(11) **EP 1 099 775 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

16.05.2001 Bulletin 2001/20

(51) Int Cl.7: **C23C 10/58**

(21) Application number: 00309637.7

(22) Date of filing: 01.11.2000

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 12.11.1999 US 438511

(71) Applicant: GENERAL ELECTRIC COMPANY Schenectady, NY 12345 (US)

(72) Inventor: Conner, Jeffrey Allen Hamilton, Ohio 45011 (US)

 (74) Representative: Szary, Anne Catherine, Dr. et al GE London Patent Operation, Essex House,
 12-13 Essex Street London WC2R 3AA (GB)

(54) Platinum aluminide coating for cobalt-based superalloys

(57) A method for enhancing oxidation resistance and hot gas corrosion of a Co-based component for use in a gas turbine engine hot section. The Co-based component is aluminided to form a CoAl layer on the surface

thereof. A Pt layer is then applied on top of the CoAl layer. The Pt layer is diffused into the CoAl layer to form a PtAl imparting oxidation resistance and hot gas corrosion resistance to the component.

Description

[0001] This invention relates to a PtAl coating and a method for enhancing resistance to oxidation and hot gas corrosion of cobalt-based superalloy gas turbine hot section components such as nozzle airfoils.

[0002] Platinum aluminide coatings have been applied to Ni-based and Co-based gas turbine hot section components by a multi-step process to improve resistance to oxidation and hot gas corrosion. The first step involves application of platinum to the component surface. The Pt is typically applied by electroplating, but other processes such as sputtering may be used. A separate step to diffuse the Pt into the substrate is usually performed prior to aluminiding, although this step is often omitted when coating Ni-based alloys. Aluminiding is then accomplished by pack cementation, above pack, vapor phase, or chemical vapor deposition processing. All of these processes have been used with Ni-based substrates. Pack cementation has typically been used with Co-based substrates in view of the relatively slow rate at which Co-based alloys accept coating and the need to have a high Al activity during the process to promote coating growth.

[0003] Platinum aluminide coatings applied to Cobased gas turbine hot section components suffer from Kirkendall void formation in the coating diffusion zone as Pt diffuses into the Co-based substrate after all of the foregoing process steps are completed. Such voiding occurs regardless of whether a discrete diffusion operation is practiced between Pt plating and aluminiding. Kirkendall voiding occurs when one species in a diffusion couple diffuses faster than a second species in the couple. In the case of Pt applied to a Co substrate, their respective diffusion rates are appreciably different such that the net mass flow rate at the atomic level is not egual. In this situation Pt diffuses faster than Co, the result of which is Kirkendall voiding in the diffusion zone. [0004] In order to prevent void formation in the Pt/Co diffusion couple surface modification treatments have been attempted prior to Pt application in an effort to dilute the impact of the different diffusion rates for Pt and

[0005] A PtAI coating is applied to a Co-based component for use in a gas turbine engine hot section by first aluminiding the Co-based component to form a CoAI layer on the surface thereof, then applying a Pt layer on top of the CoAI layer, and finally diffusing Pt from said Pt layer into the CoAI layer to form a PtAI layer imparting oxidation resistance and hot gas corrosion resistance to the Co-based component.

Co. In particular, there have been surface pretreatments

with Rh, Cr and/or Ni to modify the chemistry at the in-

terface between the substrate and the coating.

[0006] In accordance with this invention, an environmentally resistant PtAI coating is applied to Co-based hot section components of gas turbine engines without the problems associated with prior efforts to apply such coatings to Co-based alloys. In a typical embodiment of

the invention a Co-based component such as a nozzle airfoil is provided which is made from an alloy having a chemistry such as one of the following:

Alloy A		Alloy B	
С	0.6% by weight	0.1% by weight	
Cr	22	22	
Ni	10	22	
Ti	0.2		
W	7	14	
Та	3.5		
Zr	0.5		
La		0.05	
Mn		1.25	
Co Ba	lance	Balance	
	Plus incidental imp	ourities	

[0007] The component is aluminided to form a CoAl layer on the surface thereof. This aluminiding is carried out by a pack powder process, or suitable vapor aluminiding process. The aluminided layer is on the order of between about 0.0005 inch (0.0013 cm) to about 0.006 inch (0.015 cm) thick. In one preferred embodiment the aluminided layer has a thickness between about 0.002 inch (0.005 cm) and about 0.004 inch (0.01 cm).

[0008] A Pt layer is then applied on top of the CoAl layer by plating or other appropriate method. The Pt layer is deposited to have a thickness of at least about 0.0001 inch (0.00025 cm) thick, preferably between about 0.0001 inch (0.00025 cm) and about 0.0005 inch (0.0013 cm), more preferably between about 0.0002 inch (0.0005 cm) and about 0.0004 inch (0.001 cm). The Pt is then diffused into the CoAl layer by a thermal diffusion technique. After diffusion, the outer surface is a PtAl coating.

[0009] The foregoing process yields a PtAl coating which provides environmental resistance for Co-based components in hot section environments without suffering from void formation problems. It can also be appreciated that prior attempts to apply void-free PtAl coatings to Co-based substrates have involved the four sequential steps of Ni, Rh or Cr pretreatment, Pt plating, Pt diffusion, and aluminiding. The process of this invention, in contrast, involves just the three sequential steps of aluminiding, Pt plating, and Pt diffusion. Substantial engineering and economic advantages are realized, therefore, by the process simplification of this invention. [0010] As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description shall be interpreted as illustrative and not in a limiting sense.

45

Claims

1. A method for enhancing oxidation resistance and hot gas corrosion resistance of a surface of a Cobased component for use in a gas turbine engine hot section, the method comprising the sequential steps of:

a) aluminiding the Co-based component to form a CoAl layer on the surface of the Cobased component;

b) applying a Pt layer on top of the CoAl layer;

c) diffusing Pt from said Pt layer into the CoAl layer to form a PtAl layer imparting oxidation resistance and hot gas corrosion resistance to the Co-based component.

2. The method of claim 1 wherein said applying said Pt layer comprises electroplating said Pt layer to a 20 thickness of between about 0.0001 inch (0.00025 cm) and about 0.0005 inch (0.0013 cm).

3. The method of claim 1 wherein said aluminiding the Co-based component comprises the formation of a CoAl layer having a thickness between about 0.002 inch (0.005 cm) and about 0.004 inch (0.01 cm).

The method of claim 3 wherein said aluminiding is carried out by pack cementation.

5. A method for enhancing oxidation resistance and hot gas corrosion of a surface of a Co-based component for use in a gas turbine engine hot section, the method comprising the sequential steps of:

35

a) aluminiding the Co-based component to form a CoAl layer having a thickness between about 0.002 inch (0.005 cm) and about 0.004 inch (0.010 cm) on the surface of the Co-based 40component;

b) applying a Pt layer having a thickness between about 0.0002 inch (0.0005 cm) and about 0.0004 inch (0.001 cm) on top of the CoAI layer; and

45

c) diffusing Pt from said Pt layer into the CoAl layer to form a PtAI layer imparting oxidation resistance and hot gas corrosion resistance to the Co-based component.

50

55

EUROPEAN SEARCH REPORT

Application Number EP 00 30 9637

	DOCUMENTS CONSIDI	ERED TO BE RELEVANT	4	
Category	Citation of document with in of relevant pass:	dication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)
X	PATENT ABSTRACTS OF vol. 004, no. 129 (10 September 1980 (& JP 55 082760 A (H 21 June 1980 (1980- * abstract *	C-024), 1980-09-10) ITACHI LTD),	1,4	C23C10/58
Α	WO 92 03587 A (LIBU INC.) 5 March 1992 * page 6, line 13 - 2,12,17 *	(1992-03-05)	1	
А	US 3 677 789 A (KAR 18 July 1972 (1972- * column 1, line 60 *	 L BUNGARDT) 07-18) - line 67; claims 1-4	1-5	
				
				TECHNICAL FIELDS SEARCHED (Int.CI.7)
				C23C
	The present search report has			
	Place of search	Date of completion of the search	,	Examiner
ļ	THE HAGUE	27 February 200		sen, D
X:pai Y:pai doo A:ted	CATEGORY OF CITED DOCUMENTS ticularly relevant if taken alone ticularly relevant if combined with anot ument of the same category hnological background	L : document cited	locument, but pub late I in the application I for other reasons	lished on, or 1 3
	n-written disclosure ermediate document	& : member of the document	same patent fam	ily, corresponding

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 00 30 9637

This annex lists the patent family members relating to the patent documents cited in the above–mentioned European search report. The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

27-02-2001

Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
JP	55082760	Α	21-06-1980	NONE		
WO	9203587	A	05-03-1992	CA AU EP JP KR US	2090487 A 651040 B 0546012 A 6508400 T 9512812 B 5139824 A 5292594 A	01-03-199; 07-07-199; 16-06-199; 22-09-199; 21-10-199; 18-08-199; 08-03-199;
US	3677789	A	18-07-1972	DE AT BE CH FR GB NL SE US	1796175 A 285277 B 736266 A 518376 A 2018097 A 1210026 A 6913933 A,B, 344766 B 3819338 A	01-07-197 27-10-197 31-12-196 31-01-197 29-05-197 28-10-197 17-03-197 02-05-197 25-06-197

FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82