| (19) |
 |
|
(11) |
EP 1 106 043 B9 |
| (12) |
CORRECTED EUROPEAN PATENT SPECIFICATION |
|
Note: Bibliography reflects the latest situation |
| (15) |
Correction information: |
|
Corrected version no 1 (W1 B1) |
|
Corrections, see Claims |
| (48) |
Corrigendum issued on: |
|
28.06.2006 Bulletin 2006/26 |
| (45) |
Mention of the grant of the patent: |
|
15.03.2006 Bulletin 2006/11 |
| (22) |
Date of filing: 12.06.2000 |
|
| (51) |
International Patent Classification (IPC):
|
| (86) |
International application number: |
|
PCT/FI2000/000527 |
| (87) |
International publication number: |
|
WO 2000/078116 (21.12.2000 Gazette 2000/51) |
|
| (54) |
PROCEDURE AND SYSTEM FOR INSPECTING A COMPONENT WITH LEADS TO DETERMINE ITS FITNESS
FOR ASSEMBLY
VERFAHREN UND SYSTEM ZUR INSPEKTION EINES BAUTEILS MIT ANSCHLÜSSEN UND ZUM ERFASSEN
DER KORREKTEN BESTÜCKUNGSPOSITION
PROCEDE ET SYSTEME D'INSPECTION D'UN ELEMENT POURVU DE FILS DE CONNEXION AFIN DE DETERMINER
SON APTITUDE A L'ASSEMBLAGE
|
| (84) |
Designated Contracting States: |
|
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT |
| (30) |
Priority: |
10.06.1999 US 329541
|
| (43) |
Date of publication of application: |
|
13.06.2001 Bulletin 2001/24 |
| (73) |
Proprietor: Cencorp Oyj |
|
08700 Virkkala (FI) |
|
| (72) |
Inventor: |
|
- MORRIS, Joseph
Knutsford,
Cheshire WA16 0DP (GB)
|
| (74) |
Representative: Tanskanen, Jarmo Tapio et al |
|
Papula Oy,
P.O. Box 981 00101 Helsinki 00101 Helsinki (FI) |
| (56) |
References cited: :
WO-A1-97/40657 US-A- 5 309 223
|
US-A- 5 278 634
|
|
| |
|
|
- PATENT ABSTRACTS OF JAPAN & JP 09 293 998 A (YAMAHA MOTOR CO LTD) 11 November 1997
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
FIELD OF THE INVENTION
[0001] The present invention relates to a procedure and system for inspecting a component
with leads to determine its fitness for assembly in conjunction with automatic circuit
board assembly performed using an assembly robot before the component is placed on
a circuit board, said component having a row of at least two leads to be inserted
into corresponding holes in the circuit board, said robot being equipped with a gripper
for taking hold of the component.
BACKGROUND OF THE INVENTION
[0002] For automatic placement of components on a circuit board, usually an assembly robot
is used in a computer-controlled assembly robot cell provided with a circuit board
conveyor, which brings the circuit board to an assembly station located within the
working area of the robot. The assembly robot is preferably a xyzw-robot (also called
as a xyzrz-robot) which refers to a robot having four degrees of freedom (x, y, z,
w). The robot is provided with grippers for taking hold of a component. The robot
is capable of three-dimensional motion in x, y and z directions which form the three
degrees of freedom and the rotation of the grippers about z-axis forms the fourth
degree of freedom (w). The robot is e.g. a portal robot working in the space above
the circuit board conveyor. It fetches one component at a time from a component feed
device and places it in a specified location on the circuit board. Before being placed
on the circuit board, the component must be inspected to determine whether it is fit
for assembly. The leads of the component must be aligned in a sufficiently straight
line and they must not have too much sideways bends because in that case they would
not go through the holes in the circuit board. It is also important to check the position
of the leads of the component in relation to the gripper.
[0003] In prior art, vision procedures and systems based on machine vision for inspecting
electronic components to determine their fitness for assembly are known. This type
of systems based on machine vision are manufactured e.g. by the American companies
Adept Technology Inc. (San Jose, USA) and Cognex Corporation (Massachusetts, USA).
[0004] A prior-art system comprises an upward directed camera disposed at a fixed location
beside a circuit board conveyor. A robot first takes each component, with the leads
pointing downward, onto the optics of the camera, which takes a picture of the tips
of the leads from below, whereupon a vision program comprised in the system computes
the positions of the leads on the basis of the image and compares them with approved
reference values. If the vision software finds that the detected lead positions are
not within acceptable tolerances, i.e. one or more leads have been bent, then the
software instructs the robot to reject the component and get a new one for inspection
and assembly.
[0005] A problem with this prior-art procedure and system is that it is very expensive as
it incorporates many components: a camera, lighting, a machine vision processor with
software to develop applications, a video monitor to display images, user interface
etc.
[0006] A further problem is that there are many factors impairing the reliability of machine
vision. The image may be blurred due to reflections, and the contrast between the
component body and the leads may be poor. Also, the colour of the component body visible
on the background of the leads may cause blurring of the image. The leads may not
be distinct enough from the background. In order to be able to distinguish the leads
from the background of the component bodies of different colours one would need to
arrange different kind of illuminations specific for each colour.
[0007] In principle, this problem could be solved in the machine vision system by taking
two pictures of the component from its two sides from one end of the lead row instead
of photographing it from below. Such a solution is applicable in the case of small
components that fit completely in the image area of the camera. However, the problems
associated with the machine vision system become more pronounced especially in the
case of large components that do not fit in the image area of the camera. To achieve
a reliable and sufficiently accurate inspection result, it is necessary to use macro
optics and a small image area. For instance, a large connector, which may have as
many as hundreds of leads arranged in straight rows in two directions perpendicular
to each other, will not fit in the image area at once, so that, in order to produce
a picture of the entire row of leads, the camera would have to be moved in relation
to the component or vice versa during the inspection to produce two or more pictures
of the same component. A complicated camera scanning method like this, intended for
surface mounted components, is described in specification US 5,805,722.
[0008] In the case of large components with long rows of leads, the long row of leads cannot
be reliably inspected using a camera even if pictures are taken from the end of the
row. The reason for this is the poor depth resolution and parallax error of the required
camera optics.
[0009] There are also systems in which a picture of the component is taken in motion, but
this imposes great demands on the vision software, which therefore becomes heavy and
expensive.
[0010] A further problem is that taking the component aside from the route between the component
feed device and the circuit board in order to take a picture of it significantly retards
the assembly process.
[0011] US-A-5 309 223 describes a method and a system for inspecting the leads of a component,
according the characterising portions of claim 1 and 18.
[0012] The object of the present invention is to eliminate the drawbacks described above.
[0013] A specific object of the present invention is to disclose a simple, cheap and reliable
inspection procedure and system for inspecting a component to determine its fitness
for assembly without substantially retarding the assembly process.
[0014] A further object of the invention is to disclose a procedure and system that allow
a component fitness inspection to be performed while the component is being transferred
to an assembly station, without stopping the transferring motion.
[0015] An additional object of the invention is to disclose a procedure and system by which
it is possible to reliably inspect the leads of components and ascertain that the
leads have not been bent, on all components regardless of the number of leads (e.g.
2 - 500) and the colour and lead profile of the component.
[0016] As for the features characteristic of the invention, reference is made to the claims.
BRIEF DESCRIPTION OF THE INVENTION
[0017] In the procedure of the invention, a narrow illuminating beam is directed at a light-sensitive
detector; the component and the illuminating beam are moved in relation to each other
in the direction of the width and/or length of the row of leads so that the position
as a function of time is known and so that the leads of the component pass through
the illuminating beam, the illuminating beam thus reaching the light-sensitive detector
when it falls between leads, whereas when it falls on leads, the leads cast a shadow,
preventing the beam from reaching the light-sensitive detector; the pulse produced
by the light-sensitive detector as a result of the illuminating beam being intercepted
by the shadowing effect of the leads is registered; based on the pulse, the width
of the lead row and/or the distance between adjacent leads rows are/is computed; the
width of the lead row and/or the distance between adjacent leads rows are/is compared
with a specified allowed respective limit value; and the component is placed on the
circuit board if the width and/or the distance between adjacent lead rows computed
on the basis of the measurement are/is within the allowed limits, or alternatively
the component is rejected and removed without placing it on the circuit board if the
measured value/values differ from the allowed limit values.
[0018] Width of the lead row refers to the width perpendicular to the length of the row.
In an ideal case, the row width corresponds to the width of one lead, i.e. when the
leads are in a straight line. A lateral divergence of a lead increases the width of
the row. The row width can be assigned a limit value that it must not exceed. The
invention is based on the insight that measuring the width of the lead row and/or
the distance between two adjacent rows is a sufficient expedient for detecting bent
leads.
[0019] The invention has the advantage that it provides a fast and reliable procedure that
does not retard the assembly process and is applicable for use with all components
with leads regardless of the number of leads. The system is cheap, its production
costs are about a tenth of the costs of a machine vision system and it is more reliable
than the latter.
[0020] Furthermore, the procedure and system allow a component to be inspected while it
is being transferred to an assembly station, without stopping the transferring movement.
[0021] A further advantage provided by the invention is that an inspection of leads can
be performed on all components no matter how many leads (e.g. 2 - 500) the component
has, regardless of component colour and lead profile.
[0022] In an embodiment of the procedure, component is taken hold of and moved by means
of a gripper of an xyzw-robot.
[0023] In an embodiment of the procedure, the lead row of the component is inspected by
moving the component in relation to a stationary illuminating beam.
[0024] In an embodiment of the procedure, the component is passed cross the illuminating
beam in the direction of the width and/or length of the row of the leads.
[0025] In an embodiment of the procedure, the width of the lead row and/or the distance
between adjacent lead rows is computed on the basis of the start and end instants
of the pulse.
[0026] In an embodiment of the procedure, the illuminating beam is directed at the light-sensitive
detector in a horizontal plane in the x-direction. For example, in the coordinate
system of the assembly robot, x-direction refers to a horizontal direction which is
the same as the direction of motion of the circuit board conveyor. In this case, y-direction
means a horizontal direction perpendicular to the x-direction. The circuit board lies
on a xy-plane. z-direction again means a vertical direction. However, it is to be
noted that the invention is not bound to a coordinate system like this, but instead
other coordinate systems are possible.
[0027] In one embodiment of the procedure, before being moved through the illuminating beam,
the component is rotated (about the z-axis) so that the lead row becomes parallel
to the illuminating beam.
[0028] In an embodiment of the procedure, before being moved through an illuminating beam,
the component is set to a position where the lead row lies in the x-direction in a
horizontal plane, and the component is moved in the y-direction through the illuminating
beam.
[0029] In an embodiment of the procedure, before being moved through an illuminating beam,
the component is set to a position where the lead row lies in a horizontal plane in
the y-direction, which is perpendicular to the x-direction, and the component is moved
in the y-direction through the illuminating beam.
[0030] In an embodiment of the procedure, the component is moved simultaneously in the x
and y directions through an illuminating beam.
[0031] In an embodiment of the procedure, before being moved through an illuminating beam,
the component is set in the z-direction, which is perpendicular to the x and y directions,
to a position where the plane of the illuminating beam intersects the leads at a suitable
specified distance from their free ends. The illuminating beam intersects the leads
more preferably adjacent to the free ends of the leads, and not in the vicinity of
the component body to which the leads are fixed.
[0032] In an embodiment of the procedure, the lead row of the component is inspected by
moving the component through a horizontal illuminating beam, which preferably is parallel
to the x-direction, first in one direction and then turning the component horizontally
through 90° and moving it again through the same illuminating beam.
[0033] In an embodiment of the procedure, two parallel illuminating beams placed at a distance
from each other, preferably in the x-direction, are provided. The lead row of the
component is inspected using a first illuminating beam; the component is turned horizontally
through 90°. Then the lead row of the component is inspected using a second illuminating
beam.
[0034] In an embodiment of the procedure, two illuminating beams perpendicular to each other
are provided. The lead row is inspected by moving the component through both illuminating
beams.
[0035] In an embodiment of the procedure, while the component is being moved through an
illuminating beam, the supposed position coordinates of a specified lead of the component
are registered from the control unit of the robot on the basis of position data for
the gripper of the robot. Next, based on a pulse registered by the light-sensitive
detector and corresponding to the specified lead, the actual position coordinates
of said specified lead are computed. The supposed position coordinates of the lead
are compared with the computed actual position coordinates, and if they differ from
each other, then the position coordinates of the lead of the component are calibrated
so as to make them correspond to the computed actual value to allow the insertion
coordinates for the placement to be determined.
[0036] In an embodiment of the procedure the illuminating beam is generated using a laser.
In the scope of the invention, instead of a laser, any other applicable light sources
capable of generating a sufficiently narrow light beam can be used.
[0037] According to the invention, the system comprises an inspection device comprising
a light source for the generation of an illuminating beam and a light-sensitive detector
at which the illuminating beam is directed; means for moving the component and the
illuminating beam relative to each other so that the position as a function of time
is known and so that the leads of the component pass through the illuminating beam,
the illuminating beam thus reaching the light-sensitive detector when it falls between
leads, whereas when it falls on leads, the leads cast a shadow, preventing the beam
from reaching the light-sensitive detector; means for registering the pulse produced
by the light-sensitive detector as a result of the illuminating beam being intercepted
by the shadowing effect of the leads; means for computing the width of the lead row
and/or the distance between adjacent lead rows on the basis of the pulse; and means
for comparing the computed width of the lead row and/or the computed distance between
adjacent lead rows with a specified allowed limit value.
[0038] In an embodiment of the system, the system comprises means arranged to register the
supposed position coordinates of a specified lead of the component from the control
unit of a robot on the basis of position data for the gripper of the robot; means
arranged to compute, based on the pulse registered by the light-sensitive detector
and corresponding to the specified lead, the actual position coordinates of said specified
lead; and means arranged to compare the supposed position coordinates of the lead
with the computed actual position coordinates and, if they differ from each other,
to calibrate the position coordinates of the lead of the component so as to make them
correspond to the computed actual value to allow the insertion coordinates for the
placement to be determined.
[0039] In an embodiment of the system, the means for moving the component are disposed to
move the component in the widthways and/or lengthways direction of the lead row.
[0040] In an embodiment of the system, the inspection device is fixedly mounted in place.
The xyzw-robot is arranged to move the component in relation to the illuminating beam.
[0041] In an embodiment of the system, the light source is so disposed that the illuminating
beam is horizontal.
[0042] In an embodiment of the system, the asssembly robot is a xyzw-robot.
[0043] In an embodiment of the system, the light source is so disposed that the illuminating
beam is parallel to the x-direction in the coordinate system of the xyzw-robot while
the circuit board lies in the xy-plane.
[0044] In an embodiment of the system, the system comprises two adjacent inspection devices
with illuminating beams parallel to each other and at a distance from each other.
[0045] In an embodiment of the system, the system comprises two inspection devices with
illuminating beams perpendicular to each other.
[0046] In an embodiment of the system, at least one of the inspection devices is disposed
between the component feed device and the circuit board conveyor.
[0047] In an embodiment of the system, the inspection device/devices is/are so disposed
with respect to the circuit board assembly station that the inspection of leads can
be performed during the robot movement transferring the component between the component
feed station and the circuit board, without stopping the transferring movement and
substantially without diverging from the transfer route between the component feed
station and the assembly station.
[0048] In an embodiment of the system, the light source is a laser. In the scope of the
invention, instead of a laser, any other applicable light sources capable of generating
a sufficiently narrow light beam can be used.
[0049] In an embodiment of the system the diameter of the illuminating beam is smaller than
or equal to the thickness of the lead.
[0050] In an embodiment of the system diameter of the illuminating beam is of the order
of 0.1 mm.
[0051] In a further procedure of the invention a narrow illuminating beam is directed at
a light-sensitive detector; the component and the illuminating beam are moved in relation
to each other so that the position as a function of time is known and so that the
leads of the component pass through the illuminating beam, the illuminating beam thus
reaching the light-sensitive detector when it falls between leads, whereas when it
falls on a lead, the lead prevents the beam from reaching the light-sensitive detector;
the pulse produced by the light-sensitive detector as a result of the illuminating
beam being intercepted by the shadowing effect of the lead is registered; based on
the pulse, the width of the lead and/or the distance between adjacent leads is computed;
the width of the lead and/or the distance between adjacent leads are/is compared with
a specified allowed respective limit value; and the component is placed on the circuit
board if the width and/or the distance between adjacent leads computed on the basis
of the measurement are/is within the allowed limits, or alternatively the component
is rejected and removed without placing it on the circuit board if the measured value/values
differ from the allowed limit values.
[0052] For the components having lead rows which are in an angle other than perpendicular
to each other, for example 45°, as the component is viewed from a side, it is also
possible to see all leads instead of lead rows. Therefore it is possible with the
procedure of the invention to inspect also individual leads and detect missing leads.
[0053] In the following, the invention will be described in detail by the aid of a few examples
of its embodiments with reference to the attached drawings, wherein
BRIEF DESCRIPTION OF THE DRAWINGS
[0054]
Fig. 1 presents a diagrammatic side view of a laboratory robot cell provided with
an embodiment of the inspection system of the invention,
Fig. 2 presents a diagrammatic top view of the laboratory robot cell in Fig. 1,
Fig. 3 presents a block diagram representing a principle of a system according to
the invention,
Fig. 4 and 5 present diagrams illustrating a certain phase of the procedure of the
invention,
Fig. 6 and 7 present diagrams illustrating another phase of the procedure of the invention,
Fig. 8 presents an end view of a connector with several rows of leads, to be inspected
using the procedure and system of the invention,
Fig. 9 presents the connector in Fig. 8 as seen from the direction IX-IX,
Fig. 10 represents the signal produced by the light-sensitive detector during the
inspection of the rows 6 of leads of the connector in Fig. 8 and 9, together with
the output signal of the robot's axis of motion.
Fig. 11 - 14 present diagrammatic views of a first, second, third and fourth embodiments
of the procedure and system, illustrating the routes and directions of the transfer
of components from the component feed station via the lead inspection stage to the
circuit board.
Fig. 15 presents a diagrammatic block diagram of a fifth embodiment of the system.
Fig. 16 presents a diagrammatic block diagram of a special PC-card of the system of
Fig. 15.
DETAILED DESCRIPTION OF THE INVENTION
[0055] Fig. 1 and 2 present an assembly robot cell provided with a system according to the
invention for inspecting the leads of components, which automatically inspects each
component before placing it on a circuit board to determine whether the component
has any bent leads and whether it can be placed on the circuit board at all or whether
it must be rejected and removed. In addition, based on the information obtained from
the inspection procedure, the system automatically optimises the setting coordinates
for the component if this is necessary due to a possible inaccuracy in the manner
the component is held by the gripper or similar reasons.
[0056] The assembly robot cell comprises a circuit board conveyor 21, which brings the circuit
board 3 to an assembly station, where it is fixed in a predetermined precise position.
The circuit board conveyor 21 is located in the working area of an overhead xyzw-portal
robot 2 with four degrees of freedom. The coordinate system of the robot has been
so defined that the x-direction is a horizontal direction corresponding to the direction
of motion of the circuit board conveyor 21. The y-direction is a horizontal direction
perpendicular to the x-direction. The z-direction is a vertical direction. The letter
"w" in the term "xyzw-robot" refers to that the gripper is also rotatable about the
z-axis.
[0057] The assembly cell is provided with a number of component feed devices 20 located
in the working area of the robot, each device feeding a specified component type.
The robot can take one component at a time from the component feed device 20 and hold
it in its grip. Disposed between the component feed device 20 and the circuit board
conveyor 21 are inspection devices 8 according to the invention, the example in Fig.
2 comprising two such devices placed side by side.
[0058] The inspection device 8 comprises a laser 9, from which a narrow laser beam 10 is
directed in the x-direction at a light-sensitive detector 11 placed at a distance.
In this example, the laser beam 10 is stationary. The diameter of the laser beam 10
is disposed to be equal to or slightly smaller than the thickness of the leads 4 to
be inspected so that lead 4 is able to break the laser beam 10 and prevent its visibility
to the detector 11 when the laser beam hits the lead.
[0059] Fig. 3 presents the main components of the system as a simplified block diagram.
The robot 2 and its control system constitute means 12 by which the component 1 can
be moved in relation to the illuminating beam 10 so that the position of the component
as a function of time is known, in the widthways and/or lengthways direction of the
lead row 5, 6 so that the leads of the component 1 pass through the illuminating beam
e.g. as illustrated in Fig. 4 - 7. Between two successive lead rows, the illuminating
beam 10 reaches the light-sensitive detector 11, and when the laser beam comes to
a lead row and falls on a lead, it cannot reach the light-sensitive detector. Further
referring to Fig. 3, the system comprises a first set of registering means 13, which
register the impulse 14 produced by the light-sensitive detector 11 (see Fig. 10)
as a result of the illuminating beam 10 being intercepted by the shadowing effect
of a lead. The pulse consists of on/off states of the detector. When the laser beam
is intercepted by a lead, the detector 11 goes to the 'off' state. When the laser
beam again reaches the detector, the detector 11 goes to the 'on' state. Furthermore,
the system comprises computing means 15, which compute the width
l of the lead row and/or the distance
e between adjacent lead rows on the basis of the starting and ending instants of the
'on' and 'off' states of the pulse obtained from the light-sensitive detector 11,
the speed at which the component was moved by the robot through the laser beam being
known. Moreover, the system comprises comparing means 16, which compare the computed
width
l of the lead row and/or the computed distance
e between adjacent lead rows to predetermined allowed values. The system instructs
the robot to set the component on the circuit board if the width
l of the lead row and/or the distance
e between adjacent lead rows as computed from the measurement are/is within the allowed
limit values. If the width
l of the lead row and/or the distance
e between adjacent lead rows as computed from the measurement are/is not within the
allowed limit values, then the system will instruct the robot to reject the component
1 and remove it without placing it on the circuit board 3 if the measured value/measured
values differ from the allowed limit values.
[0060] After the above-described inspection and based on it, the same system can accurately
measure the position coordinates of the leads of the component 1 held by the gripper
7. For this purpose, the system comprises a second set of registering means 17, designed
to register from the robot control unit the supposed position coordinates of a specified
lead of the component on the basis of the position data of the gripper 7 of the robot.
Furthermore, the system comprises a second set of computing means 18, designed to
compute the actual position coordinates of a specified lead on the basis of the pulse
registered by the light-sensitive detector 11, corresponding to said specified lead,
e.g. the first lead at the end of the component. Moreover, the system comprises a
second set of comparing means 19, designed to compare the supposed position coordinates
of the lead to the computed actual position coordinates, and if they differ from each
other, to calibrate the position coordinates of the lead of the component so as to
make them correspond to the computed actual value to allow the insertion coordinates
for the placement to be determined
[0061] The computing and comparing means comprised in the system can be implemented as computer
software in a computer controlling the robot. The implementation of one embodiment
is described in more detail with reference to Figs. 15 and 16.
[0062] Fig. 4 presents an elongated connector component 1 with a large number of leads 4,
shown in the figure as being directed perpendicularly to the image plane. The leads
4 are arranged in three longitudinal rows 6, each comprising 24 leads. The rows 6
are so arranged that the leads are aligned with each other in the transverse direction,
thus forming 24 transverse rows 5. For any bends in the leads to be reliably detected,
both rows 5 and rows 6 have to be inspected. In the situation illustrated in Fig.
4, the 24 transverse rows 5 are being inspected and the component 1 is being moved
through a laser beam 10. Between the rows 5, the laser beam can reach the detector
11, turning it to the 'on' state. In Fig. 5, the laser beam falls on a lead and the
light-sensitive detector 11 is in the 'off' state. In Fig. 6 and 7, the longitudinal
rows 6 are being inspected in a corresponding manner.
[0063] Fig. 8 shows a magnified end view of the connector 1 in Fig. 4 - 7 and Fig. 9 presents
the same connector as seen from its lead side. Line T represents the level at which
the laser beam passes as the component 1 is being moved in relation to the beam. In
the left-hand and middle lead rows 6, some leads protrude to one side, and these are
detected because the widths l
1 and l
2 of the pulses 14 received from the detector 11 exceed the allowed limit values. The
pulse for the row 6 on the right has a normal width, which means that the row contains
no protruding leads. It is also possible to measure the interspaces e
1 and e
2 between the leads and compare them to allowed limit values. The square wave in the
upper part of Fig. 10 represents the output signal obtained from an encoder connected
to the motor of the robot motion shaft, and this signal provides information regarding
the position of the gripper of the robot. By comparing it with the pulse 14, the exact
coordinates of a given lead are obtained, from which it is possible to compute the
position of the lead and therefore the position of the component in relation to the
gripper and correct the position coordinates of the component if this is necessary
to ensure successful placement of the component.
[0064] Fig. 11 illustrates an embodiment which uses only one laser beam 10, which is disposed
in the x-direction between the component feeder 20 and the circuit board 3 to be assembled,
extending across the route along which the component 1 is transferred. For the sake
of clarity, the robot is not shown in Fig. 11 - 14. The component 1 is taken by the
robot first in a lengthways orientation in the y-direction through the laser beam
10, whereupon it is turned by the gripper through 90° in a horizontal plane, moved
back and then taken again through the same laser beam 10 in the y-direction. If the
component passes the inspection, then it will be placed in its specified location
on the circuit board.
[0065] Fig. 12 presents an embodiment corresponding to that in Fig. 2, differing from the
embodiment in Fig. 11 in that the embodiment in Fig. 12 comprises two adjacent laser
beams 10 disposed in the x-direction on the route of component transfer between the
component feeder 20 and the circuit board 3 to be assembled. As this embodiment involves
no backward movement, it works faster than the previous embodiment. The component
1 is first taken in a lengthways orientation in the y-direction through a first illuminating
beam, then turned horizontally through 90° and taken through a second illuminating
beam, still in the y-direction.
[0066] Fig. 13 presents an embodiment which uses two laser beams 10, one of which is oriented
in the x-direction and the other in the y-direction, i.e. the beams are perpendicular
to each other. The component 1 is moved in the y-direction through the laser beam
oriented in the x-direction, and in the x-direction through the laser beam oriented
in the y-direction.
[0067] Fig. 14 presents an embodiment which uses two laser beams 10, one of which is oriented
in the x-direction and the other in the y-direction, i.e. the beams are perpendicular
to each other. The component 1 is moved simultaneously through both laser beams in
both the x and y directions, so the direction of motion of the component is at an
angle to the illuminating beam. This is the fastest embodiment. In addition, as indicated
by broken lines in the figure, the system may comprise several laser beams 10 oriented
in the y-direction. These beams can be disposed in suitable locations relative to
the circuit board so that the inspection will involve as few turns as possible in
the route of the component regardless of where in the circuit board area the component
is to be placed.
[0068] Fig. 15 presents a system of a further embodiment of the invention. A narrow laser
beam 10 is projected horizontally in front of the component feeders 20, as illustrated
also in Fig. 2. The system comprises a laser source 9 and a light-sensitive detector
11 which are mounted in opposite sides of the machine frame. When robot picks the
component 1 up from the feeder 20 (see Fig. 2) and moves it to the circuit board (PCB
board) 3, component leads 4 will cross the laser beam 10. Every time the lead 4 crosses
the laser beam, a signal is generated.
[0069] The light-sensitive detector 11, later called as laser receiver, is connected to
a special PC-card later called as a LLC Card 22 (
Laser based
Lead
Check), which will record the current absolute (or incement) pulse-encoder counts from
axis encoders 23 of the xyzw-robot whenever an edge is detected from the signal generated
by the laser receiver 11. Based on this information a special PC-software calculates
the position of the component leads related to the position of the gripper.
[0070] Information is furthermore fed to the motion controller 24 of the xyzw-robot 12 via
ethernet link 25 (or via any other media) and motion controller 24 will then automatically
correlate the possible position or orientation error before inserting the component
onto PCB board.
[0071] At the same time the system checks that all leads 4 do exist and that they are in
correct positions. In case of fault component, component is rejected and new component
will be picked automatically from the feeder.
[0072] To accomplish the whole task, system needs some basic information about the structure
of the component: lead count, lead width, offset between leads, the number of lead
rows, height of the leads. This information will be given from the user interface
(not shown) of the assembly robot cell as an expanded information about the feeders.
[0073] System can be constructed by using one or several laser beams 10, as illustrated
also in Figs. 2, 12, 13 and 14. If only one laser beam is used, system can check the
lead count and position error only from one direction (i.e. y-error). To get both
x and y errors, another laser beam is needed. Between first and second laser beams,
component is then rotated 90 degrees, as illustrated in Fig. 12.
[0074] For rotation error detection, component is slightly rotated so that leads which are
supposed to be in line have slight (or if offset between leads in same row is big
enough, leads from another line will be seen through offsets from first line) different
width then. Based on this width information, rotation error of the component related
to the gripper can be calculated.
[0075] Fig. 16 presents a block diagram of said special PC card 22, called the LLC card,
designed for signal handling and calculation in the system of the invention. Major
task of the LLC-card is to capture the pulse encoder signal (without losing information)
from the axis encoder 23 whenever an edge is detected in an incoming signal at the
laser sensor input. LLC-card is equipped with a special circuitry, edge recognition
and memory addressing circuitry 26 to detect these edges. Pulse counter circuits 27
are used for counting the pulses coming from axis encoders 23 so that the LLC-card
22 knows the actual position (absolute) of the moving axes. Whenever an edge in the
pulse obtained from the detector 11 is detected, a current pulse encoder count is
saved onto the dual port RAM memory 28 (which enables the read and write tasks to
be made simultaneously) of the LLC-card. If laser sensor input changes, recording
will be made into a different address. A bus interface logic 29 enables this information
to be transferred from LLC-card into PC' s memory. Bus can be any common bus used
in PC (ISA, PCI etc).
[0076] The invention is not restricted to the examples of its embodiments described above,
but many variations are possible within the scope of the inventive idea defined in
the claims.
1. Procedure for inspecting a component (1) with leads (4) to determine its fitness for
assembly in conjunction with automatic circuit board assembly performed using an assembly
robot (2) before the component is placed on a circuit board, said component having
leads to be inserted into corresponding holes in the circuit board, said robot being
equipped with a gripper for taking hold of the component, wherein
a narrow illuminating beam (10) is directed at a light-sensitive detector (11),
the component and the illuminating beam are moved in relation to each other so that
the position as a function of time is known and so that the leads of the component
pass through the illuminating beam, the illuminating beam thus reaching the light-sensitive
detector (11) when it falls between leads, whereas when it falls on a lead, the lead
prevents the beam from reaching the light-sensitive detector,
characterised in that
the pulse (14) produced by the light-sensitive detector as a result of the illuminating
beam being intercepted by the shadowing effect of the lead is registered,
based on the pulse, the width (l) of the lead and/or the distance (e) between adjacent
leads is computed,
the width of the lead and/or the distance between adjacent leads are/is compared with
a specified allowed respective limit value, and
the component is placed on the circuit board if the width and/or the distance between
adjacent leads computed on the basis of the measurement are/is within the allowed
limits, or alternatively the component is rejected and removed without placing it
on the circuit board if the measured value/values differ from the allowed limit value.
2. Procedure according to claim 1, characterised in that said component has a row of at least two leads and that
the component and the illuminating beam are moved in relation to each other in the
direction of the width and/or length of the row of leads
based on the pulse, the width of the lead row and/or the distance between adjacent
leads rows are/is computed,
the width of the lead row and/or the distance between adjacent leads rows are/is compared
with a specified allowed respective limit value, and
the component is placed on the circuit board if the width and/or the distance between
adjacent lead rows computed on the basis of the measurement are/is within the allowed
limits, or alternatively the component is rejected and removed without placing it
on the circuit board if the measured value/values differ from the allowed limit values.
3. Procedure as defined in claim 2, characterised in that the component is taken hold of and moved by means of a gripper of an xyzw-robot.
4. Procedure as defined in claim 2 or 3, characterised in that the lead row of the component is inspected by moving the component in relation to
a stationary illuminating beam.
5. Procedure as defined in any one of claims 2 - 4, characterised in that the component is passed cross the illuminating beam in the direction of the width
and/or length of the row of the leads.
6. Procedure as defined in any one of claims 2 - 5 characterised in that the width of the lead row and/or the distance between adjacent lead rows are/is computed
on the basis of the start and end instants of the pulse.
7. Procedure as defined in any one of claims 2 - 6, characterised in that the illuminating beam is directed at the light-sensitive detector in a horizontal
plane in the x-direction.
8. Procedure as defined in any one of claims 2 - 7, characterised in that, before being moved through the illuminating beam, the component is rotated so that
the lead row becomes parallel to the illuminating beam.
9. Procedure as defined in any one of claims 2 - 8, characterised in that, before being moved through the illuminating beam, the component is set to a position
where the lead row lies in a horizontal plane in the x-direction, and the component
is moved in the y-direction through the illuminating beam.
10. Procedure as defined in any one of claims 2 - 9, characterised in that, before being moved through an illuminating beam, the component is set to a position
where the lead row lies in a horizontal plane in the y-direction, which is perpendicular
to the x-direction, and the component is moved in the y-direction through the illuminating
beam.
11. Procedure as defined in any one of claims 2 - 10, characterised in that the component is moved simultaneously in the x and y directions through an illuminating
beam.
12. Procedure as defined in any one of claims 2-11, characterised in that, before being moved through an illuminating beam, the component is adjusted in the
z-direction, which is perpendicular to the x and y directions, to a position where
the plane of the illuminating beam intersects the leads adjacent to their free ends.
13. Procedure as defined in any one of claims 2 - 12, characterised in that the lead row of the component is inspected by moving the component through a horizontal
illuminating beam preferably oriented in the x-direction, first in one direction and
then turning the component horizontally through 90° and moving it again through the
same illuminating beam.
14. Procedure as defined in any one of claims 2 - 12, characterised in that two parallel illuminating beams placed at a distance from each other and preferably
oriented in the x-direction are provided; the lead row of the component is inspected
using a first illuminating beam; the component is turned horizontally through 90°;
and the lead row of the component is inspected using a second illuminating beam.
15. Procedure as defined in any one of claims 2 - 12, characterised in that two illuminating beams perpendicular to each other are provided; the lead row is
inspected by moving the component through both illuminating beams.
16. Procedure as defined in any one of claims 2 - 15, characterised in that, while the component is being moved through an illuminating beam,
the supposed position coordinates of a specified lead of the component are registered
from the control unit of the robot on the basis of position data for the gripper of
the robot,
based on the pulse registered by the light-sensitive detector and corresponding to
the specified lead, the actual position coordinates of said specified lead are computed,
and
the supposed position coordinates of the lead are compared with the computed actual
position coordinates, and if they differ from each other, then the position coordinates
of the lead of the component are calibrated so as to make them correspond to the computed
actual value to allow the insertion coordinates for the placement to be determined.
17. Procedure as defined in any one of claims 2 - 16, characterised in that the illuminating beam is generated using a laser.
18. System for inspecting a component (1) with leads to determine its fitness for assembly
in conjunction with automatic circuit board assembly performed using an assembly robot
(2) before the component is placed on a circuit board (3), said component having a
row (5, 6) of at least two leads (4) to be inserted into corresponding holes in the
circuit board, said robot being equipped with a gripper (7) for taking hold of the
component, wherein the system comprises
- an inspection device (8) comprising a light source (9) for the generation of an
illuminating beam (10) and a light-sensitive detector (11) at which the illuminating
beam is directed,
- means (12) for moving the component (1) and the illuminating beam (10) relative
to each other so that the position as a function of time is known and so that the
leads of the component pass through the illuminating beam, the illuminating beam thus
reaching the light-sensitive detector when it falls between leads, whereas when it
falls on leads, the leads cast a shadow, preventing the beam from reaching the light-sensitive
detector, characterised by
- means (13) for registering the pulse (14) produced by the light-sensitive detector
as a result of the illuminating beam being intercepted by the shadowing effect of
the leads,
- means (15) for computing the width (l) of the lead row and/or the distance (e) between
adjacent lead rows on the basis of the pulse, and
- means (16) for comparing the computed width of the lead row and/or the computed
distance between adjacent lead rows with a specified allowed limit value.
19. System as defined in claim 18,
characterised in that the system comprises
- means (17) arranged to register the supposed position coordinates of a specified
lead of the component from the control unit of a robot on the basis of position data
for the gripper of the robot,
- means (18) arranged to compute, based on the pulse registered by the light-sensitive
detector and corresponding to the specified lead, the actual position coordinates
of said specified lead, and
- means (19) arranged to compare the supposed position coordinates of the lead with
the computed actual position coordinates and, if they differ from each other, to calibrate
the position coordinates of the lead of the component so as to make them correspond
to the computed actual value to allow the insertion coordinates for the placement
to be determined.
20. System as defined in claim 18 or 19, characterised in that the means (12) for moving the component (1) are disposed to move the component in
the widthways and/or lengthways direction of the lead row (5, 6).
21. System as defined in any one of claims 18 - 20 characterised in that the inspection device (8) is fixedly mounted in place ; and that the robot (2) has
been arranged to move the component in relation to the illuminating beam (10).
22. System as defined in any one of claims 8 - 21, characterised in that the light source (9) is so disposed that the illuminating beam (10) is horizontal.
23. System as defined in any one of claims 18 - 22, characterised in that the assembly robot is a xyzw-robot.
24. System as defined in any one of claims 18 - 23, characterised in that the light source (9) is so disposed that the illuminating beam (10) is parallel to
the x-direction in the coordinate system of the robot while the circuit board (3)
lies in the xy-plane.
25. System as defined in any one of claims 18 - 24, characterised in that the system comprises two adjacent inspection devices, (8) in which the illuminating
beams are parallel (10) to each other and at a distance from each other.
26. System as defined in any one of claims 18 - 25 , characterised in that the system comprises two inspection devices (8), in which the illuminating beams
(10) are perpendicular to each other.
27. System as defined in any one of claims 18 - 26, characterised in that at least one inspection device (8) is disposed between the component feed device
(20) and the circuit board conveyor (21)
28. System as defined in any one of claims 18 - 27, characterised in that the inspection device/devices (8) is/are so disposed with respect to the circuit
board assembly station so that the inspection of leads can be performed during the
robot movement transferring the component between the component feed station (20)
and the circuit board, substantially without stopping the transferring movement and
substantially without diverging from the transfer route between the component feed
station and the assembly station.
29. System as defined in any one of claims 18 - 28, characterised in that the light source (9) is a laser.
30. System as defined in any one of claims 18 - 29, characterised in that the diameter of the illuminating beam (10) is smaller than or equal to the thickness
of the lead (4).
31. System as defined in any one of claims 18 - 30, characterised in that the diameter of the illuminating beam (10) is of the order of 0.1 mm.
1. Verfahren zum Prüfen eines Bauteils (1) mit Zuleitungen (4), um seine Eignung zur
Bestückung im Zusammenhang mit einer automatischen Leiterplattenbestückung festzustellen,
die unter Verwendung eines Bestückungsroboters (2) durchgeführt wird, bevor das Bauteil
auf eine Leiterplatte aufgesetzt wird, wobei das Bauteil Zuleitungen aufweist, die
in entsprechende Löcher in der Leiterplatte einzuführen sind, und der Roboter mit
einem Greifer zum Festhalten des Bauteils versehen ist, bei dem
ein schmaler Beleuchtungsstrahl (10) auf einen lichtempfindlichen Detektor (11) gerichtet
wird,
das Bauteil und der Beleuchtungsstrahl zueinander so bewegt werden, dass die Position
als Funktion der Zeit bekannt ist, und so, dass die Zuleitungen des Bauteils durch
den Beleuchtungsstrahl hindurchtreten, wobei der Beleuchtungsstrahl so den lichtempfindlichen
Detektor (11) erreicht, wenn er zwischen Zuleitungen fällt, während, wenn er auf eine
Zuleitung fällt, die Zuleitung verhindert, dass der Strahl den lichtempfindlichen
Detektor erreicht,
dadurch gekennzeichnet, dass
der Impuls (14), der durch den lichtempfindlichen Detektor dadurch erzeugt wird, dass der Beleuchtungsstrahl durch die Abschattungswirkung der Zuleitung
unterbrochen wird, registriert wird,
auf Basis des Impulses die Breite (l) der Zuleitung und/oder der Abstand (e) zwischen
benachbarten Zuleitungen berechnet wird,
die Breite der Zuleitung und/oder der Abstand zwischen benachbarten Zuleitungen mit
einem jeweiligen vorgegebenen zulässigen Grenzwert verglichen werden/wird, und
das Bauteil auf die Leiterplatte aufgesetzt wird, wenn die Breite und/oder der Abstand
zwischen benachbarten Zuleitungen, die auf Basis der Messung berechnet werden/wird,
innerhalb der zulässigen Grenzen liegen/liegt, oder, als Alternative dazu, das Bauteil
ausgesondert und entfernt wird, ohne es auf die Leiterplatte auf zusetzen, wenn sich
der gemessene Wert/die gemessenen Werte von den zulässigen Grenzwerten unterscheidet/unterscheiden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Bauteil eine Reihe von wenigstens zwei Zuleitungen hat und das Bauteil sowie
der Beleuchtungsstrahl zueinander in der Richtung der Breite und/oder Länge der Reihe
von Zuleitungen bewegt werden,
auf Basis des Impulses die Breite der Zuleitungsreihe und/oder der Abstand zwischen
benachbarten Zuleitungsreihen berechnet werden/wird,
die Breite der Zuleitungsreihe und/oder der Abstand zwischen benachbarten Zuleitungsreihen
mit einem jeweiligen vorgegebenen zulässigen Grenzwert verglichen werden/wird und
das Bauteil auf die Leiterplatte aufgesetzt wird, wenn die Breite und/oder der Abstand
zwischen benachbarten Zuleitungsreihen, die auf Basis der Messung berechnet werden/wird,
innerhalb der zulässigen Grenzen liegen/liegt, oder, als Altemative dazu, das Bauteil
ausgesondert und entfernt wird, ohne es auf die Leiterplatte aufzusetzen, wenn sich
der gemessene Wert/die gemessenen Werte von den zulässigen Grenzwerten unterscheidet/unterscheiden.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Bauteil mittels eines Greifers eines xyzw-Roboters festgehalten und bewegt wird.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Zuleitungsreihe des Bauteils geprüft wird, indem das Bauteil in Bezug auf einen
stationären Beleuchtungsstrahl bewegt wird.
5. Verfahren nach einem der Ansprüche 2 - 4, dadurch gekennzeichnet, dass das Bauteil in der Richtung der Breite und/oder der Länge der Reihe der Zuleitungen
über den Beleuchtungsstrahl geführt wird.
6. Verfahren nach einem der Ansprüche 2 - 5, dadurch gekennzeichnet, dass die Breite der Zuleitungsreihe und/oder der Abstand zwischen benachbarten Zuleitungsreihen
auf Basis des Anfangs- und des Endmoments des Impulses berechnet werden/wird.
7. Verfahren nach einem der Ansprüche 2-6. dadurch gekennzeichnet, dass der Beleuchtungsstrahl in einer horizontalen Ebene in der x-Richtung auf den lichtempfindlichen
Detektor gerichtet wird.
8. Verfahren nach einem der Ansprüche 2 - 7, dadurch gekennzeichnet, dass das Bauteil, bevor es durch den Beleuchtungsstrahl bewegt wird, gedreht wird, so dass
die Zuleitungsreihe parallel zu dem Befeuchtungsstrahl wird.
9. Verfahren nach einem der Ansprüche 2 - 8, dadurch gekennzeichnet, dass das Bauteil, bevor es durch den Beleuchtungsstrahl bewegt wird, an eine Position versetzt
wird, an der die Zuleitungsreihe in einer horizontalen Ebene in der x-Richtung liegt,
und das Bauteil in der y-Richtung durch den Beleuchtungsstrahl bewegt wird.
10. Verfahren nach einem der Ansprüche 2 - 9, dadurch gekennzeichnet, dass das Bauteil, bevor es durch einen Beleuchtungsstrahl bewegt wird, an eine Position
versetzt wird, an der die Zuleitungsreihe in einer horizontalen Ebene in der y-Richtung
liegt, die senkrecht zu der x-Richtung ist, und das Bauteil in der y-Richtung durch
den Beleuchtungsstrahl bewegt wird.
11. Verfahren nach einem der Ansprüche 2-10, dadurch gekennzeichnet, dass das Bauteil gleichzeitig in der x- und der y-Richtung durch einen Beleuchtungsstrahl
bewegt wird.
12. Verfahren nach einem der Ansprüche 2 - 11, dadurch gekennzeichnet, dass das Bauteil, bevor es durch einen Beleuchtungsstrahl bewegt wird, in der z-Richtung,
die senkrecht zu der x- und der y-Richtung ist, an einer Position ausgerichtet wird,
an der die Ebene des Beleuchtungsstrahls die Zuleitungen an ihre freien Enden angrenzend
schneidet.
13. Verfahren nach einem der Ansprüche 2 - 12, dadurch gekennzeichnet, dass die Zuleitungsreihe des Bauteils geprüft wird, indem das Bauteil durch einen horizontalen
Beleuchtungsstrahl bewegt wird, der vorzugsweise in der x-Richtung ausgerichtet ist,
und zwar zuerst in einer Richtung, und dann das Bauteil horizontal um 90° gedreht
wird und dann erneut durch den gleichen Beleuchtungsstrahl bewegt wird.
14. Verfahren nach einem der Ansprüche 2 -12, dadurch gekennzeichnet, dass zwei parallele Beleuchtungsstrahlen, die in einem Abstand zueinander angeordnet und
vorzugsweise in der x-Richtung ausgerichtet sind, vorhanden sind, wobei die Zuleitungsreihe
des Bauteils unter Verwendung eines ersten Befeuchtungsstrahls geprüft wird, das Bauteil
horizontal um 90° gedreht wird und die Zuleitungsreihe des Bauteils unter Verwendung
eines zweiten Beleuchtungsstrahls geprüft wird.
15. Verfahren nach einem der Ansprüche 2 - 12, dadurch gekennzeichnet, dass zwei Beleuchtungsstrahlen senkrecht zueinander vorhanden sind, wobei die Zuleitungsreihe
geprüft wird, indem das Bauteil durch beide Beleuchtungsstrahlen bewegt wird.
16. Verfahren nach einem der Ansprüche 2 - 15, dadurch gekennzeichnet, dass, während das Bauteil durch einen Beleuchtungsstrahl bewegt wird,
die angenommenen Positionskoordinaten einer angegebenen Zuleitung des Bauteils von
der Steuereinheit des Roboters auf Basis von Positionsdaten für den Greifer des Roboters
registriert werden,
auf Basis des Impulses, der durch den lichtempfindlichen Detektor registriert wird,
und entsprechend der angegebenen Zuleitung die tatsächlichen Positionskoordinaten
der angegebenen Zuleitung berechnet werden, und
die angenommenen Positionskoordinaten der Zuleitung mit den berechneten tatsächlichen
Positionskoordinaten verglichen werden, und, wenn sie sich voneinander unterscheiden,
die Positionskoordinaten der Zuleitung des Bauteils so kalibriert werden, dass sie
dem berechneten tatsächlichen Wert entsprechen, um die Einführkoordinaten für das
Aufsetzen bestimmen zu können.
17. Verfahren nach einem der Ansprüche 2 - 6, dadurch gekennzeichnet, dass der Beleuchtungsstrahl unter Verwendung eines Lasers erzeugt wird.
18. System zum Prüfen eines Bauteils (1) mit Zuleitungen, um seine Eignung zur Bestückung
im Zusammenhang mit automatischer Leiterplattenbestückung zu bestimmen, die unter
Verwendung eines Bestückungsroboters (2) durchgeführt wird, bevor das Bauteil auf
eine Leiterplatte (3) aufgesetzt wird, wobei das Bauteil eine Reihe (5, 6) von wenigstens
zwei Zuleitungen (4) hat, die in entsprechende Löcher in der Leiterplatte einzuführen
sind, der Roboter mit einem Greifer (7) zum Festhalten des Bauteils versehen ist und
das System umfasst:
- eine Prüfvorrichtung (8), die eine Lichtquelle (9) zur Erzeugung eines Beleuchtungsstrahls
(10) und einen lichtempfindlichen Detektor (11) umfasst, auf den der Beleuchtungsstrahl
gerichtet wird,
- eine Einrichtung (12) zum Bewegen des Bauteils (1) und des Beleuchtungsstrahls (10)
relativ zueinander so, dass die Position als eine Funktion der Zeit bekannt ist, und
so, dass die Zuleitungen des Bauteils durch den Beleuchtungsstrahl hindurchtreten,
wobei der Beleuchtungsstrahl so den lichtempfindlichen Detektor erreicht, wenn er
zwischen Zuleitungen fällt, während, wenn er auf Zuleitungen fällt, die Zuleitungen
einen Schatten werfen und verhindern, dass der Strahl den lichtempfindlichen Detektor
erreicht,
gekennzeichnet durch:
- eine Einrichtung (13) zum Registrieren des Impulses (14), der durch den lichtempfindlichen Detektor dadurch erzeugt wird, dass der Beleuchtungsstrahl durch den Abschattungseffekt der Zuleitungen unterbrochen wird,
- eine Einrichtung (15) zum Berechnen der Breite (l) der Zuleitungsreihe und/oder
des Abstandes (e) zwischen benachbarten Zuleitungsreihen auf Basis des Impulses, und
- eine Einrichtung (16) zum Vergleichen der berechneten Breite der Zuleitungsreihe
und/oder des berechneten Abstandes zwischen benachbarten Zuleitungsreihen mit einem
angegebenen zulässigen Grenzwert.
19. System nach Anspruch 18,
dadurch gekennzeichnet, dass das System umfasst:
- eine Einrichtung (17), die so eingerichtet ist, dass sie die angenommenen Positionskoordinaten
einer angegebenen Zuleitung des Bauteils von der Steuereinheit eines Roboters auf
Basis von Positionsdaten für den Greifer des Roboters registriert,
- eine Einrichtung (18), die so eingerichtet ist, dass sie auf Basis des Impulses,
der durch den lichtempfindlichen Detektor registriert wird, und entsprechend der angegebenen
Zuleitung die tatsächlichen Positionskoordinaten der angegebenen Zuleitung berechnet,
und
- eine Einrichtung (19), die so eingerichtet ist, dass sie die angenommenen Positionskoordinaten
der Zuleitung mit den berechneten tatsächlichen Positionskoordinaten vergleicht, und,
wenn sie sich voneinander unterscheiden, die Positionskoordinaten der Zuleitung des
Bauteils so kalibriert, dass sie dem berechneten tatsächlichen Wert entsprechen, so
dass die Einführkoordinaten für das Aufsetzen bestimmt werden können.
20. System nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass die Einrichtung (12) zum Bewegen des Bauteils (1) so angeordnet ist, dass sie das
Bauteil in der Breiten- und/oder Längsrichtung der Zuleitungsreihe (5, 6) bewegt.
21. System nach einem der Ansprüche 8 - 20, dadurch gekennzeichnet, dass die Prüfvorrichtung (8) fest angebracht ist und der Roboter (2) so eingerichtet worden
ist, dass er das Bauteil in Bezug auf den Beleuchtungsstraht (10) bewegt.
22. System nach einem der Ansprüche 18 - 21, dadurch gekennzeichnet, dass die Lichtquelle (9) so angeordnet ist, dass der Beleuchtungsstrahl (10) horizontal
ist.
23. System nach einem der Ansprüche 18 - 22, dadurch gekennzeichnet, dass der Bestückungsroboter ein xyzw-Roboter ist.
24. System nach einem der Ansprüche 18 - 23, dadurch gekennzeichnet, dass die Lichtquelle (9) so angeordnet ist, dass der Beleuchtungsstrahl (10) parallel
zu der x-Richtung in dem Koordinatensystem des Roboters ist, während die Leiterplatte
(3) in der xy-Ebene liegt.
25. System nach einem der Ansprüche 18 - 24, dadurch gekennzeichnet, dass das System zwei benachbarte Prüfvorrichtungen (8) umfasst, wobei die Beleuchtungsstrahlen
(10) parallel zueinander und voneinander beabstandet sind.
26. System nach einem der Ansprüche 18 - 25, dadurch gekennzeichnet, dass das System zwei Prüfvorrichtungen (8) umfasst, wobei die Beleuchtungsstrahlen (10)
senkrecht zueinander sind.
27. System nach einem der Ansprüche 18 - 26, dadurch gekennzeichnet, dass wenigstens eine Prüfvorrichtung (8) zwischen der Bauteil-Beschickungsvorrichtung
(20) und der Leiterplatten-Fördereinrichtung (21) angeordnet ist.
28. System nach einem der Ansprüche 18 - 27, dadurch gekennzeichnet, dass die Prüfvorrichtung/Prüfvorrichtungen (8) in Bezug auf die Leiterplatten-Bestückungsstation
so angeordnet ist/sind, dass die Prüfung von Zuleitungen während der Roboterbewegung
zum Überführen des Bauteils zwischen der Bauteil-Beschickungsstation (20) und der
Leiterplatte im Wesentlichen ohne Unterbrechung der Überführungsbewegung und im Wesentlichen
ohne Abweichung von dem Überführungsweg zwischen der Bauteil-Beschickungsstation und
der Bestückungsstation durchgeführt werden kann.
29. System nach einem der Ansprüche 18 - 28, dadurch gekennzeichnet, dass die Lichtquelle (9) ein Laser ist.
30. System nach einem der Ansprüche 18-29, dadurch gekennzeichnet, dass der Durchmesser des Beleuchtungsstrahls (10) kleiner ist als die Dicke der Zuleitung
(4) oder genauso groß wie diese.
31. System nach einem der Ansprüche 18 - 30, dadurch gekennzeichnet, dass der Durchmesser des Beleuchtungsstrahls (10) in der Größenordnung von 0,1 mm liegt.
1. Procédure d'inspection d'un composant (1) doté de fils de connexion (4) pour déterminer
son aptitude à l'assemblage conjointement à l'assemblage automatique de carte de circuits
imprimés exécuté en utilisant un robot d'assemblage (2), avant que le composant soit
placé sur une carte de circuits imprimés, ledit composant présentant des fils de connexion
destinés à être insérés à l'intérieur de trous correspondants dans la carte de circuits
imprimés, ledit robot étant équipé d'une pince pour saisir le composant, dans lequel
un faisceau d'éclairage étroit (10) est dirigé sur un détecteur photosensible (11),
le composant et le faisceau d'éclairage sont déplacés l'un par rapport à l'autre,
de sorte que la position en fonction du temps est connue et de sorte que les fils
de connexion du composant passent à travers le faisceau d'éclairage, le faisceau d'éclairage
atteignant ainsi le détecteur photosensible (11) lorsqu'il est tombe entre les fils
de connexion, tandis que lorsqu'il tombe sur un fil de connexion, le fil de connexion
empêche le faisceau d'atteindre le détecteur photosensible, caractérisé en ce que l'impulsion (14) produite par le détecteur photosensible, le faisceau d'éclairage
ayant en conséquence été intercepté par l'effet d'ombre du fil de connexion, est enregistrée,
en se basant sur l'impulsion, la largeur (l) du fil de connexion et/ou la distance
(e) entre les fils de connexion adjacents est calculée, la largeur du fil de connexion
et/ou la distance entre les fils de connexion adjacents est(sont) comparée(s) à une
valeur limite respective admissible spécifiée, et le composant est placé sur la carte
de circuits imprimés si la largeur et/ou la distance entre les fils de connexion adjacents
calculées sur la base de la mesure est(sont) située(s) à l'intérieur de limites admissibles,
ou en variante le composant est rejeté et retiré sans le placer sur la carte de circuits
imprimés si la(les) valeur(s) mesurée(s) diffère(nt) des valeurs limites admissibles.
2. Procédure selon la revendication 1, caractérisée en ce que ledit composant présente une rangée d'au moins deux fils de connexion, et en ce que le composant et le faisceau d'éclairage sont déplacés l'un par rapport à l'autre
dans la direction de la largeur et/ou de la longueur de la rangée de fils de connexion,
en se basant sur l'impulsion, la largeur de la rangée de fils de connexion et/ou la
distance entre les rangées de fils de connexion adjacents est(sont) calculée(s), la
largeur de la rangée de fils de connexion et/ou la distance entre les rangées de fils
de connexion adjacents est(sont) comparée(s) à une valeur limite respective admissible
spécifiée, et le composant est placé sur la carte de circuits imprimés si la largeur
et/ou la distance entre les rangées de fils de connexion adjacents calculées sur la
base de la mesure se situe(nt) à l'intérieur de limites admissibles, ou en variante
le composant est rejeté et retiré sans le placer sur la carte de circuits imprimés
si la(les) valeur(s) mesurée(s) diffère(nt) des valeurs limites admissibles.
3. Procédure selon la revendication 2, caractérisée en ce que le composant est saisi et retiré au moyen d'une pince d'un robot xyzw.
4. Procédure selon la revendication 2 ou 3, caractérisée en ce que la rangée de fils de connexion du composant est inspectée en déplaçant le composant
par rapport à un faisceau d'éclairage stationnaire.
5. Procédure selon l'une quelconque des revendications 2 à 4, caractérisée en ce que le composant est amené à croiser le faisceau d'éclairage dans la direction de la
largeur et/ou de la longueur de la rangée de fils de connexion.
6. Procédure selon l'une quelconque des revendications 2 à 5, caractérisée en ce que la largeur de la rangée de fils de connexion et/ou la distance entre les rangées
de fils de connexion adjacente est(sont) calculée(s) sur la base des instants de début
et de fin de l'impulsion.
7. Procédure selon l'une quelconque des revendications 2 à 6, caractérisée en ce que le faisceau d'éclairage est dirigé vers le détecteur photosensible dans un plan horizontal
dans la direction x.
8. Procédure selon l'une quelconque des revendications 2 à 7, caractérisée en ce que, avant d'être déplacée à travers le faisceau d'éclairage, le composant est amené
en rotation de sorte que la rangée de fils de connexion devienne parallèle au faisceau
d'éclairage.
9. Procédure selon l'une quelconque des revendications 2 à 8, caractérisée en ce que, avant d'être déplacé à travers le faisceau d'éclairage, le composant est fixé en
une position dans laquelle la rangée de fils de connexion se situe dans un plan horizontal
dans la direction x, et le composant est déplacé dans la direction y à travers le
faisceau d'éclairage.
10. Procédure selon l'une quelconque des revendications 2 à 9, caractérisée en ce que, avant d'être déplacé à travers un faisceau d'éclairage, le composant est fixé en
une position dans laquelle la rangée de fils de connexion se situe dans un plan horizontal
dans la direction y, qui est perpendiculaire à la direction x, et le composant est
déplacé dans la direction y à travers le faisceau d'éclairage.
11. Procédure selon l'une quelconque des revendications 2 à 10, caractérisée en ce que le composant est déplacé simultanément dans les directions x et y à travers un faisceau
d'éclairage.
12. Procédure selon l'une quelconque des revendications 2 à 11, caractérisée en ce que, avant d'être déplacé à travers un faisceau d'éclairage, le composant est ajusté
dans la direction z, qui est perpendiculaire aux directions x et y, vers une position
dans laquelle le plan du faisceau d'éclairage coupe les fils de connexion de manière
adjacente à leurs extrémités libres.
13. Procédure selon l'une quelconque des revendications 2 à 12, caractérisée en ce que la rangée de fils de connexion du composant est inspectée en déplaçant le composant
à travers un faisceau d'éclairage horizontal orienté de préférence dans la direction
x, tout d'abord dans une direction et ensuite en amenant en rotation le composant
horizontalement sur 90° et en le déplaçant à nouveau à travers le même faisceau d'éclairage.
14. Procédure selon l'une quelconque des revendications 2 à 12, caractérisée en ce que deux faisceaux d'éclairage parallèles placés à distance l'un de l'autre et orientés
de préférence dans la direction x sont prévus; la rangée de fils de connexion du composant
est inspectée en utilisant un premier faisceau d'éclairage ; le composant est amené
en rotation horizontalement sur 90° ; et la rangée de fils de connexion du composant
est inspectée en utilisant un second faisceau d'éclairage.
15. Procédure selon l'une quelconque des revendications 2 à 12, caractérisée en ce que deux faisceaux d'éclairage perpendiculaires l'un à l'autre sont prévus ; la rangée
de fils de connexion est inspectée en déplaçant le composant à travers les deux faisceaux
d'éclairage.
16. Procédure selon l'une quelconque des revendications 2 à 15, caractérisée en ce que, tandis que le composant est en train d'être déplacé à travers un faisceau d'éclairage,
les coordonnées de position supposées d'un fil de connexion spécifié du composant
sont enregistrées à partir de l'unité de commande du robot sur la base des données
de position pour la pince du robot, en se basant sur l'impulsion enregistrée par le
détecteur photosensible et correspondant au fil de connexion spécifié, les coordonnées
de position réelle dudit fil de connexion spécifié sont calculées, et les coordonnées
de position supposées du fil de connexion sont comparées aux coordonnées de position
réelle calculées, et si elles diffèrent les unes des autres, les coordonnées de position
du fil de connexion du composant sont alors calibrées de manière à les faire correspondre
avec la valeur réelle calculée pour permettre de déterminer les coordonnées d'insertion
en vue du placement.
17. Procédure selon l'une quelconque des revendications 2 à 16, caractérisée en ce que le faisceau d'éclairage est généré en utilisant un laser.
18. Système d'inspection d'un composant (1) doté de fils de connexion pour déterminer
son aptitude à l'assemblage conjointement avec un assemblage automatique de carte
de circuits imprimés exécuté en utilisant un robot d'assemblage (2) avant que le composant
soit placé sur une carte de circuits imprimés (3), ledit composant présentant une
rangée (5, 6) d'au moins deux fils de connexion (4) destinés à être insérés à l'intérieur
de trous correspondants dans la carte de circuits imprimés, ledit robot étant équipé
d'une pince (7) destinée à saisir le composant, dans lequel le système comprend
- un dispositif d'inspection (8) comprenant une source de lumière (9) pour la génération
d'un faisceau d'éclairage (10) et un détecteur photosensible (11) au niveau duquel
est dirigé le faisceau d'éclairage,
- des moyens (12) destinés à déplacer le composant (1) et le faisceau d'éclairage
(10) l'un par rapport à l'autre, de sorte que la position en fonction du temps est
connue et de sorte que les fils de connexion du composant passent à travers le faisceau
d'éclairage, le faisceau d'éclairage atteignant ainsi le détecteur photosensible lorsqu'il
tombe entre les fils de connexion, tandis que lorsqu'il tombe sur les fils de connexion,
les fils de connexion projettent une ombre, empêchant le faisceau d'atteindre le détecteur
photosensible, caractérisé par
- des moyens (13) destinés à enregistrer l'impulsion (14) produite par le détecteur
photosensible, le faisceau d'éclairage ayant en conséquence été intercepté par l'effet
d'ombre des fils de connexion,
- des moyens (15) destinés à calculer la largeur (l) de la rangée de fils de connexion
et/ou la distance (e) entre les rangées de fils de connexion adjacents sur la base
de l'impulsion, et
- des moyens (16) destinés à comparer la largeur calculée de la rangée de fils de
connexion et/ou la distance calculée entre les rangées de fils de connexion adjacents
avec une valeur limite admissible spécifiée.
19. Système selon la revendication 18,
caractérisé en ce que le système comprend
- des moyens (17) agencés pour enregistrer les coordonnnées de position supposées
d'un fil de connexion spécifié du composant à partir de l'unité de commande d'un robot
sur la base des données de position pour la pince du robot,
- des moyens (18) agencés pour calculer, en se basant sur l'impulsion enregistrée
par le détecteur photosensible et correspondant au fil de connexion spécifié, les
coordonnées de position réelles dudit fil de connexion spécifié, et
- des moyens (19) agencés pour comparer les coordonnées de position supposées du fil
de connexion aux coordonnées de position réelles calculées et, si elles diffèrent
les unes des autres, pour calibrer les coordonnées de position du fil de connexion
du composant de manière à les faire correspondre avec la valeur réelle calculée pour
permettre de déterminer les coordonnées d'insertion en vue du placement.
20. Système selon la revendication 18 ou 19, caractérisé en ce que les moyens (12) destinés à déplacer le composant (1) sont disposés pour déplacer
le composant dans les directions en largeur et/ou en longueur de la rangée de fils
de connexion (5, 6).
21. Système selon l'une quelconque des revendications 18 à 20, caractérisé en ce que le dispositif d'inspection (8) est monté fixement en place; et en ce que le robot (2) a été agencé pour déplacer le composant par rapport au faisceau d'éclairage
(10).
22. Système selon l'une quelconque des revendications 18 à 21, caractérisé en ce que la source de lumière (9) est disposée de sorte que le faisceau d'éclairage (10) est
horizontal.
23. Système selon l'une quelconque des revendications 18 à 22, caractérisé en ce que le robot d'assemblage est un robot xyzw.
24. Système selon l'une quelconque des revendications 18 à 23, caractérisé en ce que la source de lumière (9) est disposée de sorte que le faisceau d'éclairage (10) est
parallèle à la direction x dans le système de coordonnées du robot, tandis que la
carte de circuits imprimés (3) se situe dans le plan xy.
25. Système selon l'une quelconque des revendications 18 à 24, caractérisé en ce que le système comprend deux dispositifs d'inspection adjacents (8) dans lesquels les
faisceaux d'éclairage (10) sont parallèles l'un à l'autre et à distance l'un de l'autre.
26. Système selon l'une quelconque des revendications 18 à 25, caractérisé en ce que le système comprend deux dispositifs d'inspection (8), dans lesquels les faisceaux
d'éclairage (10) sont perpendiculaires l'un à l'autre.
27. Système selon l'une quelconque des revendications 18 à 26, caractérisé en ce qu'au moins un dispositif d'inspection (8) est disposé entre le dispositif d'alimentation
en composant (20) et le transporteur de carte de circuits imprimés (21).
28. Système selon l'une quelconque des revendications 18 à 27, caractérisé en ce que le(s) dispositif(s) d'inspection (8) est(sont) disposé(s) par rapport au poste d'assemblage
de la carte de circuits imprimés, de sorte que l'inspection des fils de connexion
peut être exécutée pendant le mouvement du robot transférant le composant entre le
poste d'alimentation en composant (20) et la carte de circuits imprimés, sensiblement
sans arrêter le mouvement de transfert et sensiblement sans diverger de la trajectoire
de transfert entre le poste d'alimentation en composant et le poste d'assemblage.
29. Système selon l'une quelconque des revendications 18 à 28, caractérisé en ce que la source de lumière (9) est un laser.
30. Système selon l'une quelconque des revendications 18 à 29, caractérisé en ce que le diamètre du faisceau d'éclairage (10) est inférieur ou égal à l'épaisseur du fils
de connexion (4).
31. Système selon l'une quelconque des revendications 18 à 30, caractérisé en ce que le diamètre du faisceau d'éclairage (10) est de l'ordre de 0,1 mm.