(19)
(11) EP 1 128 130 B1

(12) EUROPÄISCHE PATENTSCHRIFT

(45) Hinweis auf die Patenterteilung:
23.03.2005  Patentblatt  2005/12

(21) Anmeldenummer: 01102089.8

(22) Anmeldetag:  31.01.2001
(51) Internationale Patentklassifikation (IPC)7F23J 13/02

(54)

Gehäuse einer Behandlungseinrichtung für gegenüber Umgebungstemperatur heisse Gase

Housing for a treatment device for hot gases

Carter pour un équipement de traitement de gaz chauds


(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR
Benannte Erstreckungsstaaten:
RO

(30) Priorität: 21.02.2000 DE 10007844

(43) Veröffentlichungstag der Anmeldung:
29.08.2001  Patentblatt  2001/35

(73) Patentinhaber: Rheinhold & Mahla AG
80992 München (DE)

(72) Erfinder:
  • Buck, Klaus-Dieter
    59494 Soest (DE)

(74) Vertreter: Rau, Manfred, Dr. Dipl.-Ing. et al
Rau, Schneck & Hübner Patentanwälte Königstrasse 2
90402 Nürnberg
90402 Nürnberg (DE)


(56) Entgegenhaltungen: : 
EP-A- 0 151 265
DE-A- 3 411 924
DE-A- 4 225 448
US-A- 4 557 297
EP-A- 0 342 661
DE-A- 3 940 381
DE-A- 19 631 291
   
       
    Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäischen Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).


    Beschreibung


    [0001] Die Erfindung betrifft ein Gehäuse einer Behandlungseinrichtung für gegenüber Umgebungstemperatur heiße Gase, insbesondere Rauchgase

    [0002] Aus der DE 42 25 448 A1 ist ein Heißgaskanal mit einer Wandung und einer innenseitigen Wärmeisolierung aus einer Mehrzahl von Kassetten bekannt. Jede Kassette weist ein innen- und ein außenseitiges Blech und zwischen diesen ein Isolierinaterial auf. Dieses ist bei jeder Kassette allseitig von einer Abdeckung umschlossen, welche insgesamt jeweils vier weitere Bleche umfasst, die über Schweißpunkte miteinander verschweißt sind.

    [0003] Aus der EP 0 342 661 A1 ist ein Wärmedämmformkörper bekannt, bei dem eine Warmedämmplatte in eine Aluminiumfolie unter einem Unterdruck eingeschweißt ist.

    [0004] Die DE 196 31 291 A1 offenbart eine Isolationsverkleidung, bei der Haltebolzen in einer Stoßfuge zwischen zwei benachbarten Isolierelementen angeordnet sind.

    [0005] Die US 4 557 297 A offenbart einen Heißgaskanal mit einem äußeren Stützgerüst.

    [0006] Die DE 34 11 924 A1 offenbart eine Isolationswand, welche aus rasterartig aneinander angefiigten einzelnen Isolationsplatten besteht.

    [0007] Weitere bekannte derartige Gehäuse, beispielsweise von Rauchgas-Elektrofiltern, weisen ein Gerüst auf, das mit einer geschlossenen Innenwand versehen ist und das auf seiner Außenseite mit einer sehr dicken Isolierung versehen ist. Der bauliche Aufwand dieser Gehäuse ist außerordentlich groß. Der Grund liegt darin, dass die Gerüste im Inneren des Gehäuses angeordnet sind und damit hohen Temperaturen ausgesetzt sind.

    [0008] Der Erfindung liegt die Aufgabe zugrunde, ein Gehäuse der eingangs genannten Art so auszugestalten, dass es mit möglichst geringem Aufwand herstellbar ist.

    [0009] Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruches 1 gelöst. Kern der Erfindung ist, dass die Wand des Gehäuses selber aus einer relativ dünnen Isolier-Wand gebildet ist, die wiederum aus Isolier-Platten besteht, die eine extrem geringe Wärmeleitfähigkeit aufweisen. Das gesamte Gerüst des Gehäuses befindet sich im Bereich der Umgebungstemperatur, also auf der kalten Seite; lediglich die dem das heiße Gas führenden Innenraum zugewandte Innenseite der Isolier-Wand befindet sich auf der heißen Seite. Durch die erfindungsgemäßen Maßnahmen lassen sich der bauliche Aufwand und damit die Kosten gegenüber den bekannten Lösungen erheblich reduzieren. Da sich das Gerüst auf der kalten Seite befindet, kann es erheblich leichter ausgestaltet werden. Eine Behandlungseinrichtung im Sinne der Erfindung können auch Rauchgaskanäle sein, in denen heiße Rauchgase lediglich transportiert werden.

    [0010] Zahlreiche vorteilhafte und zum Teil erfinderische Ausgestaltungen ergeben sich aus den Unteransprüchen.

    [0011] Weitere Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich im übrigen aus der nachfolgenden Beschreibung eines Ausführungsbeispieles anhand der Zeichnung. Es zeigt
    Fig. 1
    eine schematisierte perspektivische Darstellung eines Gehäuses eines Rauchgas-Elektrofilters,
    Fig. 2
    einen Teil-Querschnitt durch eine sich über zwei benachbarte Stützen erstreckende Isolier-Wand des Gehäuses,
    Fig. 3
    einen gegenüber Fig. 2 vergrößerten Querschnitt durch die Isolier-Wand im Bereich einer Stoßstelle von zwei Isolier-Platten und
    Fig. 4
    eine teilweise aufgebrochene Ansicht der Isolier-Wand gemäß dem Sichtpfeil IV in Fig. 2.


    [0012] Wie aus Fig. 1 ersichtlich ist, besteht ein Gehäuse eines Elektrofilters, der zur Reinigung heißer Rauchgase dient, im wesentlichen aus einem außenliegenden Gerüst 1 und einer innenliegenden Isolier-Wand 2. Das Gerüst 1 besteht aus vertikalen Stützen 3 und nur angedeuteten horizontalen Streben 4 und ein Dach 5 tragenden Dach-Sparren 6. Zumindest die Stützen 3 und die Sparren 6 sind im Grundsatz identisch ausgebildet. Die Isolier-Wand 2 bildet nicht nur die Seiten- und Längswände, sondern auch die Dachhaut. Im Bodenbereich sind Austrags-Bunker 7 ausgebildet, durch die in üblicher Weise die bei der Reinigung der Rauchgase aus diesen abgetrennten Stoffe abgezogen werden.

    [0013] Wie insbesondere aus den Fig. 2 und 3 hervorgeht, bestehen die Stützen 3 und die Dach-Sparren 6 aus T- oder Doppel-T-Trägern an deren der Isolier-Wand 2 zugewandtem Flansch 8 die Isolier-Wand 2 befestigt ist. Hierzu ist gemäß der in Fig. 2 links dargestellten Ausgestaltung am Flansch 8 - außermittig zum Steg 9 des Trägers - ein als Gewindebolzen ausgebildeter Haltebolzen 10 angeschweißt. Er befindet sich in der Stoßfuge 11 zwischen zwei benachbarten, Teil der Isolier-Wand 2 bildenden Isolier-Platten 12, die sich - wie aus Fig. 2 hervorgeht - jeweils von einer zur nächsten benachbarten Stütze 3 erstreckt. Wie Fig. 4 entnehmbar ist, sind eine größere Zahl solcher Haltebolzen 10 im Abstand voneinander über die Länge einer Stütze 3 bzw. eines Sparrens 6 angebracht. Zwischen dem Flansch 8 und der zugewandten Seite der Isolier-Platten 12 ist eine nichttemperaturfeste Dichtung 13 angeordnet, die dicht am Flansch 8 und den beiden an der Stoßfuge 11 aneinanderstoßende Isolier-Platten 12 und dicht am Haltebolzen 10 anliegt. Sie kann als Flachdichtung oder als Lippendichtung ausgebildet sein.

    [0014] An der dem Innenraum 14 des Gehäuses zugewandten Seite ist eine sich über die volle Länge der Stütze 3 bzw. des Sparrens 6 erstreckende, als Flachprofil ausgebildete Druckplatte 15 auf die Haltebolzen 10 aufgesetzt, zwischen der und der dem Innenraum 14 zugewandten Fläche der Isolier-Platten 12 eine ebenfalls die Stoßfugen 11 überdeckende temperaturbeständige Dichtung 16 angeordnet ist, die auch dichtend am Haltebolzen 10 anliegt. Diese Dichtung 16 kann - wie Fig. 2 und 3 erkennen lassen - als Lippendichtung ausgebildet sein. Diese Dichtung 16 ist gegen die Temperaturen beständig, die im Innenraum 14 und in der zugewandten Seite der Isolier-Platten 12 auftreten können. Die Isolier-Platten 12 und die Dichtungen 13, 16 werden bei der Ausgestaltung mit dem Haltebolzen 10 über eine vom Innenraum 14 auf den jeweiligen Haltebolzen 10 aufgeschraubte Mutter, beispielsweise eine Hutmutter 17, dichtend verspannt und gehalten.

    [0015] Wie aus Fig. 2 rechts hervorgeht, kann als Haltebolzen 10' auch eine Maschinenschraube vorgesehen sein, deren Kopf 19 an der Druckplatte 15 anliegt, und die durch eine Bohrung 20 im Flansch 8 hindurchgesteckt und von außen mittels einer Mutter 21 gesichert und befestigt wird.

    [0016] Wie Fig. 3 entnehmbar ist, sind die Isolier-Platten 12,die auch als Isolier-Paneele bezeichnet werden, an ihren Längskanten mit Auskehlungen 18 versehen, in denen im Bereich der Stoßfugen 11 Isolierkörper 22 mit etwa elliptischem oder kreisförmigem Querschnitt angeordnet sind, wobei jeweils zwischen zwei in Längsrichtung der Stütze 3 oder des Sparrens 6 einander benachbarten Haltebolzen 10 je ein Isolierkörper 22 angeordnet ist.

    [0017] Wie aus Fig. 3 hervorgeht, weisen die Isolier-Platten 12 jeweils an ihren Außenseiten ein Blech 23 bzw. 24 von vorzugsweise 0,8 mm Dicke auf. Die Bleche 23, 24 bestehen aus austenitischem rostfreien Stahl und zwar insbesondere das dem Innenraum 14 zugewandte innenseitige Blech 23. Entsprechend sollten naturgemäß auch mindestens die Druckplatten 15 und die Gewindebolzen 10, 10' aus gleichartigem austenitischen rostfreien Stahl bestehen. Zwischen den Blechen 23, 24 ist Isoliermaterial 25 angeordnet, das über eine extrem hohe Wärmedämmung von beispielsweise λ ≈ 0,004 W/mK verfügt, wobei für die Wärmeleitung auf jeden Fall gilt λ ≤ 0,01 W/mK. Als Isoliermaterial 25 kommt beispielsweise eine sogenannte Superisolation in Betracht, wie sie im VDI-WÄRMEATLAS, Berechnungsblätter für den Wärmeübergang, 5. Auflage 1988, VDI-VERLAG, Seiten Ke 1 bis Ke 17 dargestellt und beschrieben ist. Insbesondere kommt als Isoliermaterial ein von der Wacker-Chemie GmbH unter der Bezeichnung WDS hergestellter und vertriebener mikroporöser thermischer Dämmstoff in Betracht, dessen Hauptkomponente hochdisperse Kieselsäure ist. Sie besteht aus mikroskopisch kleinen Kugeln mit einem Durchmesser von 5 - 30 nm. Die Wärmeübertragung durch Festkörperleitfähigkeit ist dadurch minimal. Beim Pressen dieser hochdispersen Kieselsäure zu Platten wird ein mikrocellulares Gefüge gebildet. Es entstehen winzige Porenstrukturen mit einem Durchmesser von 0,1 Mikron. Die Wärmeübertragung durch Konvektion wird durch das Einsperren von Gasmolekülen minimiert. Durch Zumischen von Infrarot-Trübungsmitteln zur mikroporösen Kieselsäure wird die Infrarot-Durchlässigkeit deutlich verringert. Die Wärmeübertragung durch Strahlung wird dadurch ebenfalls minimiert. Dieses als Platte zwischen den Blechen 23, 24 vorhandene Isoliermaterial 25 weist daher eine extrem geringe Wärmeleitfähigkeit auf.

    [0018] Die Isolier-Platten 12 sind rundum an ihren Außenkanten, also an den Auskehlungen 18, jeweils mit die Auskehlung 18 begrenzenden Verbindungsblechen 26 mittels rundum laufender Verschweißungen gasdicht verbunden, so daß die Isolier-Platten 12 gasdicht geschlossene Innenräume aufweisen, in denen das Isoliermaterial 25 angeordnet ist. Diese Innenräume sind zusätzlich noch teilevakuiert, wodurch die Wärmeleitfähigkeit insgesamt noch weiter herabgesetzt wird. Die Verbindungsbleche 26 bestehen ebenfalls aus austenitischem rostfreien Stahl mit geringer Wärmeleitfähigkeit von beispielsweise λ< 20 W/mK. Die Dicke der Verbindungsbleche 26 ist zur Reduktion der Wärmeleitung minimiert auf vorzugsweise 0,3 mm.

    [0019] Die Isolierkörper 22 weisen als eigentlichen Isolierstoff auch das Isoliermaterial 25 und eine elastisch nachgiebige Umhüllung 27, beispielsweise aus Glasseide, auf. Die Isolierkörper 22 sind dadurch insgesamt elastisch nachgiebig und fangen die Wärmedehnungen der Isolier-Platten 12, auf und liegen trotzdem bei allen Temperaturen, d.h. bei allen Ausdehnungszuständen der Isolier-Platten 12 dicht an den Verbindungsflächen 26 der Auskehlungen 18 an.

    [0020] Die Befestigung an den Streben 4 erfolgt - wie vorstehend - für die Stützen 3 und Sparren 6 beschrieben.

    [0021] Wie sich aus der vorstehenden Beschreibung anschaulich ergibt, bildet die Isolier-Wand 2 zum einen die vollständige Isolierung des Gehäuses und zum anderen dessen Wand. Die gesamte tragende Konstruktion, nämlich das Gerüst 1 befindet sich auf der Außenseite, also in der Umgebung 28 mit Umgebungstemperatur. Lediglich die Druckplatten 15, die temperaturbeständigen Dichtungen 16, die zugeordneten Bereiche der Haltebolzen 10 bzw. 10' und die innenseitigen Bleche 23 samt Isoliermaterial 25 sind den hohen Temperaturen im Innenraum 14 ausgesetzt.


    Ansprüche

    1. Gehäuse einer Behandlungseinrichtung für gegenüber Umgebungstemperatur heiße Gase, insbesondere Rauchgase,

    - mit einem in der Umgebung (28) liegenden Gerüst (1) aus Stützen (3)

    - mit einer an der Innenseite des Gerüstes (1) angeordneten, einen Innenraum (14) umschließenden Isolier-Wand (2), die aus

    -- einem innenseitigen Blech (23),

    -- einem außenseitigen Blech (24) und

    -- zwischen den Blechen (23, 24) angeordnetem Isoliermaterial (25) von äußerst geringer Wärmeleitfähigkeit

    besteht, wobei

    - die Isolier-Wand (2) aus Isolier-Platten (12) gebildet ist, die im Raster der Stützen (3) angeordnet sind,

    - die Bleche (23, 24) einer Isolier-Platte (12) umlaufend mit einem Verbindungsblech (26) gasdicht verbunden sind,

    - die Isolier-Platten (12) teilevakuiert sind.


     
    2. Gehäuse nach Anspruch 1, dadurch gekennzeichnet,
    dass die Isolier-Platten (12) gegen Flansche (8) der Stützen (3) mit ihrem außenseitigen Blech (24) abgestützt sind.
     
    3. Gehäuse nach Anspruch 2, dadurch gekennzeichnet,
    dass zwischen dem außenseitigen Blech (24) und dem Flansch (8) eine Dichtung (13) angeordnet ist.
     
    4. Gehäuse nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass an der jeweiligen Stütze (3) in deren Längsrichtung im Abstand voneinander Haltebolzen (10, 10') gehalten sind, die in der Stoßfuge (11) zwischen zwei benachbarten Isolier-Platten (12) angeordnet sind und dass von dem Haltebolzen (10, 10') dem Innenraum (14) zugewandte, die Isolier-Platten (12) gegen die Stützen (3) pressende Druckplatten (15) gehalten werden.
     
    5. Gehäuse nach Anspruch 4, dadurch gekennzeichnet,
    dass zwischen den Druckplatten (15) und den innenseitigen Blechen (23) temperaturbeständige Dichtungen (16) angeordnet sind.
     
    6. Gehäuse nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Isolier-Platten (12) im Bereich ihrer Stoßfugen (11) mit Auskehlungen (18) versehen sind, wobei in den beiden einander zugewandten Auskehlungen (18) zweier an der Stoßfuge (11) aneinander stoßender Isolier-Platten (12) die Auskehlungen (18) zumindest im Wesentlichen ausfüllende Isolier-Körper (22) angeordnet sind.
     
    7. Gehäuse nach Anspruch 6, dadurch gekennzeichnet,
    dass die Isolierkörper (22) aus Isoliermaterial (25) und einer Umhüllung gebildet sind.
     
    8. Gehäuse nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Isoliermaterial (25) im Wesentlichen durch eine mikroporöse Kieselsäure gebildet ist.
     
    9. Gehäuse nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Isoliermaterial (25) eine Wärmeleitfähigkeit λ, wofür gilt, λ ≤ 0,01 W/mK, aufweist.
     


    Claims

    1. A housing of a device for the treatment of gases hotter than the ambient temperature, in particular flue gases, comprising

    - a frame (1) made of supports (3) and located in the environment (28),

    - an insulating wall (2) arranged at the interior side of said frame (1) and defining an interior space (14), said insulating wall (2) comprising

    -- a metal sheet (23) at the interior side,

    -- a metal sheet (24) at the exterior side, and

    -- insulating material (25) of an extremely low heat conductivity arranged between said metal sheets (23, 24),

    wherein

    - the insulating wall (2) is formed by insulating plates (12) arranged in the grid-like frame of said supports (3),

    - the metal sheets (23, 24) of one insulating plate (12) are gas-tightly and circumferentially connected with a connecting metal sheet (26),

    - the insulating plates (12) are partly evacuated.


     
    2. A housing according to claim 1 characterized
    in that the insulating plates (12) are supported by their exterior side metal sheet (24) towards flanges (8) of said supports (3).
     
    3. A housing according to claim 2, characterized
    in that a sealing (13) is arranged between said exterior side metal sheet (24) and said flange (8).
     
    4. A housing according to any of claims 1 to 3, characterized
    in that supporting bolts (10, 10') are spaced apart from one another and mounted onto the respective support (3) in the longitudinal direction thereof, said supporting bolts (10, 10') being arranged in the butt joint (11) between two adjacent insulating plates (12), and wherein said supporting bolts (10, 10') hold pressure plates (15) facing the interior space (14) and pressing said insulating plates (12) against said supports (3).
     
    5. A housing according to claim 4, characterized
    in that temperature-resistant seals (16) are arranged between said pressure plates (15) and said interior side metal sheets (23).
     
    6. A housing according to any of claims 1 to 5, characterized
    in that the insulating plates (12) are provided with recesses (18) in the region of their butt joints (11), with insulating bodies (22) filling at least substantially said recesses (18) being arranged in the two recesses (18) facing each other of two insulating plates (12) being in contact with each other at said butt joint (11).
     
    7. A housing according to claim 6, characterized
    in that the insulating bodies (22) are formed by insulating material (25) and a sheath.
     
    8. A housing according to any of claims 1 to 7, characterized
    in that the insulating material (25) is essentially formed by a microporous silicic acid.
     
    9. A housing according to any of claims 1 to 8, characterized
    in that the insulating material (25) has a heat conductivity λ, with λ ≤ 0,01 W/mK.
     


    Revendications

    1. Carter d'un équipement de traitement des gaz chauds par rapport à la température ambiante, en particulier des gaz de combustion,

    - comprenant une ossature (1) composée d'appuis (3) située dans l'environnement (28),

    - comprenant une paroi isolante (2) disposée sur le côté intérieur de l'ossature (1), entourant un espace intérieur (14), laquelle paroi est constituée

    * d'une tôle intérieure (23),

    * d'une tôle extérieure (24) et

    * d'un matériau isolant (25) disposé entre les tôles (23, 24), présentant une conductivité thermique extrêmement réduite,

    - la paroi isolante (2) étant formée de plaques isolantes (12), qui sont disposées dans le réseau des appuis (3),

    - les tôles (23, 24) d'une plaque isolante (12) étant reliées à une tôle de raccord (26) de manière étanche au gaz et de façon circulaire,

    - l'air des plaques isolantes (12) étant en partie évacué.


     
    2. Carter selon la revendication 1, caractérisé en ce que les plaques isolantes (12) sont appuyées contre des brides (8) des appuis (3) avec leur tôle extérieure (24).
     
    3. Carter selon la revendication 2, caractérisé en ce qu'un joint (13) est disposé entre la tôle extérieure (24) et la bride (8).
     
    4. Carter selon l'une quelconque des revendications 1 à 3, caractérisé en ce que des boulons de retenue (10, 10') sont maintenus sur l'appui (3) respectif dans la direction longitudinale de celui-ci à distance les uns des autres, lesquels boulons sont disposés dans le joint vif (11) entre deux plaques isolantes (12) adjacentes et en ce que des plaques de pression (15), pressant les plaques isolantes (12) contre les appuis (3), tournées vers l'espace intérieur (14), sont maintenues par le boulon de retenue (10, 10').
     
    5. Carter selon la revendication 4, caractérisé en ce que des joints (16) résistants à la température sont disposés entre les plaques de pression (15) et les tôles intérieures (23).
     
    6. Carter selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les plaques isolantes (12) sont pourvues dans la zone de leurs joints vifs (11) de gorges (18), des corps isolants (22) remplissant au moins sensiblement les gorges (18), étant disposés dans les deux gorges (18) tournées l'une vers l'autre de deux plaques isolantes (12) s'aboutant contre le joint vif (11).
     
    7. Carter selon la revendication 6, caractérisé en ce que les corps isolants (22) sont formés d'un matériau isolant (25) et d'une enveloppe.
     
    8. Carter selon l'une des revendications 1 à 7, caractérisé en ce que le matériau isolant (25) est formé sensiblement par un acide silique microporeux.
     
    9. Carter selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le matériau isolant (25) comprend une conductivité thermique λ, pour laquelle λ≤0,01 W/mK.
     




    Zeichnung