that it is not continuous but pulsatory.
- 2. A method for the qualitative improvement of the products of crude oil (1), through the use of electromagnetic waves (6), which cover wide ranges of wavelengths, which are produced by electromechanical or electronic devices (3), the emission of which is pre-programmed, its potency is controlled, has a controlled application time and a controlled qualitative result, which are emitted pulsatorily towards the products of crude oil (1), according to claim 1, which is characterized by the fact that the programmed pulsatory emission of the electromagnetic waves (6), towards the products of crude oil (1), has small time pauses of variable length or not of their emission signal and by the fact that both the duration time between the emitted pulses and the duration time between their pauses may be of con-

stant or variable time.

- A method for the qualitative improvement of the products of crude oil (1), through the use of electromagnetic waves (6), which cover wide ranges of wavelengths, which are produced by electromechanical or electronic devices (3), the emission of which is pre-programmed, its potency is controlled, has a controlled application time and a controlled qualitative result, which are emitted pulsatorily towards the products of crude oil (1), according to claims 1 and 2, which is characterized by the fact that the electromagnetic waves (6), which are emitted pulsatorily towards the products of crude oil (1), cover wide ranges of wavelengths from 1mm to 11,000 km, together with their harmonic frequencies, which are produced by the device and emitted either at all the wavelengths from 1 mm to 11,000 km or at one or more parts of particular areas, so as to achieve a resonance of all the elements of the products of crude oil.
- A method for the qualitative improvement of the products of crude oil (1), through the use of electromagnetic waves (6), which cover wide ranges of wavelengths, which are produced by electromechanical or electronic devices (3), the emission of which is pre-programmed, its potency is controlled, has a controlled application time and a controlled qualitative result, which are emitted pulsatorily towards the products of crude oil (1), according to claims 1, 2 and 3, which is characterized by the fact that the frequence ranges to which these electromagnetic waves belong are by the international names EHL (extremely high frequencies), SHF (super high frequencies), UHF (ultra high frquencies), VHF (very high frequencies), HF (high frequencies), MF (medium frequencies), LF (low frequencies), VLF (very low frequencies).
- 5. A method for the qualitative improvement of the products of crude oil (1), through the use of electromagnetic waves (6), which cover wide ranges of wavelengths, which are produced by electromechanical or electronic devices (3), the emission of which is pre-programmed, its potency is controlled, has a controlled application time and a controlled qualitative result, which are emitted pulsatorily towards the products of crude oil (1), according to claims 1, 2, 3 and 4, which is characterized by the fact that the pulsatory emission of the electromagnetic waves (6) may be modulated in any way, or it may not be modulated at all.
- 6. A method for the qualitative improvement of the products of crude oil (1), through the use of electromagnetic waves (6), which cover wide ranges of wavelengths, which are produced by electrome-

15

20

25

chanical or electronic devices (3), the emission of which is pre-programmed, its potency is controlled, has a controlled application time and a controlled qualitative result, which are emitted pulsatorily towards the products of crude oil (1), according to claims 1, 2, 3, 4 and 5, which is characterized by the fact that for its application a device with an emitting antenna may be used, which can be submerged inside the products of crude oil, or not, and by the fact that the emitting antenna (5) may constitute an integral part of the emitting device (3), or be connected to it with a tube (4), as well as by the fact that during the application of the method it is possible to move the products of crude oil (1) or even the device used for its application (3).

- 7. A method for the qualitative improvement of the products of crude oil (1), through the use of electromagnetic waves (6), which cover wide ranges of wavelengths, which are produced by electromechanical or electronic devices (3), the emission of which is pre-programmed, its potency is controlled, has a controlled application time and a controlled qualitative result, which are emitted pulsatorily towards the products of crude oil (1), according to claims 1, 2, 3, 4, 5 and 6, which is characterized by the fact that the emission potency of the electromagnetic waves (6) must be increased with each augmentative alteration of the distance between the source of the emission (5) of the electromagnetic waves (6) and the products of crude oil (1), or even with each augmentative alteration of the volume of the industrial products of crude oil (1), to which the method is applied, in order to achieve the same qualitative improvement at the same time, as well as the reverse.
- 8. A method for the qualitative improvement of the products of crude oil (1), through the use of electromagnetic waves (6), which cover wide ranges of wavelengths, which are produced by electromechanical or electronic devices (3), the emission of which is pre-programmed, its potency is controlled, has a controlled application time and a controlled qualitative result, which are emitted pulsatorily towards the products of crude oil (1), according to claims 1, 2, 3, 4, 5, and 7, which is characterized by the fact that with each augmentative alteration of the distance between the source of the emission (5) of the electromagnetic waves (6) and the products of crude oil (1), or even with each augmentative alteration of the volume of the products of crude oil (1), to which the method is applied, the application duration time of the method must be increased in order to achieve the same qualitative improvement 55 with the same potency, as well as the reverse.
- 9. A method for the qualitative improvement of the

- products of crude oil (1), through the use of electromagnetic waves (6), which cover wide ranges of wavelengths, which are produced by electromechanical or electronic devices (3), the emission of which is pre-programmed, its potency is controlled, has a controlled application time and a controlled qualitative result, which are emitted pulsatorily towards the products of crude oil (1), according to claims 1, 2, 3, 4, 5, 7 and 8, which is characterized by the fact that the application of the method can also be achieved with the pulsatory emission of electromagnetic waves (6) from more than one device, simultaneously, in the same place, which have been programmed to emit electromagnetic waves of the same or different potency, and by the fact that the total simultaneous emission potency provided must always be low, in order to achieve the desired result, without causing any substantial increase in the temperature of the products of crude oil to which the present method is applied, without the potency descending below 0.0001 mWatt, whether one device is used or more than one devices.
- 10. A method for the qualitative improvement of the products of crude oil (1), through the use of electromagnetic waves (6), which cover wide ranges of wavelengths, which are produced by electromechanical or electronic devices (3), the emission of which is pre-programmed, its potency is controlled, has a controlled application time and a controlled qualitative result, which are emitted pulsatorily towards the products of crude oil (1), according to claims 1, 2, 3, 4, 5, 7, 8 and 9, which is characterized by the fact that the user of the method is able to decrease the time required for the achievement of the selected level of qualitative improvement by increasing the total simultaneous emission potency provided by the electromagnetic waves (6), which must be maintained in low levels, so as not to cause a substantial increase in the temperature of the products of crude oil, as well as the reverse, but without the emission potency descending below 0.0001 mWatt.
- 11. A method for the qualitative improvement of the products of crude oil (1), through the use of electromagnetic waves (6), which cover wide ranges of wavelengths, which are produced by electromechanical or electronic devices (3), the emission of which is pre-programmed, its potency is controlled, has a controlled application time and a controlled qualitative result, which are emitted pulsatorily towards the products of crude oil (1), according to claims 1, 2, 3, 4, 5, 7, 8, 9 and 10, which is characterized by the fact that the initiation of the qualitative improvement of the products of crude oil occurs with the initiation of the application of the method and is short, a few hours only, and by the fact that the du-

50

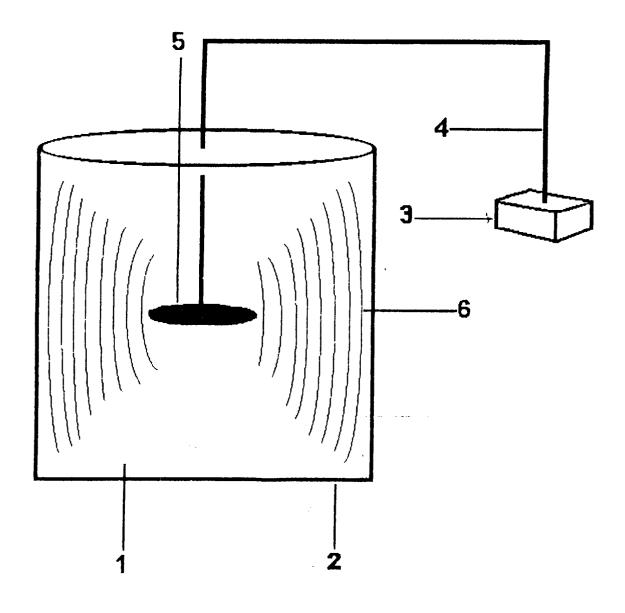
ration period of the application of the method is dependent on the type of the products of crude oil to which the method is applied, as well as by the fact that the duration time of the application of the method is proportional to the desirable qualitative result, so that the longer the duration period of the application of the method the greater the qualitative improvement of the products of crude oil to which the method is applied.

12. A method for the qualitative improvement of the products of crude oil (1), through the use of electromagnetic waves (6), which cover wide ranges of wavelengths, which are produced by electromechanical or electronic devices (3), the emission of which is pre-programmed, its potency is controlled, has a controlled application time and a controlled qualitative result, which are emitted pulsatorily towards the products of crude oil (1), according to claim 1, which is characterized by the fact that it can be applied to all products of crude oil regardless of its quality, that is, to the products which are sent directly from the refineries to the final user, as well as to the products which after their production in the refineries are forwarded to processing industries for further processing, and to the products which having been processed by the processing industries are forwarded to the final user.

13. A method for the qualitative improvement of the products of crude oil (1), through the use of electromagnetic waves (6), which cover wide ranges of wavelengths, which are produced by electromechanical or electronic devices (3), the emission of which is pre-programmed, its potency is controlled, has a controlled application time and a controlled qualitative result, which are emitted pulsatorily towards the products of crude oil (1), according to claim 1, which is characterized by the fact that the method can also be applied even when the products or the devices required for its application are not stationary, as well as by the fact that it can be applied even if between the emission source of the pulsatory electromagnetic waves and the products of crude oil there exist materials of any kind, conductible or not, with the exception of conductible materials which are grounded, and therefore the method can have a wide application in industries and commercial enterprises of crude oil, in gas stations, in the final products of crude oil during their storage in their customary areas, in the packaged products in the form and the materials they are customarily packaged, as well as, finally, in the products of crude oil during their ground, marine or air transportation.

10

15


20

35 40

50

55

Drawing 1

EUROPEAN SEARCH REPORT

Application Number EP 99 60 0021

	DOCUMENTS CONSID				
Category	Citation of document with it of relevant pass	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL7)	
X	US 5 625 178 A (ROJ 29 April 1997 (1997 * the whole documen	-04-29)	1-13	C10G32/02	
A	EP 0 435 590 A (EXX CO) 3 July 1991 (19 * the whole documen	ON RESEARCH ENGINEERING 91-07-03) t *	1–13		
A	US 5 055 180 A (KLA 8 October 1991 (199 * the whole documen	1-10-08)	1-13		
				TECHNICAL FIELDS SEARCHED (Int.CL7)	
				C10G	
	The present search report has	been drawn up for all claims Date of completion of the search		Examiner	
THE HAGUE		30 March 2000	·		
X : part Y : part door A : tech O : non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anot unent of the same category inological background —written disclosure mediate document	E : earlier patent doc after the filing dat her D : document cited in L : document cited fo	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document ofted in the application L: document ofted for other reasons 8: member of the same patent family, corresponding		

EPO POPIM 1509 09.82 (P04C01)

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 99 60 0021

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

30-03-2000

Patent document cited in search report		Publication date		Patent family member(s)	
US 5625178	A	29-04-1997	BR 950 CA 210 GB 229 IT MI99 NL 100 NL 100	26485 A 05123 A 52325 A 94885 A,B 52295 A 01588 C 01588 A 54470 A	10-05-1996 09-09-1997 09-05-1996 15-05-1996 08-05-1996 12-09-1996 11-07-1996 09-05-1996
EP 0435590	A	03-07-1991	US 518 CA 203 JP 329	31998 A 31958 A 21244 A 28577 A	26-01-1993 28-06-1991 20-12-1991 12-07-1994
US 5055180	A	08-10-1991	AU 58 AU 423 BR 850 CA 126 DE 358 EP 018 EP 030 JP 6150 KR 890 MX 15 NO 86 NO 86 NO 86 NO 86	70079 T 86820 B 87485 A 96617 A 91735 A 94819 A 97003 A 91931 T 93463 B 99060 A 99060 A 94024 A 94024 A 94026 A 94893 A 92948 A	15-12-1991 27-07-1989 15-11-1985 15-04-1986 26-09-1989 16-01-1992 14-05-1986 15-03-1989 04-09-1989 13-04-1989 13-02-1986 13-02-1986 13-02-1986 13-02-1986 07-11-1985 24-12-1985

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82