(19)
(11) EP 1 105 969 B9

(12) CORRECTED EUROPEAN PATENT SPECIFICATION
Note: Bibliography reflects the latest situation

(15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see
Description

(48) Corrigendum issued on:
09.09.2009 Bulletin 2009/37

(45) Mention of the grant of the patent:
18.03.2009 Bulletin 2009/12

(21) Application number: 99939012.3

(22) Date of filing: 05.08.1999
(51) International Patent Classification (IPC): 
H03K 17/284(2006.01)
H03K 17/082(2006.01)
(86) International application number:
PCT/US1999/017719
(87) International publication number:
WO 2000/010249 (24.02.2000 Gazette 2000/08)

(54)

ELECTRONIC CIRCUITS WITH WIDE DYNAMIC RANGE OF ON/OFF DELAY TIME

ELEKTRONISCHE SCHALTUNGEN MIT GROSSEM DYNAMIKBEREICH DER EIN-AUS-ZEITVERZÖGERUNG

CIRCUITS ELECTRONIQUES POSSEDANT UNE GAMME DYNAMIQUE ETENDUE DU TEMPS DE RETARD D'ACTIVATION/DE DESACTIVATION


(84) Designated Contracting States:
DE FR GB

(30) Priority: 13.08.1998 US 133334

(43) Date of publication of application:
13.06.2001 Bulletin 2001/24

(73) Proprietor: TYCO Electronics Corporation
Menlo Park, CA 94025-1164 (US)

(72) Inventors:
  • COGAN, Adrian, I.
    Redwood Shores, CA 94065 (US)
  • SHUKRI, J. Souri
    Fremont, California 94536 (US)

(74) Representative: Sajda, Wolf E. et al
Meissner, Bolte & Partner GbR Postfach 86 06 24
81633 München
81633 München (DE)


(56) References cited: : 
EP-A- 0 905 899
GB-A- 2 040 121
US-A- 4 001 610
US-A- 4 160 192
US-A- 4 686 386
US-A- 4 801 822
US-A- 5 381 296
FR-A- 2 342 571
US-A- 3 737 732
US-A- 4 035 669
US-A- 4 686 383
US-A- 4 777 379
US-A- 5 187 632
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION



    [0001] The present invention relates generally to electronic circuits, and more particularly to electronic circuits with adjustable delay time for turning on or off an application device or an electronic load. Such circuits may be used in overload protection applications.

    [0002] In a typical overload protection circuit, a resettable fuse, e.g., a positive temperature coefficient (PTC) device, is used. When there is a change in condition, such as occurrence of an overload, the PTC device trips and becomes a very large resistance, thus limiting the current flow and providing overload protection. When the new condition disappears, the resistance of PTC device decreases to its normal value, i.e., a low resistance value, and the application circuit resumes its normal operation.

    [0003] In many instances, it may desirable to provide a delay time in turning off or on an application device or an electronic load. It may further be desirable to provide an adjustable delay time upon a change in condition, such as occurrence of an overload or overheat. Also, fault conditions may occur when an electric motor is stalled or an electronic load is short circuited by accident. Such a condition change may also be intentionally generated as input signal to provide a longer delay time in turning off or on an application device or an electronic load.

    [0004] Prior art documents GB2040121, US 3 737 732, US 5 187 632, US 5 381 296, and EP 905 899 disclose various electronic load switches with time delay, temperature-or overload sensors.

    SUMMARY OF THE INVENTION



    [0005] The present invention provides an electronic circuit with adjustable delay time for turning on or off an application device or an electronic load. The electronic circuit according to the present invention comprises a switch element for controlling power supplied to a load; and an activation element, coupled to the switch element, for activating the switch element to control power supplied to the load. The activation element includes a sensor for sensing whether there is a change in condition and for delaying activation by the activation element of the switch element upon sensing a change in condition.

    [0006] In one embodiment of the invention, the sensor includes a positive temperature coefficient (PTC) element; the switch element includes a metal-oxide-semiconductor field effect transistor (MOSFET); and the activation element further includes a capacitor and a switch. A change in condition includes an overload and an increase in the ambient temperature.

    [0007] Other objects and attainments together with a fuller understanding of the invention will become apparent and appreciated by referring to the following description and claims taken in conjunction with the accompanying drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] In the drawings wherein like reference symbols refer to like parts:

    Figure 1A shows a first embodiment according to the present invention;

    Figure 1B shows two curves illustrating the operation of the first embodiment under different conditions;

    Figure 2A shows a second embodiment according to the present invention;

    Figure 2B shows two curves illustrating the operation of the second embodiment under different conditions;

    Figure 3A shows a third embodiment according to the present invention;

    Figure 3B shows two curves illustrating the operation of the third embodiment under different conditions;

    Figure 4A shows a fourth embodiment according to the present invention; and

    Figure 4B shows two curves illustrating the operation of the fourth embodiment under different conditions.


    DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS



    [0009] Figure 1A shows a first embodiment according to the present invention. Figure 1B shows two curves illustrating the operation of the first embodiment under different conditions. As shown in Fig. 1A, a capacitor C1 is coupled to a voltage source VDD and is also to be coupled to a positive coefficient temperature (PTC) device Rp1 via a switch SW1. Rp1 is coupled to a gate electrode of an n-channel enhancement type, MOSFET Q1. A load RL1 is coupled between voltage source VDD and a drain electrode of transistor Q1. Transistor Q1 has its source electrode coupled to the ground.

    [0010] In this embodiment, when power is applied (i.e., when SW1 is closed), transistor Q1 is turned on and then turned off after a predetermined on-duration. If there is a change in condition, such as occurrence of an overload or overheat, which is thermally sensed by Rp1, the on-duration will be longer, i.e., the turn-off time will be later than under the normal condition, as will be described below in detail.

    [0011] At time t = 0, SW1 is closed and current flows through C1, which behaves as a short circuit initially. Thus, the gate voltage Vg1 is equal to VDD, which turns on transistor Q1, causing the output current Io1 flowing through load RL1 at a maximum level of VDD/RL1. In other words, when switch SW1 is initially closed, load RL1 will be operated at the full power until after the time t = Rp1•C1, the RC constant, as illustrated by curve 1 in Fig. 1B.

    [0012] As capacitor C1 is been charging up gradually, the gate voltage Vg1 is decreasing, causing the current Io1 to gradually decrease. Eventually, after a time period of Rp1•C1, when capacitor C1 is fully charged, Vg1 becomes equal to the ground level, causing transistor Q1 to turn off. As a result, no current flows in load RL1, i.e., the output current Io1 is zero.

    [0013] If, however, at t = 0 when switch SW1 is closed, there is an occurrence of an overload or overheat sensed by Rp1 as it may be caused by the ambient temperature for instance, the PTC device will become a large resistance Rp1'. In such case, it takes a longer time period of about Rp1'•C1 to fully charge capacitor C1 and load RL1 will be initially operated at the full power until after the time t = Rp1'•C1, as illustrated by curve 2 in Fig. 1B. Thus, there is a time delay in turning off transistor Q1, from Rp1•C1 to Rp1•C1.

    [0014] As an example, if Rp1 is a polymeric PTC resistor, such as PolySwitch® device manufactured by Raychem Corporation, Menlo Park, California, its resistance value may change from, for instance, 1 ohm at 25°C to 100M ohms at 150°C, an 8 order of magnitude change. Also, if C1 is equal to 1 µF, the time constant t = Rp1•C1 will change from 1 µs to 100 s, an extremely wide dynamic range. Other types of PTC device may also be used.

    [0015] Figure 2A shows a second embodiment according to the present invention. This second embodiment is a variation of the first embodiment in Fig. 1A. Its operation is similarly illustrated by the two curves in Fig. 2B. As shown in Fig. 2, a load RL2 has one end coupled to a switch SW2 and the other end coupled to a drain electrode of an n-channel enhancement type, MOSFET Q2. Switch SW2 is coupled to voltage source VDD. A capacitor C2 is coupled between the drain and gate electrodes of transistor Q2. A PTC device Rp2 is coupled between the gate electrode of transistor Q2 and the ground. Transistor Q2 has its source electrode coupled to the ground.

    [0016] At time t = 0, SW2 is closed and current flows through C2, which behaves as a short circuit initially. Thus, the gate voltage Vg2 is equal to VDD, which turns on transistor Q2, causing the output current Io2 flowing through load RL2 at a maximum level of VDD/RL2, as illustrated by curve 3 in Fig. 2B. As capacitor C2 charges up gradually, the gate voltage Vg2 decreases, causing the current Io2 to gradually decrease. Eventually, after a time period of Rp2•C2, when capacitor C2 is fully charged, Vg2 becomes equal to the ground level, causing transistor Q2 to turn off. As a result, no current flows in load RL2, i.e., the output current Io2 is zero.

    [0017] If, at t = 0 when switch SW2 is closed, there is an occurrence of an overload or overheat as it may be caused by the ambient temperature, the PTC device will trip and become a large resistance Rp2'. In such case, it takes a time period of about Rp2'•C2 to fully charge capacitor C2 and load RL1 will be initially operated at the full power until after the time t = Rp2'•C2, as illustrated by curve 4 in Fig. 2B. Thus, there is a time delay in turning off transistor Q2, from Rp2•C2 to Rp2'•C2.

    [0018] As an example, if Rp2 is a polymeric PTC resistor, such as PolySwitch® device manufactured by Raychem Corporation, Menlo Park, California, its resistance value may change from, for instance, 1 ohm at 25°C to 100M ohms at 150°C, an 8 order of magnitude change. Also, if C2 is equal to 1 µF, the time constant t = Rp2•C2 will change from 1 µs to 100 s, an extremely wide dynamic range. Other types of PTC device may also be used.

    [0019] Figure 3A shows a third embodiment according to the present invention. Figure 3B shows two curves illustrating the operation of the third embodiment under different conditions. As shown in Fig. 3A, a PTC device Rp3 is coupled between voltage source VDD and a switch SW3, which is coupled to a gate electrode of an n-channel, enhancement type MOSFET Q3. A capacitor C3 is coupled between the gate electrode of the transistor Q3 and the ground. A load RL3 is coupled between voltage source VDD and a drain electrode of transistor Q3. A source electrode of transistor Q3 is coupled to the ground.

    [0020] In the third embodiment, when power is applied (i.e., SW3 is closed), transistor Q3 is turned off and then turned on after a predetermined off-duration. If there is a change in condition, such as occurrence of an overload or overheat, the off-duration will be longer, i.e., the turn-on time will be later than under the normal condition, as will be described below in detail.

    [0021] At time t = 0, SW3 is closed and current flows through Rp3 and C3, which behaves as a short circuit initially. Thus, the gate voltage Vg3 = 0, which keeps transistor Q3 off. Therefore, no current flows in load RL3 and the output current Io3 is zero, until after the time t = Rp3•C3, the RC constant, as illustrated by curve 5 in Fig. 3B.

    [0022] As capacitor C3 charges up gradually, the gate voltage Vg3 increases, causing the current Io3 to gradually increase. Eventually, after a time period of Rp3•C3, when capacitor C3 is fully charged, Vg3 becomes equal to VDD. As a result, the output current flowing in load RL3 is at a maximum level of VDD/RL3, as illustrated by curve 5 in Fig. 3B.

    [0023] If, however, at t = 0 when switch SW3 is closed, there is an occurrence of an overload or overheat as it may be caused by the ambient or load temperature values, the PTC device resistance will increase and become a larger resistance Rp3'. In such case, it takes a time period of about Rp3•C3 to fully charge capacitor C3 and load RL3 will be operated at the full power only after the time t = Rp3'•C3, as illustrated by curve 6 in Fig. 3B. Thus, there is a time delay in turning on transistor Q3, from Rp3•C3 to Rp3'•C3.

    [0024] As an example, if Rp3 is a polymeric PTC resistor, such as PolySwitch® device manufactured by Raychem Corporation, Menlo Park, California, its resistance value may change from, for instance, 1 ohm at 25°C to 100M ohms at 150°C, an 8 order of magnitude change. Also, if C3 is equal to 1 µF, the time constant t = Rp3•C3 will change from 1 µs to 100 s, an extremely wide dynamic range. Other types of PTC device may also be used.

    [0025] Figure 4A shows a fourth embodiment according to the present invention. This embodiment is a variation of the third embodiment in Fig. 3A. Its operation is similarly illustrated by the two curves in Fig. 4B. As shown in Fig. 4, a load RL4 is coupled between a switch SW4 and a drain electrode of an n-channel enhancement type, MOSFET Q4. Switch SW4 is coupled to voltage source VDD. A PTC device Rp4 is coupled between a load RL4 and a gate electrode of transistor Q4. A capacitor C4 is coupled between the drain and gate electrodes of transistor Q4. The source electrode of transistor Q4 is coupled to the ground.

    [0026] At time t = 0, SW4 is closed and current flows through Rp4 and C4, which behaves as a short circuit initially. Thus, the gate voltage Vg4 is equal to the ground, which turns off transistor Q4. Therefore, no current flows in load RL4 and the output current Io4 is zero, as illustrated by curve 7 in Fig. 4B. As capacitor C4 charges up gradually, the gate voltage Vg4 increases, causing the current Io4 to gradually increase. Eventually, after a time period of Rp4•C4, when capacitor C4 is fully charged, Vg4 becomes equal to VDD. As a result, the current flowing in load RL4, i.e., Io4 is at a maximum level of VDD/RL4, as illustrated by curve 8 in Fig. 4B.

    [0027] If, at t = 0 when switch SW4 is closed, there is an occurrence of an overload or overheat as it may be caused by the ambient or load temperature, the PTC device will trip and become a large resistance Rp4'. In such case, it takes a time period of about Rp4'•C4 to fully charge capacitor C4 and load RL4 will be operated at the full power after the time t = Rp4'•C4, as illustrated by curve 8 in Fig. 4B. Thus, there is a time delay in turning on transistor Q4, from Rp4•C4 to Rp4'•C4.

    [0028] As an example, if Rp4 is a polymeric PTC resistor, such as PolySwitch® device manufactured by Raychem Corporation, Menlo Park, California, its resistance value may change from, for instance, 1 ohm at 25°C to 100M ohms at 150°C, an 8 order of magnitude change. Also, if C4 is equal to 1 µF, the time constant t = Rp4•C4 will change from 1 µs to 100 s, an extremely wide dynamic range. Other types of PTC device may also be used.

    [0029] In the above four embodiments, the operations have been described in connection with an situation in which the PTC devices were initially in a normal condition and later becomes a large resistance. If the PTC device is initially overheated with a large resistance value and later cools down, the curves illustrated will change in the reverse direction. For instance, in the first embodiment, when the PTC device Rp1 changes from a hot condition to a cold condition, the operation curves change from curve 2 to curve 1.

    [0030] While the invention has been described in conjunction with several specific embodiments, it is evident to those skilled in the art that many further alternatives, modifications, applications and variations will be apparent in light of the foregoing description. For example, a resistor may also be connected in series with the PTC device in the first and second embodiments for adjusting the on-duration ranges of the transistors. Also, a negative temperature coefficient (NTC) device may be used in place of the PTC device with appropriate changes in the polarities. Thus, the invention described herein is intended to embrace all such alternatives, modifications, applications and variations as may fall within the scope of the appended claims.


    Claims

    1. An electronic circuit, comprising:

    - a switch element for controlling power supplied to a load (RL1), the switch element including a transistor; and

    - an activation element, coupled to the switch element, for activating the switch element to control power supplied to the load (RL1),
    characterized
    in that the switch element includes a MOSFET (Q1) as the transistor;

    - wherein the activation element includes a sensor (Rp1) for sensing whether there is a change in condition and for delaying activation by the activation element of the switch element upon sensing a change in condition, and the activation element further includes a capacitor (C1) and a switch (SW1),

    - wherein the MOSFET (Q1) is of enhancement type and includes a drain electrode, a gate electrode and a source electrode, with the source electrode being coupled to a ground level;

    - wherein the load (RL1) is to be coupled between a power source (VDD) and the drain electrode of the MOSFET (Q1);

    - wherein the capacitor (C1) is coupled between the power source (VDD) and the switch (SW1) of the activation element;

    - wherein the switch (SW1) of the activation element is coupled between the capacitor (C1) and the gate electrode of the MOSFET (Q1); and

    - wherein the sensor (Rp1) is coupled between the gate electrode of the switch element (SW1) and the ground level.


     
    2. An electronic circuit, comprising:

    - a switch element for controlling power supplied to a load (RL2), the switch element including a transistor; and

    - an activation element, coupled to the switch element, for activating the switch element to control power supplied to the load (RL2),
    characterized
    in that the switch element includes a MOSFET (Q2) as the transistor;

    - wherein the activation element includes a sensor (Rp2) for sensing whether there is a change in condition and for delaying activation by the activation element of the switch element upon sensing a change in condition, and the activation element further includes a capacitor (C2) and a switch (SW2),

    - wherein the MOSFET (Q2) is of enhancement type and includes a drain electrode, a gate electrode and a source electrode, with the source electrode being coupled to a ground level;

    - wherein the switch (SW2) of the activation element has first and second ends, with the first end being coupled to a power source (VDD);

    - wherein the load (RL2) is to be coupled between the second end of the switch (SW2) of the activation element and the drain electrode of the MOSFET (Q2);

    - wherein the capacitor (C2) is coupled between the drain and gate electrodes of the switch element; and

    - wherein the sensor (Rp2) is coupled between the gate electrode of the switch element and the ground level.


     
    3. An electronic circuit, comprising:

    - a switch element for controlling power supplied to a load (RL3), the switch element including a transistor; and

    - an activation element, coupled to the switch element, for activating the switch element to control power supplied to the load (RL3),
    characterized
    in that the switch element includes a MOSFET (Q3) as the transistor;

    - wherein the activation element includes a sensor (Rp3) for sensing whether there is a change in condition and for delaying activation by the activation element of the switch element upon sensing a change in condition, and the activation element further includes a capacitor (C3) and a switch (SW3),

    - wherein the MOSFET (Q3) is of enhancement type and includes a drain electrode, a gate electrode and a source electrode, with the source electrode being coupled to a ground level;

    - wherein the load (RL3) is to coupled between a power source (VDD) and the drain electrode of the MOSFET (Q3);

    - wherein the capacitor (C3) is coupled between the gate electrode of the MOSFET (Q3) and a ground level;

    - wherein the switch (SW3) of the activation element is coupled between the sensor (Rp3) and the gate electrode of the MOSFET (Q3); and

    - wherein the sensor (Rp3) is coupled between the power source (VDD) and the switch (SW3) of the activation element.


     
    4. An electronic circuit, comprising:

    - a switch element for controlling power supplied to a load (RL4), the switch element including a transistor; and

    - an activation element, coupled to the switch element, for activating the switch element to control power supplied to the load (RL4),
    characterized
    in that the switch element includes a MOSFET (Q4) as the transistor;

    - wherein the activation element includes a sensor (Rp4) for sensing whether there is a change in condition and for delaying activation by the activation element of the switch element upon sensing a change in condition, and the activation element further includes a capacitor (C4) and a switch (SW4);

    - wherein the MOSFET (Q4) is of enhancement type and includes a drain electrode; a gate electrode and a source electrode, with the source electrode being coupled to a ground level;

    - wherein the switch (SW4) of the activation element has first and second ends, with the first end being coupled to a power source (VDD);

    - wherein the load (RL4) is to be coupled between the second end of the switch (SW4) of the activation element and the drain electrode of the MOSFET (Q4);

    - wherein the capacitor (C4) is coupled between the gate electrode of the switch element and a ground level; and

    - wherein the sensor (Rp4) is coupled between the drain and gate electrodes of the MOSFET (Q4).


     
    5. The circuit according to any of claims 1 to 4,
    wherein the change in condition includes an overload.
     
    6. The circuit according to any of claims 1 to 4,
    wherein the change in condition includes an increase in ambient temperature.
     
    7. The circuit according to any of claims 1 to 6,
    wherein the sensor (Rp1, Rp2, Rp3, Rp4) includes a positive temperature coefficient (PTC) element.
     


    Ansprüche

    1. Elektronische Schaltung, die folgendes aufweist:

    - ein Schalterelement zum Steuern von Energie, die einer Last (RL1) zugeführt wird, wobei das Schalterelement einen Transistor aufweist; und

    - ein mit dem Schalterelement gekoppeltes Aktivierungselement zum Aktivieren des Schalterelements zum Steuern der Energie, die der Last (RL1) zugeführt wird,
    dadurch gekennzeichnet,
    daß das Schalterelement einen MOSFET (Q1) als Transistor aufweist;

    - wobei das Aktivierungselement einen Sensor (Rp1) aufweist, um zu erfassen, ob eine Änderung eines Zustandes vorliegt, und um die Aktivierung des Schalterelements durch das Aktivierungselement zu verzögern, wenn eine Änderung eines Zustandes erfaßt wird, wobei das Aktivierungselement ferner einen Kondensator (C1) und einen Schalter (SW1) aufweist,

    - wobei es sich bei dem MOSFET (Q1) um einen vom Anreicherungstyp handelt und dieser eine Drainelektrode, eine Gateelektrode und eine Sourceelektrode aufweist, wobei die Sourceelektrode an einen Massepegel angeschlossen ist;

    - wobei die Last (RL1) zwischen eine Energiequelle (VDD) und die Drainelektrode des MOSFET (Q1) zu koppeln ist;

    - wobei der Kondensator (C1) zwischen die Energiequelle (VDD) und den Schalter (SW1) des Aktivierungselements gekoppelt ist;

    - wobei der Schalter (SW1) des Aktivierungselements zwischen den Kondensator (C1) und die Gateelektrode des MOSFET (Q1) gekoppelt ist; und

    - wobei der Sensor (Rp1) zwischen die Gateelektrode des Schalterelements (SW1) und den Massepegel geschaltet ist.


     
    2. Elektronische Schaltung, die folgendes aufweist:

    - ein Schalterelement zum Steuern von Energie, die einer Last (RL2) zugeführt wird, wobei das Schalterelement einen Transistor aufweist; und

    - ein mit dem Schalterelement gekoppeltes Aktivierungselement zum Aktivieren des Schalterelements zum Steuern der Energie, die der Last (RL2) zugeführt wird,
    dadurch gekennzeichnet,
    daß das Schalterelement einen MOSFET (Q2) als Transistor aufweist;

    - wobei das Aktivierungselement einen Sensor (Rp2) aufweist, um zu erfassen, ob eine Änderung eines Zustandes vorliegt, und um die Aktivierung des Schalterelements durch das Aktivierungselement zu verzögern, wenn eine Änderung eines Zustandes erfaßt wird, wobei das Aktivierungselement ferner einen Kondensator (C2) und einen Schalter (SW2) aufweist,

    - wobei es sich bei dem MOSFET (Q2) um einen vom Anreicherungstyp handelt und dieser eine Drainelektrode, eine Gateelektrode und eine Sourceelektrode aufweist, wobei die Sourceelektrode an einen Massepegel angeschlossen ist;

    - wobei der Schalter (SW2) des Aktivierungselements ein erstes und ein zweites Ende aufweist, wobei das erste Ende mit einer Energiequelle (VDD) gekoppelt ist;

    - wobei die Last (RL2) zwischen das zweite Ende des Schalters (SW2) des Aktivierungselements und die Drainelektrode des MOSFET (Q2) zu koppeln ist;

    - wobei der Kondensator (C2) zwischen die Drainelektrode und die Gateelektrode des Schalterelements gekoppelt ist; und

    - wobei der Sensor (Rp2) zwischen die Gateelektrode des Schalterelements und den Massepegel geschaltet ist.


     
    3. Elektronische Schaltung, die folgendes aufweist:

    - ein Schalterelement zum Steuern von Energie, die einer Last (RL3) zugeführt wird, wobei das Schalterelement einen Transistor aufweist; und

    - ein mit dem Schalterelement gekoppeltes Aktivierungselement zum Aktivieren des Schalterelements zum Steuern der Energie, die der Last (RL3) zugeführt wird,
    dadurch gekennzeichnet,
    daß das Schalterelement einen MOSFET (Q3) als Transistor aufweist;

    - wobei das Aktivierungselement einen Sensor (Rp3) aufweist, um zu erfassen, ob eine Änderung eines Zustandes vorliegt, und um die Aktivierung des Schalterelements durch das Aktivierungselement zu verzögern, wenn eine Änderung eines Zustandes erfaßt wird, wobei das Aktivierungselement ferner einen Kondensator (C3) und einen Schalter (SW3) aufweist,

    - wobei es sich bei dem MOSFET (Q3) um einen vom Anreicherungstyp handelt und dieser eine Drainelektrode, eine Gateelektrode und eine Sourceelektrode aufweist, wobei die Sourceelektrode an einen Massepegel angeschlossen ist;

    - wobei die Last (RL3) zwischen eine Energiequelle (VDD) und die Drainelektrode des MOSFET (Q3) zu koppeln ist;

    - wobei der Kondensator (C3) zwischen die Gateelektrode des MOSFET (Q3) und einen Massepegel geschaltet ist;

    - wobei der Schalter (SW3) des Aktivierungselements zwischen den Sensor (Rp3) und die Gateelektrode des MOSFET (Q3) gekoppelt ist; und

    - wobei der Sensor (Rp3) zwischen die Energiequelle (VDD) und den Schalter (SW3) des Aktivierungselements gekoppelt ist.


     
    4. Elektronische Schaltung, die folgendes aufweist:

    - ein Schalterelement zum Steuern von Energie, die einer Last (RL4) zugeführt wird, wobei das Schalterelement einen Transistor aufweist; und

    - ein mit dem Schalterelement gekoppeltes Aktivierungselement zum Aktivieren des Schalterelements zum Steuern der Energie, die der Last (RL4) zugeführt wird,
    dadurch gekennzeichnet,
    daß das Schalterelement einen MOSFET (Q4) als Transistor aufweist;

    - wobei das Aktivierungselement einen Sensor (Rp4) aufweist, um zu erfassen, ob eine Änderung eines Zustandes vorliegt, und um die Aktivierung des Schalterelements durch das Aktivierungselement zu verzögern, wenn eine Änderung eines Zustandes erfaßt wird, wobei das Aktivierungselement ferner einen Kondensator (C4) und einen Schalter (SW4) aufweist,

    - wobei es sich bei dem MOSFET (Q4) um einen vom Anreicherungstyp handelt und dieser eine Drainelektrode, eine Gateelektrode und eine Sourceelektrode aufweist, wobei die Sourceelektrode an einen Massepegel angeschlossen ist;

    - wobei der Schalter (SW4) des Aktivierungselements ein erstes und ein zweites Ende aufweist, wobei das erste Ende mit einer Energiequelle (VDD) gekoppelt ist;

    - wobei die Last (RL4) zwischen das zweite Ende des Schalters (SW4) des Aktivierungselements und die Drainelektrode des MOSFET (Q4) zu koppeln ist;

    - wobei der Kondensator (C4) zwischen die Gateelektrode des Schalterelements und ein Massepegel geschaltet ist; und

    - wobei der Sensor (Rp4) zwischen die Drainelektrode und die Gateelektrode des MOSFET (Q4) gekoppelt ist.


     
    5. Schaltung nach einem der Ansprüche 1 bis 4,
    wobei die Änderung eines Zustandes eine Überlastung beinhaltet.
     
    6. Schaltung nach einem der Ansprüche 1 bis 4,
    wobei die Änderung eines Zustandes einen Anstieg in der Umgebungstemperatur beinhaltet.
     
    7. Schaltung nach einem der Ansprüche 1 bis 6,
    wobei der Sensor (Rp1, Rp2, Rp3, Rp4) ein Element mit positivem Temperaturkoeffizienten (PTC-Element) aufweist.
     


    Revendications

    1. Circuit électronique, comprenant :

    - un élément de commutation pour commander la puissance fournie à une charge (RL1), l'élément de commutation incluant un transistor ; et

    - un élément d'activation, couplé à l'élément de commutation, pour activer l'élément de commutation et commander la puissance fournie à la charge (RL 1),
    caractérisé en ce que l'élément de commutation inclut à titre de transistor un élément MOSFET (Q1) ;

    - dans lequel l'élément d'activation inclut un détecteur (Rp1) pour détecter s'il y a un changement de condition et pour retarder l'activation par l'élément d'activation de l'élément de commutation lors de la détection d'un changement de condition, et l'élément d'activation incluant en outre une capacité (C1) et un commutateur (SW1),

    - dans lequel l'élément MOSFET (Q1) est du type à enrichissement et inclut une électrode de drain, une électrode de grille et une électrode de source, l'électrode de source étant couplée à un niveau de masse ;

    - dans lequel la charge (RL1) est destinée à être couplée entre une source de puissance (VDD) et l'électrode de drain de l'élément MOSFET (Q1) ;

    - dans lequel la capacité (C1) est couplée entre la source de puissance (VDD) et le commutateur (SW1) de l'élément d'activation ;

    - dans lequel le commutateur (SW1) de l'élément d'activation est couplé entre la capacité (C1) et l'électrode de grille de l'élément MOSFET (Q1) ; et

    - le détecteur (Rp1) est couplé entre l'électrode de grille de l'élément de commutation (SW1) et le niveau de masse.


     
    2. Circuit électronique, comprenant :

    - un élément de commutation pour commander la puissance fournie à une charge (RL2), l'élément de commutation incluant un transistor ; et

    - un élément d'activation, couplé à l'élément de commutation, pour activer l'élément de commutation et commander la puissance fournie à la charge (RL2),
    caractérisé en ce que l'élément de commutation inclut à titre de transistor un élément MOSFET (Q2) ;

    - dans lequel l'élément d'activation inclut un détecteur (Rp2) pour détecter s'il y a un changement de condition et retarder d'activation par l'élément d'activation de l'élément de commutation lors de la détection d'un changement de condition, et l'élément d'activation incluant en outre une capacité (C2) et un commutateur (SW2),

    - dans lequel l'élément MOSFET (Q2) est du type à enrichissement et inclut une électrode de drain, une électrode de grille et une électrode de source, l'électrode de source étant couplée à un niveau de masse ;

    - dans lequel le commutateur (SW2) de l'élément d'activation comporte une première et une seconde extrémité, la première extrémité étant couplée à une source de puissance (VDD) ;

    - dans lequel la charge (RL2) est destinée à être couplée entre la seconde extrémité du commutateur (SW2) de l'élément d'activation et l'électrode de drain de l'élément MOSFET (Q2) ;

    - dans lequel la capacité (C2) est couplée entre l'électrode de drain et l'électrode de grille de l'élément de commutation ; et

    - le détecteur (Rp2) est couplé entre l'électrode de grille de l'élément de commutation et le niveau de masse.


     
    3. Circuit électronique, comprenant :

    - un élément de commutation pour commander la puissance fournie à une charge (RL3), l'élément de commutation incluant un transistor ; et

    - un élément d'activation, couplé à l'élément de commutation, pour activer l'élément de commutation et commander la puissance fournie à la charge (RL3),
    caractérisé en ce que l'élément de commutation inclut à titre de transistor un élément MOSFET (Q3) ;

    - dans lequel l'élément d'activation inclut un détecteur (Rp3) pour détecter s'il y a un changement de condition et pour retarder l'activation par l'élément d'activation de l'élément de commutation lors de la détection d'un changement de condition, et l'élément d'activation incluant en outre une capacité (C3) et un commutateur (SW3),

    - dans lequel l'élément MOSFET (Q3) est du type à enrichissement et inclut une électrode de drain, une électrode de grille et une électrode de source, l'électrode de source étant couplée à un niveau de masse ;

    - dans lequel la charge (RL3) est destinée à être couplée entre une source de puissance (VDD) et l'électrode de drain de l'élément MOSFET (Q3) ;

    - dans lequel la capacité (C3) est couplée entre l'électrode de grille de l'élément MOSFET (Q3) et un niveau de masse ;

    - dans lequel le commutateur (SW3) de l'élément d'activation est couplé entre le détecteur (Rp3) et l'électrode de grille de l'élément MOSFET (Q3) ; et

    - dans lequel le détecteur (Rp3) est couplé entre la source de puissance (VDD) et le commutateur (SW3) de l'élément d'activation.


     
    4. Circuit électronique, comprenant :

    - un élément de commutation pour commander la puissance fournie à une charge (RL4), l'élément de commutation incluant un transistor ; et

    - un élément d'activation, couplé à l'élément de commutation, pour activer l'élément de commutation et commander la puissance fournie à la charge (RL4),
    caractérisé en ce que l'élément de commutation inclut à titre de transistor un élément MOSFET (Q4) ;

    - dans lequel l'élément d'activation inclut un détecteur (Rp4) pour détecter s'il y a un changement de condition et pour retarder l'activation par l'élément d'activation de l'élément de commutation lors de la détection d'un changement de condition, et l'élément d'activation incluant en outre une capacité (C4) et un commutateur (SW4),

    - dans lequel l'élément MOSFET (Q4) est du type à enrichissement et inclut une électrode de drain, une électrode de grille et une électrode de source, l'électrode de source étant couplée à un niveau de masse ;

    - dans lequel le commutateur (SW4) de l'élément d'activation comporte une première et une seconde extrémité, la première extrémité étant couplée à une source de puissance (VDD) ;

    - dans lequel la charge (RL4) est destinée à être couplée entre la seconde extrémité du commutateur (SW4) de l'élément d'activation et l'électrode de drain de l'élément MOSFET (Q4) ;

    - dans lequel la capacité (C4) est couplée entre l'électrode de grille de l'élément de commutation et un niveau de masse ; et

    - dans lequel le détecteur (Rp4) est couplé entre l'électrode de drain et l'électrode de grille de l'élément MOSFET (Q4).


     
    5. Circuit selon l'une quelconque des revendications 1 à 4,
    dans lequel le changement de condition inclut une surcharge.
     
    6. Circuit selon l'une quelconque des revendications 1 à 4,
    dans lequel le changement de condition inclut une augmentation de la température ambiante.
     
    7. Circuit selon l'une quelconque des revendications 1 à 6,
    dans lequel le détecteur (Rp1, Rp2, Rp3, Rp4) inclut un élément à coefficient de température positif (CTP).
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description