

Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 1 118 765 A2**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:25.07.2001 Patentblatt 2001/30

(51) Int Cl.⁷: **F02M 47/02**

(21) Anmeldenummer: 00127135.2

(22) Anmeldetag: 12.12.2000

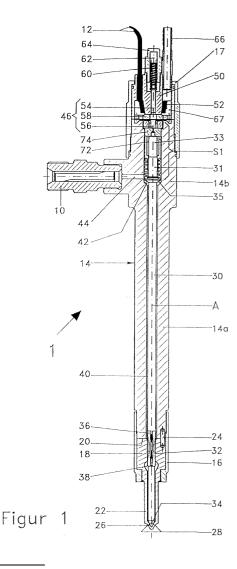
(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

(30) Priorität: 19.01.2000 CH 922000


(71) Anmelder: CRT Common Rail Technologies AG 8212 Neuhausen (CH)

(72) Erfinder: Ganser, Marco A. 8001 Zürich (CH)

(74) Vertreter: Patentanwälte
Schaad, Balass, Menzl & Partner AG
Dufourstrasse 101
Postfach
8034 Zürich (CH)

(54) Brennstoffeinspritzventil für Verbrennungskraftmaschinen

(57)In einer zentralen Gehäuse-Bohrung (40; 42) eines Brennstoffeinspritzventils (1) ist ein Einspritzventilglied (30) zum Verschliessen oder Öffnen von Einspritzöffnungen (28) eines Venzilsitzelementes (22) längsverstellbar eingebaut. Der Öffnungs- und Schliessbewegungsablauf des Einspritzventilgliedes (30) wird mittels einer Steuervorrichtung (S1) gesteuert. Ein mit dem Einspritzventilglied (30) wirkverbundener Steuerkolben (31, 33) wird einerseits durch den in einer Hochdruckzone herrschenden Brennstoffsystemdruck, anderseits durch den Brennstoff-Steuerdruck in einem Steuerraum beaufschlagt. Zur Hochdruckzone gehört die zentrale Gehäuse-Bohrung (40; 42), die durch einen gehäusefesten Steuerkörper (74) dichtend abgeschlossen ist. Der Steuerraum ist zwischen dem Steuerkörper (74) und einer Kolbenstirnfläche angeordnet und radial wenigstens zeitweise durch eine Streuerhülse (72) begrenzt, die quer zur Längsachse (A) des Gehäuses (14) beweglich ist. Eine den Steuerraum von der Hochdruckzone trennende, enge Gleitführung (R0) zwischen einem Steuerkolbenteil (33) und der Steuerhülse (72) bildet eine präzise Längsführung der Steuerhülse (72). Das Brennstoffeinspritzventil (1) ist herstellungs- und montagetechnisch einfach.

Beschreibung

[0001] Die Erfindung betrifft ein Brennstoffeinspritzventil zur intermittierenden Brennstoffeinspritzung in den Brennraum einer Verbrennungskraftmaschine gemäss dem Oberbegriff des Anspruches 1.

[0002] In der EP-B-0 228 578 (Fig. 1) ist ein Brennstoffeinspritzventil mit einem Einspritzventilglied beschrieben, das in einer sich in Richtung der Längsachse eines Gehäuses erstreckenden Bohrung im Gehäuse längsverschiebbar geführt ist. Diese Bohrung, die über eine Drossel mit einem Brennstoffhochdruckanschluss verbunden und als Akkumulatorraum ausgebildet ist, ist einerends durch einen mit Einspritzöffnungen versehenen Sitz für das Einspritzventilglied und andernends durch ein zylindrisches Endstück abgeschlossen, das mittels einer engen, eine Dichtfunktion ausübenden Führung im Gehäuse geführt ist. Das Endstück dient als enge Gleitführung eines Kolbens, der einen Teil des einstückig ausgebildeten Einspritzventilgliedes bildet. Das Einspritzventilglied ist in der Nähe des Sitzes in einer weiteren Führung eng geführt. Die Öffnungs- und Schliessbewegung des Einspritzventilgliedes wird durch die Steuerung des Druckes in einem Steuerraum oberhalb des Kolbens des Einspritzventilgliedes gesteuert.

[0003] Die beiden Führungen für das einstückige Einspritzventilglied sind wie erwähnt als enge Gleitpassungen ausgeführt, was bedeutet, dass diese Führungen genau achsial ausgerichtet sein müssen, damit keine Seitenkräfte auf das Einspritzventilglied ausgeübt werden, die eine Verbiegung desselben, starke Reibung oder gar ein Klemmen verursachen könnten und die Funktionsweise des Brennstoffeinspritzventils beeinträchtigen würden. Das Brennstoffeinspritzventil ist dadurch herstellungs- und montagetechnisch aufwendig. Ausserdem ist das Gehäuse im Querschnitt relativ gross, weil die zentrale Bohrung wie erwähnt als Akkumulatorraum ausgebildet ist, was für den Einbau in Verbrennungskraftmaschinen von Nachteil ist.

[0004] Ein gattungsgemässes Brennstoffeinspritzventil der eingangs genannten Art ist beispielsweise aus der EP-B-0 686 763 (Fig. 1 und 2) bekannt. Bei diesem Brennstoffeinspritzventil wird der Öffnungs- und Schliessbewegungsablauf eines in einem Gehäuse längsverstellbar eingebauten Einspritzventilgliedes mittels einer Steuervorrichtung gesteuert, die einen Steuerkolben umfasst, der ein vom Einspritzventilglied getrennter, mit letzterem wirkverbundener Bauteil ist. Zwischen der Stirnfläche des Steuerkolbens und einem gehäusefesten Steuerkörper befindet sich ein Steuerraum, der radial durch eine Steuerhülse begrenzt ist. Die Steuerhülse ist verschiebbar und eng gleitend in einer die Steuervorrichtung aufnehmenden Gehäusebohrung angeordnet. Der Steuerkolben wird ebenfalls eng gleitend in der Steuerhülse geführt. Parallel zu der Gehäusebohrung, in der die Steuervorrichtung untergebracht ist, sind im Gehäuse Hochdruckzufuhrleitungen

angeordnet, die mit einem Brennstoffhochdruckanschluss verbunden sind. Eine Hochdruckzufuhrleitung führt zur Steuervorrichtung, wobei der Steuerraum über eine Einlassdrosselverbindung mit dieser Hochdruckzufuhrleitung in Verbindung steht. Durch Öffnen oder Schliessen einer Auslassöffnung im Steuerkörper (mittels eines steuerbaren Pilotventils) ist der auf den Steuerkolben einwirkende Brennstoff-Steuerdruck im Steuerraum steuerbar. Die andere Hochdruckzufuhrleitung führt zu einem Ringraum und zu Einspritzöffnungen eines am unteren Ende des Brennstoffeinspritzventils angeordneten Ventilsitzelementes. Das Einspritzventilglied wird mit einem oberhalb des Ringraumes angeordneten Teil, auf den der BrennstoffSystemdruck von unten einwirkt, in einer Bohrung des Ventilsitzelementes präzis geführt.

[0005] Damit die Hochdruckzufuhrleitungen im Gehäuse untergebracht werden können, muss letzteres im Querschnitt relativ gross sein, was sich für den Einbau in Verbrennungskraftmaschinen aus platztechnischen Gründen als nachteilig erweist.

[0006] Die Gehäusebohrung, in der das mehrstückige Einspritzventilglied verläuft, ist in ihrem Mittelteil mit einer Brennstoffrückleitung verbunden. Dies bedeutet, dass in diesem Bereich der Gehäusebohrung ein niedriger Brennstoffdruck herrscht. Dies führt zu Leckagen aus den angrenzenden Bereichen, in denen der Brennstoffhochdruck herrscht, in diesen Niederdruckbereich der Gehäusebohrung.

[0007] Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein herstellungs- und montagetechnisch einfaches und kostengünstiges Brennstoffeinspritzventil zu schaffen, bei dem höchstens geringfügige Leckagen auftreten und das auch in seiner Aussenform vorteilhaft ist für den Einbau in Verbrennungskraftmaschinen.

[0008] Diese Aufgabe wird erfindungsgemäss durch ein Brennstoffeinspritzventil mit den Merkmalen des Anspruches 1 gelöst.

[0009] Das erfindungsgemässe Brennstoffeinspritzventil ist nicht nur in seinem Aufbau einfach und kostengünstig. Seine besondere Vorteile liegen auch darin, dass bei allen Ventilen einer Verbrennungskraftmaschine in einfacher Weise die Funktionsgleichheit erreicht werden kann, da bei allen Teilen die Toleranzen - was sowohl die Herstellung als auch den Zusammenbau anbelangt - problemlos eingehalten werden können. Das Wegfallen von seitlichen Hochdruckzufuhrleitungen im Gehäuse ermöglicht eine schlanke Bauweise des Brennstoffeinspritzventils, was für den Einbau in Verbrennungskraftmaschinen von Vorteil ist. Die zentrale Bohrung im Gehäuse, in der der Brennstoffhochdruck herrscht, bildet einen vollständig dichten Bereich, so dass die Leckagen in Räume niedrigeren Druckes praktisch wegfallen.

[0010] Bevorzugte Weiterausgestaltungen des erfindungsgemässen Brennstoffeinspritzventils bilden den Gegenstand der abhängigen Ansprüche.

[0011] Ein Brennstoffeinspritzventil der eingangs ge-

nannten Art mit einer besonders bevorzugten Ausgestaltung der Steuervorrichtung bildet den Gegenstand des unabhängigen Anspruches 20.

[0012] Die Erfindung wird im folgenden anhand der Zeichnung näher erläutert.

[0013] Es zeigen:

- Fig. 1 ein erstes Ausführungsbeispiel eines Brennstoffeinspritzventils im Längsschnitt;
- Fig. 2 im vergrösserten Massstab und im Längsschnitt einen Teil des in Fig. 1 gezeigten Brennstoffeinspritzventils mit einer ersten Ausführungsform einer Steuervorrichtung;
- Fig. 3 einen Teil der Steuervorrichtung nach Fig. 2 im nochmals vergrösserten Massstab;
- Fig. 4 im Längsschnitt ein zweites Ausführungsbeispiel eines Brennstoffeinspritzventils mit einer zweiten Ausführungsform der Steuervorrichtung;
- Fig. 5 im vergrösserten Massstab und im Längsschnitt die Steuervorrichtung nach Fig. 4;
- Fig. 6 eine der Fig. 2 oder 5 entsprechende Darstellung einer dritten Ausführungsform einer Steuervorrichtung für ein Brennstoffeinspritzventil; und
- Fig. 7 eine der Fig. 2 oder 5 entsprechende Darstellung einer vierten Ausführungsform einer Steuervorrichtung für ein Brennstoffeinspritzventil.

[0014] Gemäss Fig. 1 ist ein Brennstoffeinspritzventil 1 über einen Brennstoffhochdruckanschluss 10 mit einer in der Zeichnung nicht dargestellten Hochdruck-Fördereinrichtung verbunden, die Brennstoff mit einem Druck von 100 bis 2000 bar und mehr liefert. Das Brennstoffeinspritzventil 1 ist ferner über elektrische Anschlüsse 12 mit einer ebenfalls nicht gezeigten elektronischen Steuerung verbunden.

[0015] Das Brennstoffeinspritzventil 1 weist ein Gehäuse 14 auf, das einen unteren Gehäuseteil 14a sowie einen oberen Gehäuseteil 14b umfasst. Der untere Gehäuseteil 14a ist rohrförmig ausgebildet, lang und im Durchmesser schmal und weist eine zur Längsachse A des Brennstoffeinspritzventils 1 koaxiale zentrale Bohrung 40 auf. Im Bereich des oberen Gehäuseteils 14b ist die zentrale Bohrung 40 erweitert. Diese im Durchmesser grössere Bohrung ist in Fig. 1 mit 42 bezeichnet. Eine den Brennstoffhochdruckanschluss 10 mit dem erweiterten Teil 42 der zentralen Bohrung verbindende Durchgangsbohrung 44 ist radial zur Längsachse A angeordnet.

[0016] Der untere Gehäuseteil 14a ist an seinem un-

teren Ende mit einem als eine Überwurfmutter ausgebildeten, aufgeschraubten Halteteil 16 verbunden. Der Halteteil 16 drückt dichtend einen Düsenkörper 18 an eine untere Fläche 20 des Gehäusteiles 14a an. Die radiale Stellung des Düsenkörpers 18 gegenüber dem Gehäuseteil 14a ist mittels eines oder mehrerer Stifte 24 fixiert, welche ebenfalls eine Verdrehung verhindern. Eine ein Ventilsitzelement bildende Düsenspitze 22 des Düsenkörpers 18 ragt aus dem Halteteil 16 hinaus. Die Düsenspitze 22 ist mit einem Düsennadelsitz 26 und mit mehreren Einspritzöffnungen 28 versehen. Die Einspritzöffnungen 28 sind durch ein unteres Ende 34 einer ein Einspritzventilglied bildenden, axial verstellbaren Düsennadel 30 abschliessbar. Die Düsennadel 30 erstreckt sich vom unteren Düsennadelsitz 26 durch einen Ringraum 38 und eine Bohrung 32 des Düsenkörpers 18 sowie durch die zentrale Bohrung 40 des Gehäusteiles 14a nach oben und weist im oberen Endteil einen Bund 35 und zwei Kolbenteile 31, 33 auf. Diese Kolbenteile 31, 33 bilden einen Teil einer Steuervorrichtung S1 zur Steuerung der Verstellbewegung des Einspritzventilgliedes, d.h. der Düsennadel 30. Die Steuervorrichtung S1 wird weiter unten anhand der Fig. 2 und 3 ausführlich beschrieben. Im Bereich der Düsenkörper-Bohrung 32 ist die Düsennadel 30 mit axial verlaufenden Anschlifflächen 36 versehen, die den Ringraum 38 hydraulisch mit der zentralen Bohrung 40 des Gehäuseteils 14a verbinden.

[0017] Beim in Fig. 1 dargestellten Ausführungsbeispiel ist die Düsennadel 30 einstückig ausgebildet. Die Düsennadel könnte allerdings auch aus mehreren miteinander wirkverbundenen Elementen bestehen.

[0018] Auf den oberen Gehäuseteil 14b ist eine Haltemutter 17 aufgeschraubt. Im Innern der Haltemutter 17 ist ein elektromagnetisch betätigbares Pilotventil 46 untergebracht, das einen mit einem Pilotventilschaft 54 fest verbundenen Anker 58 umfasst. In einem stromlosen Zustand eines Elektromagnets 50 wird der Pilotventilschaft 54 durch die Kraft einer Druckfeder 60 nach unten gedrückt. Diese Kraft ist mittels eines Federspannelementes 62 in ihrer Grösse einstellbar. Zur Betätigung des Pilotventils 46 bzw. zum Anheben des mit dem Anker 58 verbundenen Pilotventilschaftes 54 werden einer dem Anker 58 zugeordneten Erregerspule 52 des Elektromagnets 50 über die elektrischen Anschlüsse 12 Steuerimpulse von der elektronischen Steuerung zugeführt

[0019] Das Federspannelement 62 ist in einem das Brennstoffeinspritzventil 1 an seinem oberen Ende dichtend abschliessenden Abschlussteil 64 untergebracht. Zusammen mit dem Elektromagneten 50 ist in der Haltemutter 17 ein Brennstoffrücklaufanschluss 66 eingebaut, der mit einem das Pilotventil 46 umgebenden Raum 67, einer sogenannten Niederdruckzone, in der Brennstoff niedrigen Druckes fliesst, verbunden ist.

[0020] Anhand der Fig. 2 und 3 wird nun die Steuervorrichtung S1 beschrieben.

[0021] In die erweiterte Bohrung 42 im oberen Gehäu-

seteil 14b ist ein Steuerkörper 74 dichtend eingepresst, der mit einem Flansch 78 auf einer Gehäuse-Absatzfläche 80 aufliegt und mittels einer Sicherungsmutter 76 axial fixiert ist (Fig. 2). Selbstverständlich könnte die Abdichtung zwischen der Bohrung 42 und dem Steuerkörper 74 auch anders realisiert werden und statt eines Presssitzes könnten beispielsweise geeignete Dichtungsringe die Abdichtungsfunktion übernehmen. Der Steuerkörper 74 weist eine sich oben in eine Auslassöffnung 77 verjüngende Auslassbohrung 75 auf. Die untere Stirnfläche des Steuerkörpers 74 ist mit 88 bezeichnet. An diese untere Stirnfläche 88 wird mittels einer Schliessfeder bzw. Düsennadelfeder 68 ein hülsenförmiger Distanzteil 70 mit seiner oberen ringförmigen Stirnfläche 71 angedrückt. Die Düsennadelfeder 68 ist zwischen einer unteren Absatzfläche 82 des Distanzteiles 70 (bzw. einer an dieser anliegenden Distanzscheibe 90) und einer oberen Absatzfläche 84 des Düsennadel-Bundes 35 vorgespannt. Die Vorspannkraft der Düsennadelfeder 68, welche die Düsennadel 30 nach unten in Schliessrichtung des Brennstoffeinspritzventils 1 gegen den auf die Düsennadel 30 ausgeübten Brennstoffhochdruck sicher halten soll, muss relativ gross sein und kann beispielsweise 100 bis 300 N betragen. Die Vorspannkraft mehrerer Brenstoffeinspritzventile einer Verbrennungskraftmaschine muss genau übereinstimmen, um eine Funktionsgleichheit zu gewährleisten. Mittels der Distanzscheibe bzw. Distanzscheiben 90 können die jeweiligen Fertigungstoleranzen ausgeglichen werden.

[0022] Das Einspritzventilglied bzw. die Düsennadel 30 weist einen an den Bund 35 anschliessenden ersten Kolbenteil 31 sowie einen diesem gegenüber im Durchmesser abgesetzten zweiten Kolbenteil 33 auf. Der zweite Kolbenteil 33 weist eine obere Stirnfläche 39 auf. Die ringförmige Absatzfläche zwischen diesen beiden Kolbenteilen 31, 33 ist mit 37 bezeichnet. Wie insbesondere aus Fig. 3 ersichtlich, ragt der erste Kolbenteil 31 mit einem gewissen Radialspiel R1 in einen unteren Teil 70a des Distanzteiles 70. Die innere zylindrische Führungsfläche dieses Teiles 70a für den Kolbenteil 31 ist mit 94 bezeichnet. Der Distanzteil 70 weist ferner einen oberen, im Durchmesser erweiterten Teil 70b auf. Zwischen den beiden Teilen 70a und 70b des Distanzteiles 70 ist die bereits erwähnte Absatzfläche 82 vorhanden. Im Innern des Distanzteiles 70 ist in einem Abstand von der Absatzfläche 82 eine innere Absatzfläche 98 angeordnet, die die zylindrische Führungsfläche 94 mit einer weiteren zylindrischen Führungsfläche 95 grösseren Durchmessers verbindet. Diese Absatzfläche 98 liegt oberhalb der zwischen den beiden Kolbenteilen 31, 33 vorhandenen Absatzfläche 37. Der zweite Kolbenteil 33 ist von einer Steuerhülse 72 umgeben, deren zylindrische Aussenfläche 72a mit einem gewissen Radialspiel R2 der Führungsfläche 95 des Distanzteiles 70 zugeordnet ist (vgl. Fig. 3). Dieses Radialspiel R2 kann (ähnlich wie das Radialspiel R1 zwischen dem ersten Kolbenteil 31 und der Führungsfläche 94) etwa zwischen 6

und 50 μ m (Mikrometer) betragen. Zwischen der Innenfläche 72i der Steuerhülse 72 und der Aussenfläche des zweiten Kolbenteils 33 ist hingegen eine enge Gleitpassung vorgesehen, d.h. ein Radialspiel R0 von nur 1 bis 8 μ m. Da der Druck überall gleich gross ist (sowohl auf der Innenseite als auch auf der Aussenseite der Steuerhülse 72 und des Distanzteiles 70), entstehen keine druckbedingte Deformationen der Steuerhülse 72 und des Distanzteiles 70 und die Radialspiele R0, R1, R2 sowie der Spalt S bleiben gleich, unabhängig vom Druckpegel.

[0023] In einer nicht gezeigten, alternativen Ausführungsform der Steuervorrichtung S1 werden, ähnlich wie bei der EP 0 686 763 (Fig. 3, Rippen 95), die Radialspiele R1 bzw. R2, welche sich über die jeweilige Länge der Teile erstrecken, durch eine oder mehrere Rippen mit einem gewissen Radialspiel ersetzt. Diese Rippen könnten entweder an den jeweiligen Innenseiten des Distanzteiles 70, oder an der äusseren Mantelfläche 72a der Steuerhülse 72 und an den äusseren Mantelfläche des ersten Kolbenteils 31 angebracht werden. Die durch die Rippen hervorgerufene Strömung ist unabhängig von der Brennstoffviskosität (also von dessen Temperatur), was bei langgestreckten Radialspielen nicht der Fall ist. Die Unabhängigkeit der Strömung von der Viskosität kann einen Funktionsvorteil bedeuten. (In gleicher Weise könnten auch die Radialspiele R1 bzw. R2 bei den weiter unten beschriebenen Steuervorrichtungen S2 und S3 realisiert werden.)

[0024] Die axiale Länge der Steuerhülse 72 ist um einen kleinen Betrag S, der beispielsweise 5 bis 40 um beträgt, kleiner, als der Abstand der inneren Absatzfläche 98 des Distanzteiles 70 von seiner oberen, ringförmigen Stirnfläche 71. Fig. 3 zeigt die Steuerhülse 72 in einer Stellung, bei der die untere Stirnfläche 72u der Steuerhülse 72 auf der inneren Absatzfläche 98 aufliegt und dadurch ein Spalt S zwischen der oberen Stirnfläche 72o der Steuerhülse und der unteren Stirnfläche 88 des Steuerkörpers 74 gebildet ist (in Fig. 3 ist der Spalt S übertrieben gross dargestellt; in Wirklichkeit ist dieser Spalt S etwa zehnmal kleiner als der Düsennadelhub). Die untere Stirnfläche 72u schliesst dabei von oben einen radial durch den zweiten Kolbenteil 33 einerseits und die Führungsfläche 94 des Distanzteiles 70 anderseits begrenzten Raum 106 ab, der nach unten durch die Absatzfläche 37 zwischen den beiden Kolbenteilen 31, 33 axial begrenzt ist.

[0025] Der Distanzteil 70 weist an seinem oberen Ende einen Durchlass 100 auf. Wie aus Fig. 3 ersichtlich ist die obere Stirnfläche 720 der Steuerhülse 72 mit einer radialen Vertiefung 102 (oder mehreren radialen Vertiefungen) versehen. Der Durchlass 100 und die Vertiefung 102 verbinden den durch die Gehäusebohrung 42 umschlossenen Raum, d.h. die über die Durchgangsbohrung 44 an den Brennstoffhochdruckanschluss 10 angeschlossene Hochdruckzone, mit einem oberhalb des zweiten Kolbenteils 33 angeordneten Steuerraum 110. Dieser im unteren Bereich durch die

Führungsfläche 95 des Distanzteils 70 und im oberen Bereich durch die Auslassbohrung 75 und die Auslassöffnung 77 radial begrenzter Steuerraum 110 kann oben mittels des Pilotventilschaftes 54 geschlossen gehalten oder geöffnet werden. Der Flachsitzteil des Pilotventilschaftes 54, mit dem die Auslassöffnung 77 verschliessbar ist, ist in Fig. 1 bis 3 mit 56 bezeichnet.

[0026] In Fig. 1 bis 3 wird das Brennstoffeinspritzventil 1 in einer Stellung vor dem Einspritzvorgang gezeigt. Im vom Flachsitzteil 56 des Pilotventilschaftes 54 geschlossenen Steuerraum 110 herrscht der gleiche Hochdruck wie in der Hochdruckzone, d.h. wie im durch die Gehäusebohrungen 42, 40 sowie durch die Bohrung 32 umschlossenen, sich über den Ringraum 38 bis zum Düsennadelsitz 26 erstreckenden und die Düsennadel 30 sowie im oberen Bereich den Distanzteil 70 umgebenden Raum. Auch der axial durch die Absatzfläche 37 einerseits und die untere Stirnfläche 72u der Steuerhülse 72 begrenzte Raum 106 ist über den radialen Spalt R1 zwischen dem ersten Kolbenteil 31 und der Führungsfläche 94 mit der Hochdruckzone verbunden. Die Steuerhülse 72 befindet sich in einem indifferenten Gleichgewicht, bei dem sämtliche hydraulische Kräfte ausgeglichen sind. Der Steuerraum 110 ist über den Spalt S zwischen der unteren Stirnfläche 88 des Steuerkörpers 74 und der oberen Stirnfläche 720 der Steuerhülse 72 und über die Vertiefung 102 mit der Hochdruckzone verbunden. In dieser Stellung ist es die Düsennadelfeder 68, die die Düsennadel 30 in ihrer unteren Schliessstellung hält, wobei die Druckkraft, welche bei geöffneter Düsennadel 30 unter dem Düsennadelsitz 26 in Öffnungsrichtung der Düsennadel 30 wirkt,

[0027] Sobald über die elektronische Steuerung dem Elektromagneten 50 ein Impuls von gewählter Dauer erteilt wird, wird der Anker 58 entgegen der Kraft der Druckfeder 60 angezogen und somit der Pilotventilschaft 54 des Pilotventils 46 angehoben. Der Flachsitzteil 56 des Pilotventilschaftes 54 gibt die Auslassöffnung 77 des Steuerkörpers 74 frei. Der Druck im Steuerraum 110 sinkt etwas. Dadurch wird das hydraulische Gleichgewicht bezüglich der Steuerhülse 72 gestört, und auf die Steuerhülse 72 wirkt eine hydraulische Kraft in Richtung zum Steuerkörper 74 hin, so dass sie zur unteren Stirnfläche 88 desselben bewegt wird. Gleichzeitig wird die untere Stirnfläche 72u der Steuerhülse 72 von der Absatzfläche 98 weg angehoben und der Spalt S an dieser Stelle gebildet, wobei eine geringe Brennstoffmenge über die Spälte R1 und R2 dem sich wegen der nach oben bewegten Steuerhülse 72 leicht vergrösserten Raum 106 zugeführt wird. Der Steuerraum 110 wird nur noch über die Vertiefung 102 mit der Hochdruckzone verbunden, wodurch der Druck im Steuerraum 110 stärker absinkt. Der Einspritzvorgang beginnt. Währenddem sich die Düsennadel 30 in der Öffnungsbewegung befindet, wird im Steuerraum 110 über die Auslassöffnung 77 und im Raum 106 über die Spälte R1 und R2 dauernd Brennstoff verdrängt. Im Raum 106 herrscht

ein gewisser Überdruck gegenüber der Hochdruckzone, welcher über die Fläche 72u die Steuerhülse 72 an die untere Stirnfläche 88 des Steuerkörpers 74 andrückt.

[0028] Zur Beendigung des Einspritzvorganges wird wiederum elektronisch gesteuert über den Elektromagneten 50 das Pilotventil 46 in seine Schliessstellung gebracht. Da nun die Auslassöffnung 77 wieder geschlossen ist, lässt der Brennstoffnachschub über die als eine Einlassdrossel wirkende Vertiefung 102 den Druck im Steuerraum 110 rasch ansteigen, der sich auf die obere Stirnfläche 39 des zweiten Kolbenteils 33 auswirkt. Die Düsennadelfeder 68 bewegt die Düsennadel 30 nach unten in Schliessrichtung, wodurch nun im sich vergrössernden Raum 106 ein Unterdruck verglichen mit der übrigen Hochdruckzone erzeugt wird, wodurch die Steuerhülse 72 eine hydraulische Kraft weg von der unteren Stirnfläche 88 des Steuerkörpers 74 erfährt und den Spalt S wieder oben frei gibt. Daraus ergibt sich ein rascher Druckanstieg im Steuerraum 110 durch den über den Durchlass 100 und den wieder vorhandenen Spalt S sowie die Vertiefung 102 in den Steuerraum 110 fliessenden Brennstoff, der eine wesentlich schnellere Beendigung des Einspritzvorganges ermöglicht, als wenn das Befüllen des Steuerraumes 110 allein über die Vertiefung 102 erfolgen würde.

[0029] Dadurch, dass bereits vor Beginn des Einspritzvorganges die Steuerhülse 72 die direkte Verbindung des Steuerraumes 110 mit der Hochdruckzone über den Spalt S verschliesst, wird der durch die Auslassöffnung 77 in den Niederdruck-Raum 67 und in den Brennstoffrücklaufanschluss 66 abfliessende Brennstoff-Steuerstrom in vorteilhafter Weise wesentlich verringert. Dieser erfolgt lediglich über die Vertiefung 102, die fast beliebig klein sein kann, da ihre Funktion nur darin besteht, beim Verschliessen der Auslassöffnung 77 den anfänglichen Druckaufbau im Steuerraum 110 zum Wiederherstellen des Spaltes S oben, auf der Steuerkörperseite, zu bewirken. Im Prinzip könnte statt einer mit einer Vertiefung 102 versehenen, präzis hergestellten oberen Stirnfläche 72o eine weniger präzise (oder eine relativ grobe und daher in der Herstellung weniger aufwendige), gewisse Leckagen aufweisende Stirnfläche verwendet werden, wobei die Leckagen die Einlassdrosselfunktion der Vertiefung 102 übernehmen würden.

[0030] Der Spalt S kann mit einfachen Mitteln präzis gefertigt werden. Wie bereits erwähnt ist der Spalt S durch die Längendifferenz der Steuerhülse 72 und des Abstandes der Absatzfläche 98 des Distanzeiles 70 von seiner Stirnfläche 71 definiert. D.h. dieser Spalt S wird vor der Montage eingestellt und beim zusammengebauten Brennstoffeinspritzventil 1 genau und unabhängig vom Hochdruckpegel eingehalten, da die plane untere Stirnfläche 88 des Steuerkörpers 74 dem Distanzteil 70 und der Steuerhülse 72 gemeinsam ist, und die Druckverhältnisse vor und nach der Einspritzung ausgeglichen sind, womit keine druckbedingte, vom Hochdruck-

pegel abhängige Deformationen dieser Steuerelemente auftreten. Mit anderen Worten der Spalt S bleibt ohne jegliche Nacheinstellung auch nach der Montage bestehen

9

[0031] Es wäre allerdings auch möglich, die untere Stirnfläche 88 des Steuerkörpers 74, an der der Distanzteil 70 mit seiner Stirnfläche 71 anliegt, mit einer Vertiefung zu versehen, und die Strecke S für die Längsverstellung der Steuerhülse 72 durch die Differenz zwischen der Steuerhülsenlänge und dem Abstand der Absatzfläche 98 von der Grundfläche der Vertiefung zu definieren. Bei einer solchen, in der Zeichnung nicht dargestellten Variante könnte dann beispielsweise die Steuerhülse 72 exakt gleich lang sein, wie der Abstand zwischen der Absatzfläche 98 und der Stirnfläche 71 des Distanzteiles 70.

[0032] Bei der erfindungsgemässen Steuervorrichtung S1 sind die Steuerhülse 72 und das Distanzelement 70 nicht genau achszentriert, d.h. in der zentralen Gehäusebohrung 42 radial nicht fixiert, sondern quer zur Längsachse A des Gehäuses 14 bewegbar. Dadurch ist ein gewisser radialer Versatz des Steuerkolbens 31, 33 gegenüber dem Düsennadelsitz 26 für das Einspritzventilglied bzw. die Düsennadel 30 möglich, ohne dass dabei Seitenkräfte auf die Düsennadel 30 ausgeübt werden, die zur Verbiegung der letzteren, zum Entstehen von starken Reibungskräften oder zum Klemmen führen und die Funktionsweise des Brennstoffeinspritzventils beeinträchtigen könnten. Die Düsennadel 30 kann sich dem radialen Versatz anpassen und ist frei von Seitenkräften.

[0033] Es ist ausserdem nur eine einzige präzise Passung notwendig: jene zwischen der Aussenfläche des zweiten Kolbenteils 33 und der Innenfläche 72i der Steuerhülse 72 (in Fig. 3 mit R0 bezeichnet). Aber auch diese präzise Passung braucht weniger genau sein als diejenigen nach EP-B-0 686 763, da wie bereits erwähnt keine druckbedingte, vom Druckpegel abhängige Deformationen der Elemente der Steuervorrichtung S1 auftreten. Alle anderen Passungen können noch weiter sein, was einen zusätzlichen fertigungstechnischen Vorteil mit sich bringt. Das Gehäuse 14 des erfindungsgemässen Brennstoffeinspritzventils 1 muss nirgends mit einer exakten Führung versehen sein, an der auch Reibung und folglich Abnützung entstehen würde, d.h. das Gehäuse 14 muss nicht gehärtet sein.

[0034] Ein weiterer wesentlicher Vorteil des erfindungsgemässen Brennstoffeinspritzventils 1 besteht darin, dass die Hochdruckzone, d.h. der die Düsennadel 30 vom Düsennadelsitz 26 über den Ringraum 38 und die Gehäusebohrungen 40, 42 konzentrisch umgebende Raum sowie die Durchgangsbohrung 44, und auch der Steuerraum 110 bis zur Auslassöffnung 77 einen vollständig dichten Bereich ohne Leckagestellen bildet. [0035] Das Gehäuse 14 des erfindungsgemässen Brennstoffeinspritzventils 1 kann sehr schlank ausgeführt werden, was für den Einbau des Brennstoffeinspritzventils in den Zylinderkopf der Verbrennungskraft-

maschine von Vorteil ist.

[0036] Fig. 4 zeigt ein zweites Ausführungsbeispiel eines Brennstoffeinspritzventils 2. Die aus Fig. 1 bis 3 bereits bekannten und gleichbleibenden Teile sind in Fig. 4 mit den gleichen Bezugsziffern bezeichnet. Im Gegensatz zum Brennstoffeinspritzventil 1 nach Fig. 1 bis 3 besteht das Gehäuse 120 des Brennstoffeinspritzventils 2 aus zwei zusammengesetzten Teilen 122, 124. Der erste Teil 122, aus dem an seinem unteren Ende wiederum eine mit dem Düsennadelsitz 26 und mehreren Einspritzöffnungen 28 versehene Düsenspitze 121 hinausragt, ist als ein langes, schlankes Rohrstück ausgebildet, das mit seinem oberen Teil in den zweiten Gehäuseteil 124 hineinragt und mit diesem verbunden ist. wie weiter unten näher beschrieben wird. Die Düsenspitze 121 ist von unten mit einem Presssitz 123 in die Gehäusebohrung 126 des Gehäuseteils 122 eingepresst und mittels einer Absatzfläche 125 axial positioniert. Im Vergleich zum Brennstoffeinspritzventil 1 entfallen die Überwurfmutter 16, der oder die Zentrierstifte 24 und die Dichtfläche 20.

[0037] In den zweiten Gehäuseteil 124 ist der Brennstoffhochdruckanschluss 10 eingeschraubt, der über eine Bohrung 127 eines ringförmigen Zwischenstückes 128 und eine kurze radiale Bohrung 129 im ersten Gehäuseteil 122 mit der Gehäusebohrung 126 verbunden ist. Das Zwischenstück 128 ist stirnseitig mit je einer kalottenförmigen Dichtfläche 131 versehen. Es wären auch andere Ausgestaltungen des Zwischenstückes 128 durchaus denkbar, z.B. mit konischen Dichtflächen. Das Zwischenstück 128 könnte an sich auch weggelassen werden und dabei ein verlängerter Brennstoffhochdruckanschluss 10 direkt mit dem rohrförmigen Gehäuseteil 122 dichtend verbunden werden.

[0038] Sowohl bei der dargestellten Ausführungsform als auch bei den vorstehend erwähnten möglichen Ausgestaltungen erfährt der obere, zweite Gehäuseteil 124 keine durch den Brennstoffhochdruck hervorgerufene Spannungen. Dies bedeutet, dass der obere, zweite Gehäuseteil 124 aus weniger hochwertigem Material bestehen kann als der die Hochdruckzone umschliessende rohrförmige erste Teil 122. Daraus ergeben sich mehrere Möglichkeiten für Werkstoffkombination und die Verbindungsart beider Gehäuseteile 122, 124. Beispielsweise kann der aus einem kostengünstigeren Metall bestehende zweite Gehäuseteil 124 auf den ersten Gehäuseteil 122 geschrumpft werden. Der zweite Gehäuseteil 124 kann aber auch z.B. aus Aluminium bestehen und in einem Spritzgussverfahren mit dem ersten Gehäuseteil 122 verbunden werden. Auch ein aus Kunststoff bestehender zweiter Gehäuseteil 124 kann mittels Spritzgiessens mit dem ersten Gehäuseteil 122 verbunden werden.

[0039] Der zweite Gehäuseteil 124 ist in seinem unteren Bereich mit zwei parallel und in Axialrichtung verlaufenden Flächen 130 sowie mit zwei Absatzflächen 132 versehen, über die das Brennstoffeinspritzventil 2 mit einer Spanngabel in einer an sich bekannten Weise

in den Zylinderkopf der Verbrennungskraftmaschine befestigt wird.

[0040] Beim Brennstoffeinspritzventil 2 ist der Elektromagnet 50 zur Betätigung des Pilotventils 46 nicht mittels einer Haltemutter mit dem Ventilgehäuse verbunden wie beim Brennstoffeinspritzventil 1, sondern in einem Magnetkörper 136 fest eingebettet und zusammen mit diesem mittels Schrauben 138 mit dem zweiten, entsprechende Gewindelöcher 139 aufweisenden Gehäuseteil 124 verschraubt. Der Magnetkörper 136 kann wiederum beispielsweise aus Kunststoff sein und im Spritzgussverfahren mit dem Elektromagnet 50 verbunden werden. Beim dargestellten Ausführungsbeispiel sind drei in einem Dreieck angeordnete Gewindelöcher 139 für Schrauben 138 vorgesehen, von denen eine in Fig. 4 ersichtlich ist und sich zur anderen Seite der Ventil-Längsachse A befindet, als der Brennstoffhochdruckanschluss 10. Dieser ist zwischen den beiden anderen, aus Fig. 4 nicht ersichtlichen Gewindelöcher 139 angeordnet. Bei dieser Ausführungform kann sich der zweite Gehäuseteil 124 und der Magnetkörper 136 in seiner Aussenform in Richtung zum aus Fig. 4 ersichtlichen, in der Schnittebene der Fig. 4 liegenden Gewindeloch 139 hin dreieckförmig verjüngen. Eine solche Aussenform ist für den Einbau in die Verbrennungskraftmaschine besonders günstig. Allerdings könnten auch z.B. vier in einem Viereck angeordnete Gewindelöcher und Verbindungsschrauben vorgesehen sein.

[0041] Im oberen Bereich des rohrförmigen ersten Gehäuseteils 122 ist eine Steuervorrichtung S2 angeordnet. In ihrer Funktion entspricht diese Steuervorrichtung S2 der anhand von Fig. 1 bis 3 beschriebenen Steuervorrichtung S1. Im folgenden werden daher anhand der Fig. 5 vor allem die konstruktiven Abweichungen dieser Steuervorrichtung S2 beschrieben. Die gleichbleibenden Teile sind mit den gleichen Bezugsziffern bezeichnet wie in Fig. 1 bis 3.

[0042] In der Gehäusebohrung 126 ist mit einem radialen Spiel wiederum ein hülsenförmiger Distanzteil 140 angeordnet und mit seiner oberen Stirnfläche 141 an die untere Stirnfläche 88 des Steuerkörpers 74 von der relativ starken Düsennadelfeder 68 dauernd angedrückt. Im Gegensatz zur Steuervorrichtung S1 ist die Düsennadelfeder 68 zwischen einer inneren Absatzfläche 143 des Distanzteiles 140 und einem auf einen konischen Teil 144 der Düsennadel 30 aufgesetzten Federhalterungsstück 146 vorgespannt. Die für die Abstützung der Düsennadelfeder 68 vorgesehene Absatzfläche des Federhalterungsstückes 146 ist mit 145 bezeichnet. Das Federhalterungsstück 146 weist eine konische Innenfläche 147 auf. Zwischen der konischen Innenfläche 147 und dem konischen Teil 144 der Düsennadel 30 ist ein konischer Ring 148 angeordnet, der zum Aufsetzen auf den Düsennadel-Teil 144 entweder geschlitzt oder aus zwei getrennten Halbringen besteht. Die Konizität des Düsennadel-Teils 144, des Ringes 148 und der Innenfläche 147 des Federhalterungsstückes 146 ist vorzugsweise so gewählt, diese Teile nach dem Zusammenbau zusammengeklemmt bleiben.

[0043] Der Distanzteil 140 ist wiederum mit der Führungsfläche 94 für den ersten Kolbenteil 31 und der im Durchmesser erweiterten Führungsfläche 95 für eine Steuerhülse 142 versehen, die über die Absatzfläche 98 miteinander verbunden sind. Beim in Fig. 5 dargestellten Ausführungsbeispiel ist die gesamte obere Stirnfläche 1420 der Steuerhülse 142 plan ausgebildet (gleich wie die Stirnfläche 720 der Steuerhülse 72 nach Fig. 2 und 3). Gleich wie bei der Steuervorrichtung S1 ist die Steuerhülse 142 um den Betrag S kürzer als der Absatand zwischen der Absatzfläche 98 und der oberen Stirnfläche 141 des Distanzteiles 140.

[0044] Der Distanzteil 140 ist zusätzlich mit einer an die Absatzfläche 98 angrenzenden inneren Ausnehmung 155 versehen. Zwischen einer Absatzfläche 156 der Ausnehmung 155 und der unteren Stirnfläche 142u der Steuerhülse 142 ist eine Druckfeder 158 vorgespannt, die im Vergleich zur Düsennadelfeder 68 wesentlich schwächer ist und ihre Druckwirkung auch gegenüber den Brennstoffdruckkräften vernachlässigbar ist. Die Ausnehmung 155 begrenzt einen dem Raum 106 nach vorangehenden Varianten entsprechenden Raum 160.

[0045] Im Unterschied zu der vorstehend beschriebenen Steuervorrichtungsvariante S1 wird bei dieser Ausführung die Steuerhülse 142 in der Ausgangsstellung, d.h. vor dem Einspritzvorgang, durch die Druckfeder 158 bereits an die untere Stirnfläche 88 des Steuerkörpers 74 angedrückt. Dies bedeutet, dass der Steuerraum 110 vom Anfang an nur über die kleine Drosselbohrung 150 mit der Hochdruckzone verbunden ist, was ein sofortiges rasches Absinken des Druckes im Steuerraum 110 beim Anheben des Pilotventilschaft-Flachsitzteiles 56 zur Folge hat. Beim Schliessvorgang des Brennstoffeinspritzventils 2, bei dem der Pilotventilschaft-Flachsitzteil 56 wieder in seine Schliesstellung gebracht wird und der Druck im Steuerraum 110 wieder ansteigt, bleibt die Steuerhülse 142 - von der Druckfeder 158 dabei unterstützt - anfänglich an den Steuerkörper 74 angedrückt. Die Düsennadel 30 wird durch die auf den zweiten Kolbenteil 33 von oben einwirkende Kraft nach unten bewegt, wobei im sich vergrössernden Raum 160 momentan der Brennstoffdruck fällt. Beim bestimmten Absinken dieses Druckes folgt die Steuerhülse 142 der Kolbenbewegung. Sobald sich die Steuerhülse 142 von der unteren Stirnfläche 88 des Steuerkörpers 74 abhebt, gelangt schlagartig über diese neue Verbindung Brennstoff vom Durchlass 100 in den Steuerraum 110, und der Kolbenteil 33 wird nach unten beschleunigt sowie auch die Steuerhülse 142 nach unten bewegt, bis sie an der Absatzfläche 98 aufliegt und dort der anfängliche Spalt S aufgehoben wird. Bei dieser Variante kann der Spalt S grösser sein als bei der Steuervorrichtung S1 nach Fig. 2 und 3.

[0046] Der in der Steuerhülse 142 wiederum mit präziser Gleitpassung (Radialspiel R0 von 1 bis 8 µm) ge-

führte zweite Kolbenteil 33 weist an seinem oberen Ende einen sich konisch verjüngenden Teil 33a auf. Die Steuerhülse 142 ist in einem diesen Kolbenteil 33a umgebenden Bereich mit einer kleinen, radialen Drosselbohrung 150 ausgestattet, die einen Ringraum 149 im Distanzteil 140 mit dem Steuerraum 110 verbindet. Der Ringraum 149 ist über eine radial angeordnete, grosse Drosselbohrung 151 mit der den Distanzteil 140 umgebenden Hochdruckzone verbunden. Bei diesem Ausführungsbeispiel übernimmt die kleine Drosselbohrung 150 die Funktion der stirnseitigen Vertiefung 102 nach Fig. 2 und 3, und die grosse Drosselbohrung 151 diejenige des Durchlasses 100. Mit der grossen Drosselbohrung 151 kann eine zu rasche Schliessung der Einspritzöffnungen 28 verhindert werden. Die Beschleunigung des Steuerkolbens beim Schliessvorgang wird leicht gedämpft und dadurch der Aufprall der Düsennadel 30 auf den Düsennadelsitz 26 am Ende des Schliessvorganges vermindert.

[0047] Fig. 6 zeigt eine mit S3 bezeichnete Variante zur Steuervorrichtung S2 nach Fig. 5 oder zur Steuervorrichtung S1 nach Fig. 1 bis 3, bei der die aus Fig. 5 bekannte, die kleine Drosselbohrung 150 aufweisende Steuerhülse 142 mit einem Distanzteil 154 kombiniert wird, der wiederum den aus Fig. 2 und 3 bekannten Durchlass 100 aufweist. Bei dieser Variante weist das Einspritzventilglied bzw. die Düsennadel 30 eine extrem einfache Form mit einem gleichmässigen Durchmesser bis und mit dem Kolbenteil 33 auf. Die Düsennadel 30 wird wiederum in der Steuerhülse 142 mit dem radialen Spiel R0 eng und im Distanzteil 154 mit dem grösseren Radialspiel R1 gleitend geführt.

[0048] Der Distanzteil 154 ist wiederum durch die zwischen den Absatzflächen 143, 145 des Distanzteils 154 und eines Federhalterungsstückes 157 vorgespannte Düsennadelfeder 68 an die untere Stirnfläche 88 des Steuerkörpers 74 dauernd angedrückt. In das Federhalterungsstück 157 ist von unten ein in eine Ringnut 159 der Düsennadel 30 eingreifender, geschlitzter Sprengring 162 eingesetzt.

[0049] Im Unterschied zu den Ausführungen nach Fig. 2, 3 und 5 ist bei diesem Ausführungsbeispiel die Stirnfläche der Steuerhülse 142 mit einer inneren und mit einer äusseren Anschrägung versehen, so dass nur eine schmale ringförmige Dichtfläche 142d der unteren Steuerkörper-Stirnfläche 88 gegenüberliegt. Diese Ausbildung begünstigt den Schliessvorgang und trägt Rechnung der Tatsache, dass bei dieser Variante keine Abstufung des Steuerkolbens und kein Raum 106 wie bei den Steuervorrichtungen S1 oder S2 vorhanden sind. Beim Schliessen der Auslassöffnung 77 erfährt auch hier die Steuerhülse 142 eine hydraulische Kraft weg von der unteren Stirnfläche 88 des Steuerkörpers 74 und gibt den Spalt S oben frei, wodurch ein rascher Druckanstieg im Steuerraum 110 und eine schnelle Beendigung des Einspritzvorganges erfolgt.

[0050] Zum gleichen Zweck (Begünstigung des Schliessvorganges) könnte die Steuerhülse 142 auch

gleich oder ähnlich ausgebildet sein wie der Ventilkörper 26a nach Fig. 3 der EP-B-0 675 281.

[0051] Eine weitere Ausführungsform einer Steuervorrichtung S4 ist in Fig. 7 dargestellt. Bei dieser Variante wird eine Steuerhülse 164 direkt und dauernd von der Düsennadelfeder 68 an die untere Stirnfläche 88 des Steuerkörpers 74 angedrückt. Mit anderen Worten die Steuerhülse 164 bleibt unter Wirkung der Düsennadelfeder 68 stationär. Es ist kein Distanzteil wie bei vorstehend beschriebenen Steuervorrichtungen S1, S2 und S3 vorhanden. Die Steuerhülse 164 weist eine radial angeordnete Drosselbohrung 165 auf, die den Steuerraum 110 mit der die Steuerhülse 164 umgebenden Hochdruckzone verbindet. Bei dieser konstruktiv extrem einfachen Variante ist es der Druck im Steuerraum 110 allein, der die Düsennadelbewegung steuert. Dieser ist durch die Drosselbohrung 165 und die Auslassöffnung 77 genau definiert. Die Drosselbohrung 165 ist verglichen mit der Drosselbohrung 150 nach Fig. 5 und 6 grösser dimensioniert. Selbstverständlich könnte auch hier statt der Drosselbohrung 165 eine stirnseitige Vertiefung (oder mehrere Vertiefungen) die Einlassdrosselverbindung der Hochdruckzone mit dem Steuerraum 110 bilden.

[0052] Auch bei dieser Ausführungsform weist die Düsennadel 30 eine extrem einfache Form auf (keine Abstufung des Steuerkolbens). Mit Vorteil wird auch hier das aus Fig. 6 bekannte Federhalterungsstück 157 mit dem in eine Ringnut 159 der Düsennadel 30 eingreifenden Sprengring 162 für die Abstützung bzw. Vorspannung der Düsennadelfeder 68 verwendet. Eine Distanzscheibe 90, ähnlich wie bei Fig. 2, könnte zum Erzielen der gleichen Vorspannkraft mehrerer Brennstoffeinspritzventile auch hier verwendet werden.

[0053] Der untere Gehäuseteil 122 des Brennstoffeinspritzventils 2 nach Fig. 4 weist praktisch über die gesamte Länge einen konstanten Durchmesser auf und kann kostengünstig aus einem den hohen Brennstoffhochdruckspannungen standhaltenden, langen Druckrohrstück angefertigt werden.

[0054] Bei den beiden Ausführungsformen der Brennstoffeinspritzventile 1, 2 kann das Einspritzventilglied bzw. die Düsennadel 30 von oben in das rohrförmige Gehäuse 14 bzw. 120 eingebaut werden. Statt einer einstückigen Ausbildung Einspritzventilglied/Steuerkolben könnten die beiden Teile kraft- oder formschlüssig miteinander verbunden werden.

[0055] Brennstoffeinspritzventile, die mit Steuervorrichtungen S2, S3 oder S4 gemäss Fig. 5, 6 oder 7 ausgerüstet sind, weisen die gleichen, bereits erwähnten Vorteile auf, wie das mit der Steuervorrichtung S1 versehene Brennstoffeinspritzventil 1 nach Fig. 1 bis 3 (einfache und kostengünstige Ausgestaltung, Möglichkeit einer vorteilhaften, schlanken Aussenform, Verringerung des in den Brennstoffrücklaufanschluss 66 abfliessenden Brennstoff-Steuerstroms, Hochdruckzone ohne Leckagen, vor allem aber Beseitigung von bei bisherigen Brennstoffeinspritzventilen vorhandenen, aus ei-

20

40

45

50

nem möglichen radialen Versatz des Steuerkolbens gegenüber dem Sitz für das Einspritzventilglied resultierenden Nachteilen bzw. Gefahren). Selbstverständlich könnte beim Brennstoffeinspritzventil 1 eine der Steuervorrichtungen S2 bis S4 eingesetzt werden oder auch umgekehrt das Brennstoffeinspritzventil 2 mit der Steuvorrichtung S1 ausgerüstet werden. Bei allen Ausführungen können Toleranzen für einzelne Teile sowohl bei der Herstellung als auch beim Zusammenbau problemlos eingehalten werden, wodurch nicht nur eine einwandfreie Funktionsweise sondern auch die Funktionsgleichheit bei allen Ventilen einer Verbrennungskraftmaschine gewährleistet sind.

[0056] Bei allen vorstehend beschriebenen Ausführungsbeispielen wurde die jeweilige Steuervorrichtung S1, S2, S3 oder S4 auf dem dem mit der Düsenspitze 22, 121 versehenen Düsenkörper abgewandten Ende des Brennstoffeinspritzventils 1, 2 untergebracht. Es besteht aber auch die Möglichkeit, die Steuervorrichtung S1, S2, S3 oder S4 sehr nahe beim Düsenkörper oder sogar in demselben zu integrieren, womit das Einspritzventilglied sehr kurz ausgebildet werden kann. Für diese in der Zeichnung nicht dargestellte Ausführungsform ist ein kleiner Aktuator des Pilotventilschaft-Flachsitzteiles 56 notwendig. Als Aktuator eignet sich ein kleiner Elektromagnet oder ein Piezoelement, welcher innerhalb des schlanken Gehäuseteiles 14a oder 120 untergebracht werden kann. Damit entfällt der dickere Gehäuseteil 14b bzw. 124. Der Bereich, in dem sich der Aktuator befindet, muss aber ausserhalb der Hochdruckzone liegen. Ferner muss die hydraulische Kraft von der Auslassöffnung 77 auf den Flachsitzteil 56 möglichst klein gehalten werden, um einen kleinen, kraftmässig schwachen Aktuator einsetzen zu können. Diese Bedingung ist besonders gut bei den Steuervorrichtungen S1, S2 und S3 erfüllt.

Patentansprüche

Brennstoffeinspritzventil zur intermittierenden Brennstoffeinspritzung in den Brennraum einer Verbrennungskraftmaschine, mit einem Gehäuse (14; 120), mit einem mit Einspritzöffnungen (28) versehenen Ventilsitzelement (22; 121), mit einem in das Gehäuse (14; 120) längsverstellbar eingebauten Einspritzventilglied (30) zum Verschliessen oder Öffnen der Einspritzöffnungen (28), und mit einer Steuervorrichtung (S1; S2; S3; S4) zur Steuerung der Verstellbewegung des Einspritzventilgliedes (30), die einen mit dem Einspritzventilglied (30) wirkverbundenen Steuerkolben (31, 33) umfasst, der einerseits durch den in einer mit einem Brennstoffhochdruckanschluss (10) verbundenen Hochdruckzone herrschenden Brennstoffsystemdruck und anderseits durch den Brennstoff-Steuerdruck in einem Steuerraum (110) beaufschlagt wird, der in Längsrichtung des Brennstoffeinspritzventils (1;

- 2) zwischen einer Stirnfläche (39) des Steuerkolbens (31, 33) und einem gehäusefesten Steuerkörper (74) angeordnet und radial wenigstens zeitweise zumindest vom Beginn des Einspritzvorganges bis zum Beginn der Schliessbewegung des Einspritzventilgliedes (30) durch eine Steuerhülse (72; 142; 164) begrenzt ist, deren innere Führungsfläche (72i; 142i; 164i) mit dem Steuerkolben (31, 33) eine enge Gleitpassung bildet, wobei der Steuerdruck im Steuerraum (110) durch Öffnen oder Schliessen mindestens einer Auslassöffnung (77) im Steuerkörper (74) mittels eines steuerbaren Pilotventils (46) steuerbar ist, dadurch gekennzeichnet, dass zur Hochdruckzone eine in Richtung der Längsachse (A) des Gehäuses (14; 120) verlaufende zentrale Bohrung (40, 42; 126) gehört, in der das Einspritzventilglied (30) verläuft und die einerseits mit dem Brennstoffhochdruckanschluss (10) und anderseits mit einem mit den Einspritzöffnungen (28) versehenen Sitz (26) für das Einspritzventilglied (30) in Verbindung steht und die durch den gehäusefesten Steuerkörper (74) dichtend abgeschlossen ist, dass der Steuerkolben (31, 33) und das Einspritzventilglied (30) miteinander in einer Mitnahmeverbindung stehen, und dass die Steuerhülse (72; 142; 164) quer zur Längsachse (A) des Gehäuses (14; 120) bewegbar ist und einen radialen Versatz des Steuerkolbens (31, 33) gegenüber dem Sitz (26) für das Einspritzventilglied (30) zu-
- Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass eine radiale Bohrung (44; 129) im Gehäuse (14; 120) die zentrale Bohrung (40, 42; 126) des Gehäuses (14; 120) mit dem Brennstoffhochdruckanschluss (10) verbindet und eine Hochdruckzufuhrleitung bildet.
- Brennstoffeinspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Steuerraum (110) über eine Drosselverbindung (102; 150; 165) mit der Hochdruckzone verbunden ist.
- 4. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Steuerhülse (72; 142) in einem koaxialen, am Steuerkörper (74) anliegenden Distanzteil (70; 140; 154), der von einem in die Hochdruckzone mündenden Durchlass (100; 150) durchsetzt ist, verschiebbar geführt ist und zum Erzeugen einer direkten Verbindung des Steuerraums (110) mit der Hochdruckzone um eine Strecke (S) gegenüber diesem längsverstellbar ist, wobei das Einspritzventilglied (30) durch eine einerends gehäusefest abgestützte und andernends am Einspritzventilglied (30) angreifende Schliessfeder (68) in seine Schliessstellung gedrängt ist.

5

20

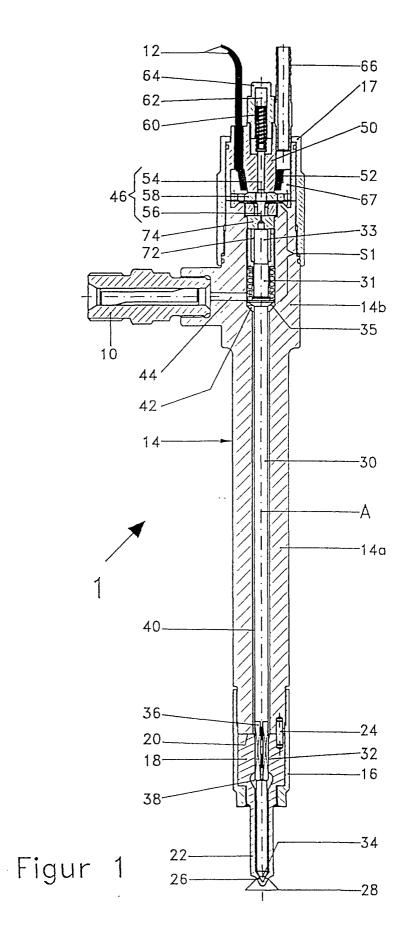
35

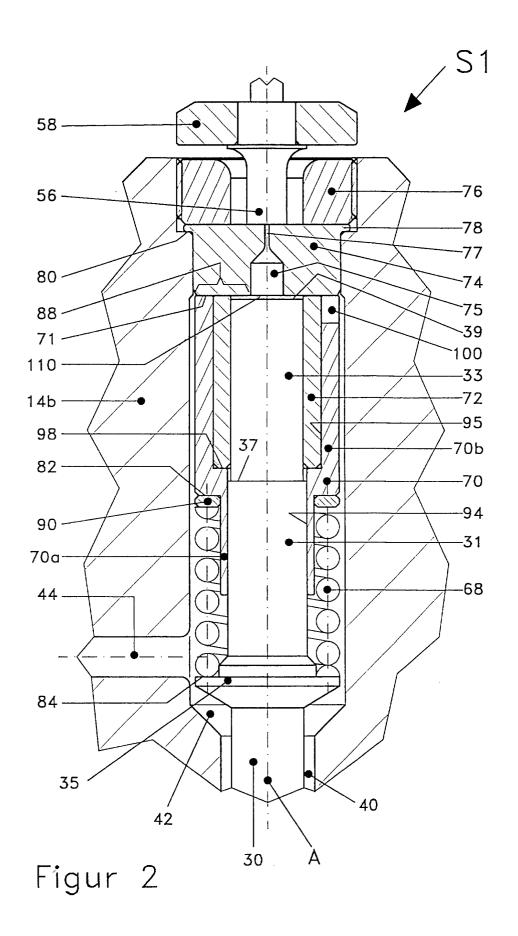
40

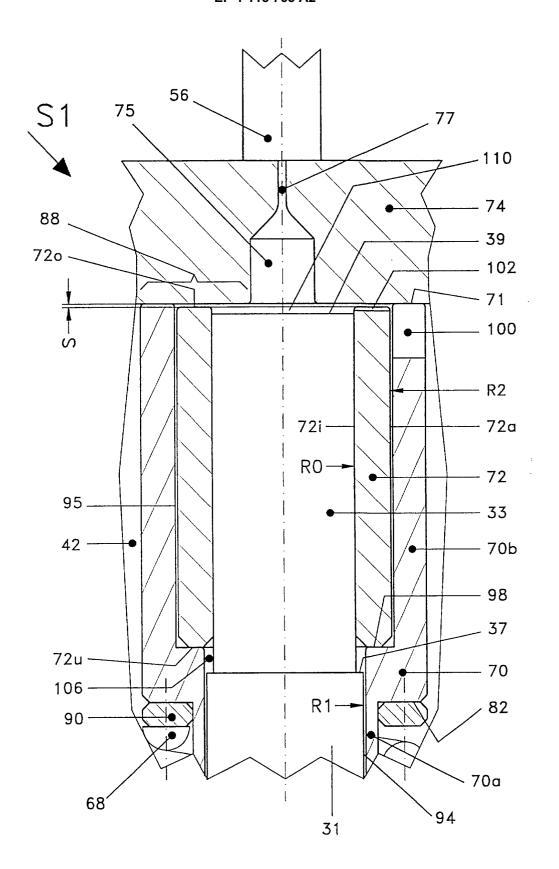
45

50

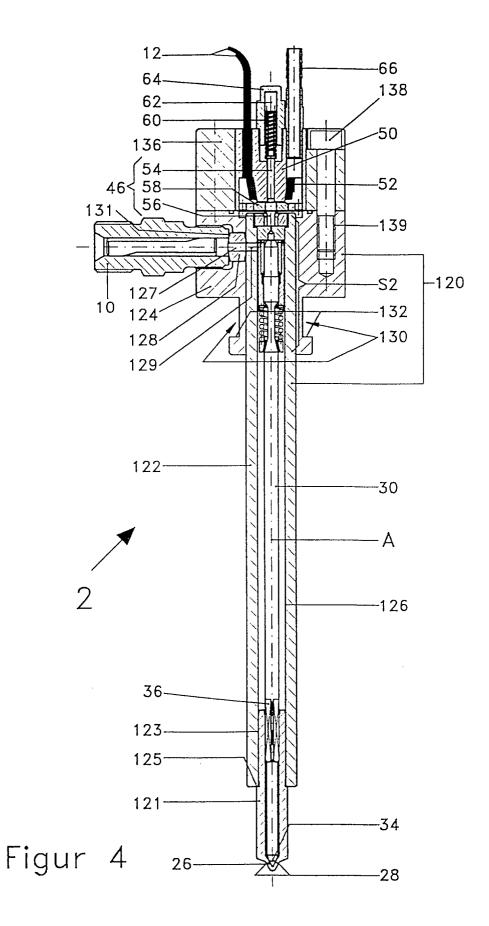
- 5. Brennstoffeinspritzventil nach Anspruch 4, dadurch gekennzeichnet, dass sich die Schliessfeder (68) einerends am Distanzteil (70; 140; 154) abstützt und dadurch diesen an den gehäusefesten Steuerkörper (74) andrückt.
- 6. Brennstoffeinspritzventil nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Steuerhülse (72; 142) zwischen einer inneren Absatzfläche (98) des Distanzteiles (70; 140; 154) und einer unteren Stirnfläche (88) des Steuerkörpers (74) längsverstellbar ist, an der der Distanzteil (70; 140; 154) mit seiner oberen Stirnfläche (71; 141) anliegt, wobei die Strecke (S) für die Längsverstellung der Steuerhülse (72; 142) durch die Differenz zwischen der Steuerhülsenlänge und dem Abstand der Absatzfläche (98) und der Stirnfläche (71; 141) des Distanzteiles (70; 140; 154) definiert ist und vorzugsweise etwa 10-mal kleiner ist als der Öffnungs- bzw. Schliesshub des Einspritzventilgliedes (30).
- 7. Brennstoffeinspritzventil nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Steuerhülse (72; 142) zwischen einer inneren Absatzfläche (98) des Distanzteiles (70; 140; 154) und einer Vertiefung in der unteren Stirnfläche (88) des Steuerkörpers (74) längsverstellbar ist, an welcher Stirnfläche (88) der Distanzteil (70; 140; 154) mit seiner oberen Stirnfläche (71; 141) anliegt, wobei die Strecke (S) für die Längsverstellung der Steuerhülse (72; 142) durch die Differenz zwischen der Steuerhülsenlänge und dem Abstand der Absatzfläche (98) von der Grundfläche der Vertiefung definiert ist.
- 8. Brennstoffeinspritzventil nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass sich die Steuerhülse (72; 142) bei sich in Schliessstellung befindlichem Einspritzventilglied (30) zwischen zwei Einspritzvorgängen in einem Gleichgewichtszustand befindet, in dem die vom Bremstoffsystemdruck auf die Steuerhülse (72; 142) wirkenden hydraulischen Kräfte ausgeglichen sind und keine weiteren Kräfte auf die Steuerhülse (72; 142) wirken.
- 9. Brennstoffeinspritzventil nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, dass zwischen der dem Steuerkörper (74) abgewandten Seite der Steuerhülse (72; 142) und einer ringförmigen Absatzfläche (37) des Steuerkolbens (31, 33) ein radial durch die Wand des Distanzteiles (70; 140) und den Steuerkolben (31, 33) begrenzter Raum (106) gebildet ist, dessen Volumen durch die beim Öffnen der Auslassöffnung (77) hervorgerufene Längsverstellung der Steuerhülse (72; 142) zum Steuerkörper (74) hin zumindest kurz vor und während des Öffnungs- und Schliessvorganges des Einspritzventilgliedes (30) verändert wird, wodurch

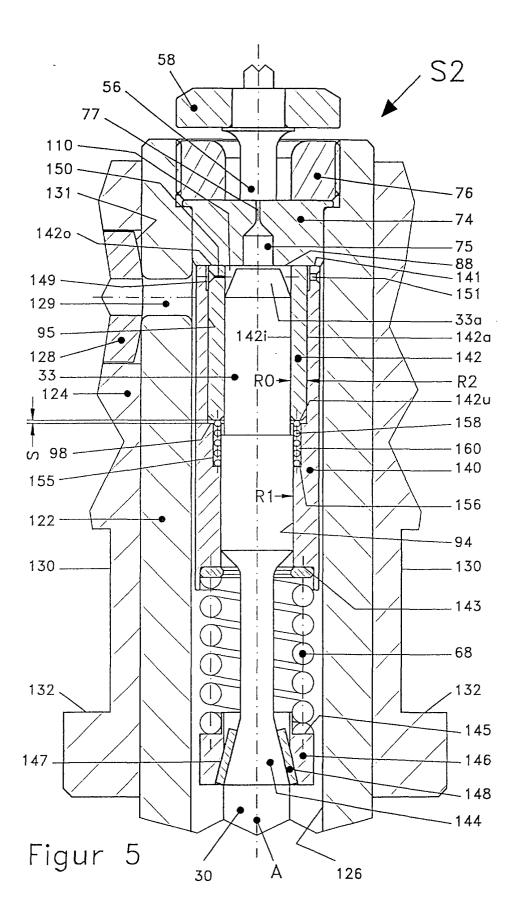

- der Druck in diesem Raum (106) gegenüber der übrigen Hochdruckzone ebenfalls verändert wird, so dass die Steuerhülse (72; 142) in der Funktion, die Strecke (S) kurz vor und während des Öffnungsvorganges zu schliessen und während des Schliessvorganges wieder zu öffnen, unterstützt wird.
- **10.** Brennstoffeinspritzventil nach Anspruch 9, dadurch gekennzeichnet, dass der Steuerkolben zwei Kolbenteile (31, 33) unterschiedlichen Durchmessers aufweist, zwischen denen die ringförmige Absatzfläche (37) angeordnet ist, wobei die Steuerhülse (72; 142) auf dem den kleineren Durchmesser aufweisenden Kolbenteil (33) eng gleitend geführt ist und der Distanzteil (70; 140) mit seiner Innenfläche (94) auf dem den grösseren Durchmesser aufweisenden Kolbenteil (31) mit einem Radialspiel (R1) geführt ist und mit seinem im Durchmesser erweiterten Teil die Steuerhülse (72; 142) mit einem Radialspiel (R2) umgibt, wobei der Raum (106) zwischen dem Kolbenteil (31) kleineren Durchmessers und der Innenfläche (94) für den anderen Kolbenteil (33) gebildet ist.
- 11. Brennstoffeinspritzventil nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, dass der Steuerkolben einen im wesentlichen konstanten Durchmesser aufweist, und die Steuerhülse (142) durch auf eine dem Steuerkörper (74) zugewandte ringförmige Fläche (142d) einwirkende hydraulische Kräfte allein gesteuert wird.
- 12. Brennstoffeinspritzventil nach einem der Ansprüche 4 bis 11, dadurch gekennzeichnet, dass die Steuerhülse (72; 142) den Steuerraum (110) jeweils nur vom Beginn jedes Einspritzvorganges bis zum Beginn der Schliessbewegung des Einspritzventilgliedes (30) radial begrenzt.
- 13. Brennstoffeinspritzventil nach einem der Ansprüche 4 bis 10, gekennzeichnet durch eine die Steuerhülse (142) vor und während des Einspritzvorganges sowie zu Beginn des Schliessvorganges an den Steuerkörper (74) andrückende Druckfeder (158).
- 14. Brennstoffeinspritzventil nach Anspruch 3 und einem der Ansprüche 4 bis 13, dadurch gekennzeichnet, dass der im Distanzteil (70; 140; 154) vorgesehene Durchlass (100; 151) zusammen mit der in der Steuerhülse (72; 142) vorgesehenen Drosselverbindung (102; 150) den Steuerraum (110) mit dem zwischen dem Umfang des Distanzteiles (70; 140; 154) und der zentralen Gehäuse-Bohrung (42; 126) vorhandenen, zur Hochdruckzone gehörendem Raum verbinden.

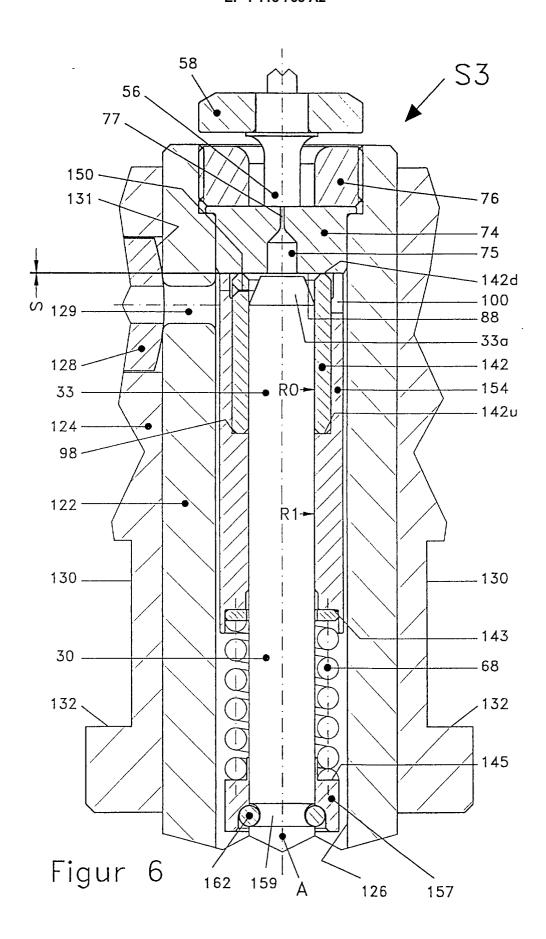

5

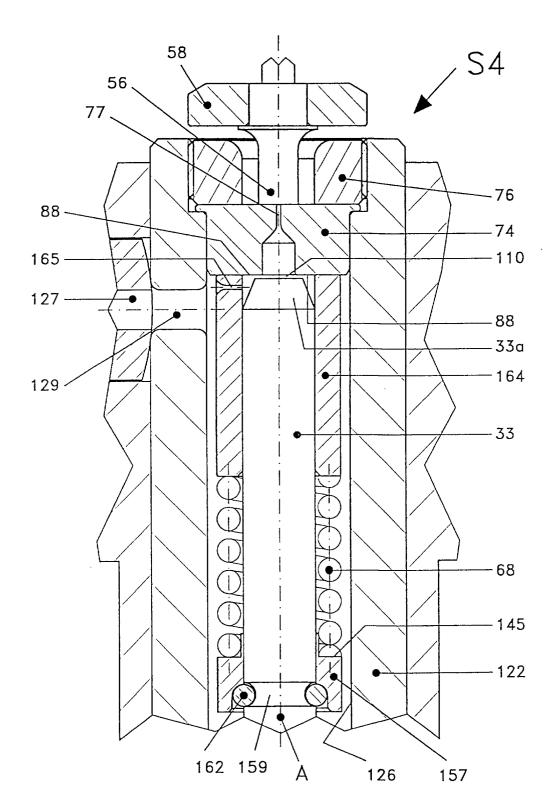

20

- 15. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das Einspritzventilglied (30) und der Steuerkolben (31, 33) einstückig ausgebildet oder kraft- oder formschlüssig miteinander verbunden sind.
- 16. Brennstoffeinspritzventil nach einem der Ansprüche 2 bis 15, dadurch gekennzeichnet, dass das Ventil-Gehäuse (14; 120) zweistückig ausgebildet und einen ersten, rohrförmigen Gehäuseteil (122) aufweist, der in einen zweiten, oberen Gehäuseteil (124) hineinragt und mit diesem verbunden ist, wobei die in die zentrale Bohrung (126) mündende radiale Bohrung (129) im rohrförmigen Gehäuseteil (122) angeordnet und mit dem Brennstoffhochdruckanschluss (10) verbunden ist.
- 17. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass das Radialspiel (R0) der engen Gleitpassung zwischen der inneren Führungsfläche (72i; 142i; 164i) der Steuerhülse (72; 142; 164) und dem darin geführten Steuerkolbenteil (33) 1 bis 8 μm beträgt.
- 18. Brennstoffeinspritzventil nach Anspruch 3, gekennzeichnet durch eine stationäre, von einer Schliessfeder (68) dauernd an den Steuerkörper (74) angedrückte Steuerhülse (164), die den Steuerraum (110) umschliesst und mit einem die Drosselverbindung bildenden Durchlass (165) versehen ist, der den Steuerraum (110) mit dem zwischen dem Umfang der Steuerhülse (164) und der Wand der zentralen Gehäuse-Bohrung (126) gebildeten, zur Hochdruckzone gehörendem Raum verbindet, wobei die Schliessfeder (68) einerends an der Steuerhülse (164) abgestützt ist und andernends am Einspritzventilglied (30) angreift, vorzugsweise an einer letzterem zugeordneten Absatzfläche (145).
- **19.** Brennstoffeinspritzventil nach Anspruch 18 und einem oder mehreren der Ansprüche 15 bis 17.
- **20.** Brennstoffeinspritzventil intermittierenden zur Brennstoffeinspritzung in den Brennraum einer Verbrennungskraftmaschine, mit einem Gehäuse (14; 120), mit einem mit Einspritzöffnungen (28) versehenen Ventilsitzelement (22; 121), mit einem in das Gehäuse (14; 120) längsverstellbar eingebauten Einspritzventilglied (30) zum Verschliessen oder Öffnen der Einspritzöffnungen (28), und mit einer Steuervorrichtung (S1; S2; S3) zur Steuerung der Verstellbewegung des Einspritzventilgliedes (30), die einen mit dem Einspritzventilglied (30) wirkverbundenen Steuerkolben (31, 33) umfasst, der einerseits durch den in einer mit einem Brennstoffhochdruckanschluss (10) verbundenen Hochdruckzone herrschenden Brennstoffsystemdruck und anderseits durch den Brennstoff-Steuerdruck in einem


- Steuerraum (110) beaufschlagt wird, der in Längsrichtung des Brennstoffeinspritzventils (1; 2) zwischen einer Stirnfläche (39) des Steuerkolbens (31, 33) und einem gehäusefesten Steuerkörper (74) angeordnet und radial wenigstens zeitweise zumindest vom Beginn des Einspritzvorganges bis zum Beginn der Schliessbewegung des Einspritzventilgliedes (30) durch eine Steuerhülse (72; 142) begrenzt ist, deren innere Führungsfläche (72i; 142i) mit dem Steuerkolben (31, 33) eine enge Gleitpassung bildet, wobei der Steuerdruck im Steuerraum (110) durch Öffnen oder Schliessen mindestens einer Auslassöffnung (77) im Steuerkörper (74) mittels eines steuerbaren Pilotventils (46) steuerbar ist, dadurch gekennzeichnet, dass die Steuerhülse (72; 142) in einem koaxialen, am Steuerkörper (74) anliegenden Distanzteil (70; 140; 154), der von einem in die Hochdruckzone mündenden Durchlass (100; 150) durchsetzt ist, verschiebbar geführt ist und zum Erzeugen einer direkten Verbindung des Steuerraums (110) mit der Hochdruckzone um eine Strecke (S) gegenüber diesem längsverstellbar ist, wobei das Einspritzventilglied (30) durch eine einerends gehäusefest abgestützte und andernends am Einspritzventilglied (30) angreifende Schliessfeder (68) in seine Schliessstellung gedrängt ist.
- Brennstoffeinspritzventil nach Anspruch 20 und einem oder mehreren der Ansprüche 4 bis 17.







Figur 3

Figur 7