[0001] The present invention relates to a path search method of a spread spectrum communication
system and a receiver using the method, and more particularly to a path search method
of a spread spectrum communication system, which is effective in miniaturization and
reduction in consumption power and a receiver using the method.
[0002] The receiver of the spread spectrum communication system is used in a CDMA (Code
Division Multiple Access) and the like.
[0003] Generally, in the receiver of the spread spectrum communication system, a multipath
occurs due to reflection and the like. For this reason, regarding the respective multipath
components, the receiver of the spread spectrum communication system detects distribution
(delay profile) of reception power with respect to delay time at its arrival time,
and manages the delay profile data individually.
[0004] The receiver of the spread spectrum communication system comprises a plurality of
finger circuits that despreads baseband signals, a rake circuit that performs rake
combining of the despread signals output from the plurality of finger circuits, and
a path searcher that transmits reception timing to the finger circuits.
[0005] The path searcher calculates the delay profile data from the baseband signals, and
stores them to be equalized at a period of time (one frame) of, for example, 10 ms.
[0006] For this reason, the number of path search sample points, which corresponds to oversampling
times of a spreading cycle in one symbol, is normally needed, and extends to 1024
in some cases. In the case of using diversity, the number of delay profile data to
be stored is doubled as compared with the normal case. This results in the enlargement
of the circuit scale of such as a memory that stores the delay profile data, a register,
and the like.
[0007] The above-mentioned problem results from the conventional path search method. The
path search means that the delay profile data are calculated to detect the peak of
the calculated delay profile data. The conventional path search method is illustrated
in FIG. 7. In FIG. 7, a horizontal axis indicates time and a vertical axis indicates
reception power. In the conventional path search method, the delay profile data are
calculated in a path search range (one window) of one symbol (t0 to t5) around a maximum
peak. In this example, three peaks are detected by comparison among the delay profile
data as illustrated in this figure.
[0008] In the case where a correlator is operated at one sample point per one delay profile
data calculation, the correlators at all sample points are operated, so that power
to be consumed is increased.
[0009] Since the number of correlators that calculate the delay profile data are related
to the number of sample points of the delay profile data, the reduction in the number
of sample points decreases the number of correlators, making it possible to reduce
power consumption. However, in the simple reduction in the number of sample points,
there is a possibility that tracking accuracy of reference reception timing at which
the path search is carried out will be also reduced.
[0010] In consideration of the aforementioned problem, the present invention has been made,
and an object of the present invention is to provide a path search method of a spread
spectrum communication system, which is capable of attaining miniaturization and reduction
in consumption power and a receiver using the method.
[0011] Another object of the present invention is to provide a path search method of a spread
spectrum communication system, which reduces consumption power without deteriorating
the tracking accuracy of reference reception timing at which a path search is carried
out and a receiver using the method.
[0012] In order to attain the above object, according to the first aspect of the present
invention, there is provided a receiver of a spread spectrum communication system,
the receiver of a spread spectrum communication system characterized by comprising:
a plurality of despreading circuits (120) for despreading received signals having
multipath components at predetermined timing allocated thereto;
a rake circuit (130) for performing rake combining of the signals despread by despreading
circuits (120); and
a path searcher (140) which forms a first window showing a part of a search range
and calculates delay profile data of the received signals in the first window to search
an effective path, forms at least one second window in the search range except the
first window and calculates delay profile data of the received signals in the second
window, and detects timing at which the received signals are despread based on calculated
delay profile data to allocate the detected timing to the despreading circuits (120).
[0013] Moreover, according to the second aspect of the present invention, there is provided
a path search method of a spread spectrum communication system characterized by comprising:
receiving signals including multipath components;
forming a first window showing a part of a predetermined search range to search an
effective path;
calculating first delay profile data representing a delay profile of received signals,
in the first window to search an effective path;
forming at least one second window in the search range except the first window;
calculating second delay profile data representing a delay profile of the received
signals in the second window to search an effective path ; and
detecting timing at which despreading the received signals based on calculated first
and second delay profile data.
[0014] These objects and other objects and advantages of the present invention will become
more apparent upon reading of the following detailed description and the accompanying
drawings in which:
FIG. 1 is a block diagram illustrating a configuration of the substantial part of
a receiver of a spread spectrum communication system according to a first embodiment
of the present invention;
FIG. 2 is a block diagram illustrating a configuration of a path searcher;
FIG. 3 is a view to explain an operation of the receiver of the first embodiment;
FIG. 4 is a view to explain an operation of the receiver of the first embodiment;
FIG. 5 is a view to explain an operation of the receiver of a second embodiment;
FIG. 6 is a view to explain an operation of the receiver of the second embodiment;
and
FIG. 7 is a view to explain the conventional path search method.
[0015] Preferred embodiments of the present invention will be specifically explained as
taking a receiver of a spread spectrum communication system as an example with reference
to the accompanying drawings.
[0016] FIG. 1 illustrates a configuration of a substantial part 100 of the receiver of the
spread spectrum communication system according to the first embodiment of the present
invention.
[0017] The receiver substantial part 100 illustrated in FIG. 1 comprises a receiving circuit
110, a plurality of finger circuits 120, a rake circuit 130, a peak position estimation
circuit 135 and a path searcher 140.
[0018] The respective finger circuits 120 are supplied with baseband signals modulated by
the receiving circuit 110 via an antenna ANT, and despread the supplied baseband signals
at predetermined timing to be described later to output them to the rake circuit 130.
[0019] The rake circuit 130 performs RAKE combining of the despread signals output from
the respective finger circuits 120 at aligned timing.
[0020] A peak position estimation circuit 135 estimates a peak position at a reference timing
in the reception by the receiver, and supplies information representing the peak position
to the path searcher 140.
[0021] The path searcher 140 detects (path-searches) an effective path from the demodulated
baseband signals. The path search means that the delay profile data (correlation values)
are calculated to detect the peak of the calculated delay profile data in order to
obtain timing at which the respective finger circuits 120 receive the baseband signals.
[0022] As shown in FIG. 2, the path searcher 140 comprises a window controller 141, a sampling
circuit 142, a spread code generator 143, a plurality of correlators 144, a peak detector
145, an assignment controller 146, and a memory 147.
[0023] The window controller 141 divides a search range for calculating the delay profile
data, and sets two kinds of windows to the divided search ranges respectively. The
window controller 141 receives the peak position information from the peak position
estimation circuit 135, and adjusts the center of a first window (tracking window)
to the peak position represented by the received peak position information.
[0024] The window controller 141 further sets two independent second windows (search windows)
so that those are shifted from the peak position, and selects the second windows alternately.
Those two second windows are set in the search range without the area where the first
window is set.
[0025] The sampling circuit 142 samples the baseband signal, and supplies the sampled signal
to the correlators 144. The spread code generator 143 generates spread code, and supplies
the generated spread code to the correlators 144.
[0026] Each of the correlators 144 receives a control signal from the window controller
141, and calculates correlation between the signal sampled by the sampling circuit
142 and the spread code in accordance with the control signal from the window controller
141. In other words, each of the correlators 144 calculates the correlation between
the input signal and the spread code, in the first window or one of the second windows
being selected. Distribution of the calculated correlation values represents the delay
profile of the reception signal.
[0027] The peak detector 145 compares levels of the correlation values calculated by the
correlator 144, and detects peaks whose level is equal to or greater than a predetermined
threshold. The peak detector 145 also obtains information representing timings of
the peak appearances (timing information), and supplies the timing information to
the assignment controller 146.
[0028] The assignment controller 146 assigns the timing information to the finger circuits
120 in order of, for example, peak level, based on the timing information supplied
from the peak detector 145. Each of the finger circuit 120 despreads the reception
signals at a timing represented by the timing information supplied from the assignment
controller 146. The assignment controller 146 also provides the rake circuit 130 with
information indicating a set of the finger circuit 120 and timing for effective output
(effective finger information). The memory 147 stores the calculated correlation values.
[0029] An explanation will be next given of a path search method using the path searcher
140. In order to make the explanation easily understandable, comparison between this
path search method and the conventional path search method will be given. In the conventional
path search method, as illustrate in FIG. 7, the path search range of one symbol (t0
to t5) around the maximum peak is used as one window to calculate the delay profile
data (correlation values).
[0030] While, the path searcher 140 of the present invention calculates the correlation
values using two windows as illustrated in FIG. 3. One of two windows is referred
to as a tracking window (first window). The first window is set to be in the path
search range corresponding to time, which is shorter than one symbol, and in the vicinity
of the center of the maximum peak. The other window is referred to as a search window
(second window). The second window is one of two ranges formed by dividing time later
than the first window into two. The search window is set to be either path search
range alternatively. In this example, two windows have the search range where one
symbol time is equally divided into five.
[0031] Movement of two windows will be explained with reference to FIG. 4. The path search
range where two windows are combined is set to be time (t2 to t5), which is shorter
than one symbol. The path searcher 140 uses the tracking window in the range of time
t2 to t3 and the search window in the range of time t3 to t4 and that of time t4 to
t5 as illustrated in FIG. 4A and FIG. 4B. The state shown in FIG. 4A and the state
shown in FIG. 4B are alternately repeated. For example, it is assumed that one correlator
is provided in connection with one sample point. The path searcher 140 calculates
the correlation values at sample points corresponding to the number of the plurality
of correlators, and stores them. The path searcher 140 performs comparison among the
levels of the correlation values at the respective sample points, and specifies timing
where a peak whose level shows a maximum value is present. At this time, the path
searcher 140 also specifies timing where a peak having a value more than a threshold
value (for example, 1/2 of the maximum value) is present.
[0032] At the time of using the tracking window, the path searcher 140 calculates the correlation
values at sample points corresponding to 1/3 of the entire number of sample points
by the correlators corresponding to 1/3 of the entire number of correlators through
the states shown in FIG. 4A and FIG. 4B. Similarly, at the time of using the search
window, the path searcher 140 calculates the correlation values at sample points corresponding
to 1/3 of the entire number of sample points by the correlators corresponding to 1/3
of the entire number of correlators through the state shown in FIG. 4A, aside from
those utilized at the tracking window using time. Thereafter, the path searcher 140
calculates the correlation values at sample points corresponding to 1/3 of the entire
number of sample points by the correlators corresponding to 1/3 of the entire number
of correlators through the state shown in FIG. 4B, aside from those utilized in the
state shown in FIG. 4A. Namely, in the path searcher 140, the correlators corresponding
to 2/3 of the entire number of correlators are operated at any timing.
[0033] In contrast to this, according to the conventional path search method, since the
entire sample points are searched at one window, all correlators must be operated.
Accordingly, since the receiver of the spread spectrum communication system of this
embodiment can reduce the number of correlators that are operating during the path
search as compared with the conventional method, the reduction in consumption power
can be expected.
[0034] In the conventional method, it was necessary to store all correlation values at all
sample points in one symbol. However, in the path search method according to the present
invention, since the search window is used in a time divisional manner, the amount
of information to be stored during the calculation of correlation values may be smaller
than the conventional method.
[0035] Moreover, in the path search, the tracking must be carried out at reception timing
to be used as a reference of the entirety of the receiving system, and the tracking
accuracy at this reception timing is important. The receiver according to the present
invention calculates the correlation values at the tracking window for each time,
so that the peak with high accuracy can be obtained. This is particularly effective
in a case that the path search must be carried out for a short time, for example;
the receiver is intermittently operated. In the case where the finger circuit 120
is singly formed, the rake circuit 130 becomes unnecessary. Even in such a case, consumption
power required to carry out the path search can be reduced.
[0036] FIG. 5 is a view to explain an operation of the receiver of the spread spectrum communication
system of the second embodiment of the present invention. A receiver 200 of this embodiment
has fundamentally the same configuration as that of the first embodiment except the
point that the path search range is different from the first embodiment. As illustrated
in FIG. 5, the search window is set on not only the right side of the tracking window
but also the left side thereof, that is, a previous time region. Movement of the search
window in this case is illustrated in FIG. 6A to FIG. 6 D in order. It is noted that
movement is returned to state illustrated in FIG. 6A after state illustrated in FIG.
6D.
[0037] In this receiver, since the path search range is wider than the case of the first
embodiment illustrated in FIG. 3 and FIG. 4A, and FIG. 4B, there is a demerit in that
much time is required to complete the path search. However, for example, even if the
receiver is moved and reference timing is abruptly shifted, the path search easily
keeps up with variations in reference since the path search range is wider than the
case of the first embodiment. Accordingly, the path searcher 140 can take measures
in which, for example, the effective finger circuit 120 is allocated more speedily
than the case of the first embodiment.
[0038] Though the search window is set to two- or four-divided time regions in the aforementioned
embodiment, the time region may be divided into the number other than these. Furthermore,
regarding the operation in which the path searcher calculates the correlation values
using two windows, a controller, which is provided at the outer section of the path
searcher, may control the operation. In the above-mentioned receiver of the spread
spectrum communication system, the path searching operation by the path searcher may
be executed by software processing without being limited to the hardware configuration.
[0039] As explained above, according to the present invention, the storage quantity of the
correlation values during the calculation of the correlation values is reduced without
deteriorating the tracking accuracy of reference reception timing at which the path
search is carried out, and the number of correlators that operate concurrently is
reduced. This makes it possible to attain miniaturization and reduction in consumption
power. Though the above has explained the preferable embodiments, the present invention
is not limited to these embodiments.
[0040] Various embodiments and changes may be made thereunto without departing from the
broad spirit and scope of the invention. The above-described embodiments are intended
to illustrate the present invention, not to limit the scope of the present invention.
The scope of the present invention is shown by the attached claims rather than the
embodiments. Various modifications made within the meaning of an equivalent of the
claims of the invention and within the claims are to be regarded to be in the scope
of the present invention.
[0041] This application is based on Japanese Patent Application No. 2000-035374 filed on
February 14, 2000 and including specification, claims, drawings and summary. The disclosure
of the above Japanese Patent Application is incorporated herein by reference in its
entirety.
1. A receiver of a spread spectrum communication system characterized by comprising:
a plurality of despreading circuits (120) for despreading received signals having
multipath components at predetermined timing allocated thereto;
a rake circuit (130) for performing rake combining of the signals despread by despreading
circuits (120); and
a path searcher (140) which forms a first window showing a part of a search range
and calculates delay profile data of said received signals in said first window to
search an effective path, forms at least one second window in the search range except
said first window and calculates delay profile data of said received signals in said
second window, and detects timing at which said received signals are despread based
on calculated delay profile data to allocate the detected timing to said despreading
circuits (120).
2. The receiver of the spread spectrum communication system according to claim 1, characterized
in that said path searcher forms a plurality of second windows by dividing the search
range except said first window to calculate said delay profile data in said respective
second windows in accordance with a predetermined order.
3. The receiver of the spread spectrum communication system according to claim 1 or 2,
characterized in that said path searcher (140) is supplied with a peak position information
from a peak position estimation circuit (135) which performs rough estimation of a
peak position of the delay profile, and said path searcher (140) sets the center of
said first window at a timing at which the peak position appears.
4. The receiver of the spread spectrum communication system according to claim 2 or 3,
characterized in that said path searcher forms said second windows in only one of
areas which interpose said first window therebetween.
5. The receiver of the spread spectrum communication system according to claim 2 or 3,
characterized in that said path searcher forms said second windows in both areas which
interpose said first window therebetween.
6. The receiver of the spread spectrum communication system according to claim 2 or 3,
characterized in that said path searcher forms two second windows and alternately
specifies said second window repeatedly and said path searcher calculate delay profile
with the specified second windows.
7. A path search method of a spread spectrum communication system characterized by comprising:
receiving signals including multipath components;
forming a first window showing a part of a predetermined search range to search an
effective path;
calculating first delay profile data representing a delay profile of received signals,
in the first window to search an effective path;
forming at least one second window in the search range except said first window;
calculating second delay profile data representing a delay profile of the received
signals in the second window to search an effective path ; and
detecting timing at which despreading said received signals based on calculated first
and second delay profile data.
8. The path search method according to claim 7, characterized in that
said second window forming step includes forming a plurality of second windows by
dividing the search range except said first window, and
said second profile data calculating step includes calculating said delay profile
data in said respective second windows in accordance with a predetermined order.
9. The path search method according to claim 7 or 8, characterized by further comprising
performing rough estimation of the delay profile of the received signal; and
setting center of the first window at a timing at which roughly calculated peak
position appear.
10. The path search method according to claim 8 or 9, characterized in that said second
windows are formed in only one of areas which interpose said first window therebetween.
11. The path search method according to claim 8 or 9, characterized in that said second
windows are formed in both areas which interpose said first window therebetween.
12. The path search method according to claim 8 or 9, characterized in that
said second window forming step forms two second windows, and
said second profile data calculating step alternately specifies the two second windows
repeatedly, and calculates the second delay profile data with the specified second
windows.